Summary of Inhalation Carcinogenicity Study

of 1-Bromo-3-Chloropropane

in BDF1 Mice

March 2005

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on March 25 2005.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Inhalation Carcinogenicity Study of 1-Bromo-3-Chloropropane in BDF1 Mice

Purpose, materials and methods

1-Bromo-3-chloropropane (BCP, CAS No. 109-70-6) is a colorless liquid with a boiling point of 143.3°C and a melting point of -58.9°C. It is poorly soluble in water and soluble in methanol and diethyl ether.

The carcinogenicity and chronic toxicity of BCP were examined by inhalation exposure of groups of 50 Crj:BDF1 mice of both sexes to BCP vapor at a target concentration of 0 (clean air), 25, 100 or 400 ppm (v/v) for 6 hours/day, 5 days/week for 2 years (104 weeks). The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. BCP was analyzed for purity and stability by both infrared spectrometry and gas chromatography before and after its use. Stainless-steel inhalation exposure chambers (volume: 3700 L) were used throughout the 2-year exposure period. BCP vapor-air mixture was generated by bubbling clean air through the BCP liquid, and supplied to the inhalation exposure chambers. Air concentrations of BCP vapor in the inhalation exposure chambers were monitored at 15 min intervals by gas chromatography. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year exposure period underwent complete necropsy. Urinalysis was performed near the end of the 2-year exposure period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of the dose-response relation for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present study was conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

As neoplastic lesions, the incidences of bronchiolar-alveolar carcinomas and adenomas, adenosquamous carcinoma, squamous carcinoma of lung, squamous cell papillomas of the forestomach and Harderian gland adenomas were increased in the BCP-exposed males. The incidences of bronchiolar-alveolar carcinomas and adenomas of lung, squamous cell papillomas and carcinomas of the forestomach, and Harderian gland adenomas were increased in the BCP-exposed in the BCP-exposed females. As pre-neoplastic lesions, the incidences of bronchiolar-alveolar cell hyperplasia and squamous cell hyperplasia of the forestomach in both BCP-exposed males and females and hyperplasia of the Harderian gland in the BCP-exposed males were increased.

As non-neoplastic lesions in the nasal cavity, the incidences of respiratory metaplasia, atrophy, eosinophilic change and appearance of exudates in the olfactory epithelium, respiratory metaplasia in the nasal gland, and eosinophilic change and appearance of exudates in the nasopharynx were increased in the BCP-exposed groups of both sexes. BCP influenced the hematological data.

Conclusions

In mice, there was clear evidence of carcinogenic activity of BCP in males and females, based on the increased incidences of bronchiolar-alveolar adenomas and carcinomas. The increased incidences of squamous cell papillomas of the forestomach and Harderian gland adenomas, and adenosquamous carcinoma and squamous carcinoma of lung in the BCP-exposed males, and the increased incidences of squamous cell papillomas and carcinomas of the forestomach, and Harderian gland adenomas in the BCP-exposed females were noted.

TABLES

TABLE	1	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
		MALE MICE IN THE 2-YEAR INHALATION STUDY OF
		1-BROMO-3-CHLOROPROPANE
TABLE	2	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
		FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF
		1-BROMO-3-CHLOROPROPANE
TABLE	9	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL
IADLE	J	OBSERVATION OF MALE MICE IN THE 2-YEAR INHALATION STUDY
		OF 1-BROMO-3-CHLOROPROPANE
TABLE	A	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL
IADLE	4	OBSERVATION OF FEMALE MICE IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
		STODI OF T'DROMO'S'CHLOROPROPANE
TABLE	5	FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR
		INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	6	FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR
		INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	7	HEMATOLOGY OF MALE MICE IN THE 2-YEAR INHALATION
	•	STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	8	HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR INHALATION
	0	STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	9	BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	10	BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	11	URINALYSIS OF MALE MICE IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	12	URINALYSIS OF FEMALE MICE IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE

)

TABLES (CONTINUED)

- TABLE 13ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR INHALATIONSTUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 14ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR INHALATIONSTUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 15INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF MALE MICEIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 16INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF FEMALE MICEIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 17INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF MALEMICE IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE
- TABLE 18INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF FEMALEMICE IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE
- TABLE 19CAUSE OF DEATH OF MALE AND FEMALE MICE IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 20
 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS

 IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1 MALE MICE
- TABLE 21HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONSIN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1 FEMALE MICE

	Control				$25 \mathrm{~ppm}$				10	0 ppn	n		40	0 ppr	n
Weeks on Study	Av.	Wt. <50	No.of Surviv. >	Av.V			No.of Surviv.	Av.			No.of Surviv.	Av.			No.o Survi
0	23.0	(50)	50/50	23.0 ((50)	100	50/50	23.0	(50)	100	50/50	23.0	(50)	100	50/50
1	24.0	(50)	50/50	24.2 ((50)	101	50/50	23.8	(50)	99	50/50	23.0	(50)	96	50/50
2	24.9	(50)	50/50	25.0 ((50)	100	50/50	24.7	(50)	99	50/50	23.6	(50)	95	50/50
3	25.6	(50)	50/50	25.5 ((50)	100	50/50	24.9	(50)	97	50/50	24.1	(50)	94	50/5
4	26.2	(50)	50/50	25.8 ((50)	98	50/50	26.9	(50)	103	50/50	25.3	(50)	97	50/5
5	26.7	(50)	50/50	26.3 (99	50/50	26.5	(50)	99	50/50	24.9	(50)	9 3	50/5
6	27.3	(50)	50/50	27.1 (99	50/50	26.8		98	50/50	25.6		94	50/5
7	27.9	(50)	50/50	27.5 (99	50/50	27.1		97	50/50	26.0		93	50/5
8	28.3	(50)	50/50	28.1 (99	50/50	27.6		98	50/50	26.6		94	50/5
9	29.0	(50)	50/50	28.5 (98	50/50	28.0		97	50/50	27.1		93	50/5
10	29.5	(50)	50/50	29.1		99	50/50	28.4		96	50/50	27.5		93	50/5
11	30.0	(50)	50/50	29.7		99	50/50	29.0		97	50/50	27.9		93	50/5
12	30.6	(50)	50/50	30.3 (99	50/50	29.6		97	50/50	28.1		92	50/5
13	31.1	(50)	50/50	30.7 (99	50/50	30.1		97	50/50	28.6		92	50/5
14	31.7	(50)	50/50	31.4 (99	50/50	30.6		97	50/50	29.4		93	50/5
18	33.8	(50)	50/50	33.7 (100	50/50	32.9		97	50/50	31.4		93	50/5
22	36.1	(50)	50/50	35.9 (99	50/50	35.1		97	50/50	33.0		91	50/5
26	38.0	(50)	50/50	37.9 (50/50	36.4		96	50/50	34.5		91	50/5
20 30	39.4	(50)	50/50 50/50	39.1 (99	50/50 50/50	37.7		96	50/50	35.5		90	50/5
$\frac{30}{34}$	41.0	(50)	50/50 50/50	40.7 (99	50/50 50/50	39.2		96	49/5 0	36.4		89	50/5
38	42.2	(50)	50/50	42.0 (50/50	40.0		95	49/5 0	37.9		9 0	50/5
$\frac{38}{42}$	43.0	(50)	50/50 50/50	42.8 (50/50 50/50	40.0 40.7		95	49/50	37.3		87	50/5
$\frac{42}{46}$	43.3	(50)	50/50 50/50	43.5 (50/50 50/50	40.9		94	49/50	38.0		88	50/5
$\frac{40}{50}$	43.3 44.0	(30) (49)	49/50	44.8 (50/50 50/50	40.5		$\frac{34}{95}$	4 9/50	39.2		89	50/50
	44.0 45.4	(49) (48)	49/50 48/50	44.0 (50/50 50/50	41.7		93 93	49/50 48/50	39.2 39.8		88	50/50
54 50	45.4 45.7	(48)	48/50 48/50	46.2 (50/50 50/50		(40) (48)	93 92	48/50 48/50	39.8 40.1		88	49/50
58 CP		(46)	46/50 46/50	40.2			30/30 49/5 0	42.2 43.2		92 94	48/50 48/50	40.1		88	48/50
62 66	$\begin{array}{c} 45.9\\ 47.2 \end{array}$	(46) (45)		47.1 (49/50 49/50	43.2 44.3		94 94	48/50 48/50	40.0 41.3		88	48/5
66 70			45/50					44.5 44.6		94 95	48/50 48/50	41.5 41.4		88	
70 74		(45)	45/50	48.3 (47/50								48/5
74 79	47.5		45/50	48.4 (48.6 (47/50	45.1		95 04	47/50	41.3		87 87	48/50
78	47.7		44/50				47/50	44.8		94 04	45/50	41.6		87	48/5
82	48.1		43/50	49.0 (45/50	45.3		94	44/50	42.1		88	48/50
86	49.2	(42)	42/50	50.0 (44/50	46.3		94 05	42/50	43.1		88	47/5
90 94	48.8	(40)	40/50	49.6 (44/50	46.3		95 04	42/50	43.5		89 80	45/50
94	48.5	(40)	40/50	49.1 (41/50	45.6		94 04	41/50	42.8		88	42/50
98 100	48.3	(40)	40/50	48.3 (4			40/50	45.4		94	39/50	43.2		89	39/50
102	47.0	(38)	38/50	45.9 (98 97	36/50	42.9		91 00	37/50	40.8		87	38/5
104	46.8	(38)	38/50	45.5 (3	33)	97	33/50	42.2	(37)	9 0	37/50	40.0	(36)	85	36/50

)

TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE MICEIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

	Cont			5 ppm			0 ppn			0 ppi	
Weeks	Av.Wt.	No.of Surviv.	Av.Wt.		No.of Surviv.	Av.Wt.		No.of Surviv.	Av.Wt.		No.of Surviv
on Study											
0	18.6 (50)	50/50	18.6 (49)		49/49	18.6 (50)		50/50	18.6 (50)		50/50
1	19.1 (50)	50/50	19.3 (49)		49/49	19.2 (50)		50/50	18.6 (50)	97	50/50
2	20.0 (50)	50/50	20.2(49)		49/49	19.9 (50)		50/50	19.1 (50)	9 6	50/50
3	20.5 (50)	50/50	20.4 (49)		49/49	20.3 (50)	99	50/50	19.6 (50)	96	50/50
4	21.0 (50)	50/50	20.9 (49)		49/49	21.6 (50)		50/50	20.4 (50)	97	50/50
5	21.5 (50)	50/50	21.4 (49)		49/49	21.5 (50)		50/50	20.6 (50)	96	50/50
6	22.1 (50)	50/50	22.1 (49)		49/49	22.1 (50)		50/50	21.1 (50)	95	50/50
7	22.4(50)	50/50	22.3 (49)		49/49	22.2 (50)	99	50/50	21.6(50)	96	50/50
8	22.7(50)	50/50	22.8(49)		49/49	22.5(50)	9 9	50/50	21.9 (50)	96	50/50
9	23.1(50)	50/50	23.0 (49)		49/49		100	50/50	21.9(50)	95	50/50
10	23.2(50)	50/50	23.2(49)	100	49/49	23.0(50)	99	50/50	22.3(50)	96	50/50
11	23.5(50)	50/50	23.6(49)	100	49/49	23.3(50)	99	50/50	22.7(50)	97	50/50
12	23.7(50)	50/50	23.8(49)	100	49/49	23.8(50)	100	50/50	23.0(50)	97	50/50
13	24.0(50)	50/50	23.7(49)	99	49/49	23.7(50)	99	50/50	23.3(50)	97	50/50
14	24.3(50)	50/50	24.2(49)	100	49/49	24.1(50)	99	50/50	23.5(50)	97	50/50
18	25.3(50)	50/50	25.4(49)	100	49/49	25.1(50)	99	50/50	24.3(50)	96	50/50
22	26.2 (50)	50/50	26.2(49)	100	49/49	25.6 (50)	9 8	50/50	24.8 (50)	95	50/50
26	26.7 (50)	50/50	27.0 (49)	101	49/49	26.4 (50)	99	50/50	25.4(50)	95	50/50
30	27.4 (50)	50/50	27.8 (49)		49/49	26.8 (50)	98	50/50	25.8 (50)	94	50/50
34	27.9 (50)	50/50	28.5(49)		49/49	27.4 (50)	98	50/50	26.1(50)	94	50/50
38	28.4(49)	49/50	28.7 (49)		49/49	27.9 (50)	98	50/50	26.6 (50)	94	50/50
42	29.1 (49)	49/51	29.4 (49)		49/49	27.9 (50)	96	50/50	26.4(50)	91	50/50
46	28.8 (49)	49/52	29.4 (49)		49/49	27.9 (50)	97	50/50	26.7 (50)	93	50/50
50	29.7 (49)	49/53	29.7 (49)		49/49	28.4 (49)	96	49/50	26.9 (50)	91	50/50
54	29.8 (49)	49/54	30.2 (48)		48/49	28.6 (49)	96	49/50	27.0 (50)	91	50/50
58	30.0 (49)	49/55	30.7 (48)		48/49	28.7 (49)	96	49/50	27.2(50)	91	50/50
62	30.4 (49)	49/56	31.4 (47)		47/49	29.3 (49)	96	49/50	27.0 (49)	89	49/50
66	30.6 (49)	49/57	32.2(47)		47/49	29.6 (49)	97	49/5 0	27.2(48)	89	48/50
70	30.7 (49)	49/58	31.5 (46)		46/49	29.3 (49)	95	49/50	27.2 (48)	89	48/50
70 74	31.4 (49)	49/59	31.5(40) 32.5(46)		46/49	30.0 (49)	96	49/50	27.2(47)	87	47/50
74 78	31.4 (43) 31.8 (48)	48/50	32.3(40) 32.3(45)		45/49	29.7(46)	93	46/50	27.2(47) 27.3(46)	86	46/50
82	31.0(43) 32.0(45)	45/50 45/50	32.3(43) 32.2(41)		41/49	29.6(40) 29.6(45)			27.6(46) 27.6(46)		46/50
			32.2(41) 33.0(39)		41/49 39/49		93 04	45/50		86 00	
86 00	31.6(44)	44/50				29.6(44)	94 02	44/50	28.3(44)	9 0	44/50
90 04	31.6(40)	40/50	33.7(37)		37/49	29.4(44)	93 06	44/50	28.4(42)	90 01	42/50
94 08	31.5(38)	38/50	33.2(32)		32/49	30.2(40)	96 04	40/50	28.6(39)	91 00	39/50
98 100	32.0(36)	36/50	33.1(29)		29/49	30.2(38)	94 07	38/50	28.8 (36)	9 0	36/50
102	31.4 (32)	32/50	32.0 (25)		25/49	30.5 (33)	97	33/50	28.1 (35)	89	35/50
104	31.6 (30)	30/50	31.9 (24)	101	24/49	30.4 (32)	96	32/50	28.1(33)	89	33/50

)

)

TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE MICE
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Time of mass occur	rrence (week)	0~13	$14\sim 26$	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	66~78	79~91	92~104	0~104
External mass	<u>, an ¹¹ ' - Anna ann - Anna ann</u>									
	Control	0/50	0/50	0/50	0/50	0/48	1/45	2/43	2/40	4/50 (1/12
	$25~{ m ppm}$	0/50	0/50	0/50	0/50	0/50	0/49	1/47	1/43	1/50 (1/17
	100 ppm	0/50	0/50	0/50	0/49	0/48	0/48	1/45	2/42	3/50 (0/13
	400 ppm	0/50	0/50	0/50	0/50	0/50	0/48	2/48	5/44	6/50 (1/14
Internal mass										
	Control	0/50	0/50	0/50	2/50	4/48	2/45	3/43	8/40	12/50 (5/12
	$25~{ m ppm}$	0/50	0/50	0/50	0/50	0/50	1/49	3/47	8/43	9/50 (6/17
	100 ppm	0/50	2/50	2/50	3/49	1/48	1/48	3/45	2/42	7/50 (5/13
	400 ppm	3/50	5/50	5/50	6/50	5/50	3/48	3/48	3/44	7/50 (4/14

TABLE 3INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OFMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

)

)

TABLE 4	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF
	FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Time of mass occurrence (week)	0~13	$14 \sim 26$	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	66~78	79~91	92~104	0~104
External mass									
Control	0/50	0/50	0/50	0/49	0/49	1/49	2/48	5/39	6/50 (3/20)
$25~{ m ppm}$	0/49	0/49	0/49	0/49	0/49	0/47	0/44	0/35	0/49 (0/26)
100 ppm	0/50	0/50	0/50	0/50	0/49	1/49	1/46	2/42	3/50 (1/18)
400 ppm	0/50	0/50	0/50	0/50	0/50	0/48	5/46	5/42	6/50 (1/17)
Internal mass									
Control	0/50	0/50	2/50	1/49	1/49	2/49	5/48	7/39	11/50 (9/20)
$25~{ m ppm}$	0/49	0/49	0/49	3/49	5/49	2/47	13/44	14/35	23/49 (17/26)
100 ppm	0/50	0/50	2/50	2/50	3/49	6/49	6/46	11/42	14/50 (8/18)
$400~{ m ppm}$	1/50	1/50	1/50	1/50	4/50	3/48	6/46	10/42	16/50 (12/17)

No. of animals with mass / No. of surviving animals at the first week in each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

	Control	$25~{ m ppm}$	100 ppm	400 ppm
	Av.FC.	Av.FC. % of	Av.FC. % of	Av.FC. % of
Weeks		cont.	cont.	cont.
on Study	<50>	<50>	<50>	<50>
1	3.8 (50)	3.8 (50) 100	3.7 (50) 97	3.5 (50) 92
2	3.8 (50)	3.7 (50) 97	3.8 (50) 100	3.5 (50) 92
3	3.7 (50)	3.8 (50) 103	3.7 (50) 100	3.6 (50) 97
4	3.9(50)	3.9 (50) 100	3.9 (50) 100	3.7 (50) 95
5	4.0 (50)	3.9(50) 98	4.0 (50) 100	3.8 (50) 95
6	4.1 (50)	4.1 (50) 100	3.8 (50) 93	3.8 (50) 93
7	4.1 (50)	4.0 (50) 98	4.0 (50) 98	3.9 (50) 95
8	4.1 (50)	4.2 (50) 102	4.0 (50) 98	4.0 (50) 98
9	4.1 (50)	4.1 (50) 100	4.0 (50) 98	4.0 (50) 98
10	4.2 (50)	4.2 (50) 100	4.1 (50) 98	4.0 (50) 95
11	4.2 (50)	4.3 (50) 102	4.2 (50) 100	4.1 (50) 98
12	4.3 (50)	4.3 (50) 100	4.3 (50) 100	4.1 (50) 95
13	4.3 (50)	4.3 (50) 100	4.2 (50) 98	4.1 (50) 95
14	4.3 (50)	4.3 (50) 100	4.3 (50) 100	4.2 (50) 98
18	4.4 (50)	4.3 (50) 98	4.3 (50) 98	4.2 (50) 95
22	4.5(50)	4.5 (50) 100	4.4 (50) 98	4.2 (50) 93
26	4.5 (50)	4.5 (50) 100	4.4 (50) 98	4.4 (50) 98
30	4.6 (50)	4.6 (50) 100	4.5 (50) 98	4.4 (50) 96
34	4.7 (50)	4.7 (50) 100	4.6 (49) 98	4.4 (50) 94
38	4.7 (50)	4.7 (50) 100	4.7 (49) 100	4.5 (50) 96
42	4.7 (50)	4.7 (50) 100	4.6 (49) 98	4.3 (50) 91
46	4.7 (50)	4.7 (50) 100	4.6 (49) 98	4.5 (50) 96
50	4.8(49)	4.8 (50) 100	4.6 (49) 96	4.6 (50) 96
54	4.8 (48)	4.7 (50) 98	4.7 (48) 98	4.5 (50) 94
58	4.9 (48)	4.9 (50) 100	4.6 (48) 94	4.4 (49) 90
62	4.8 (46)	4.7 (49) 98	4.6 (48) 96	4.5 (48) 94
66	4.9(45)	4.8 (49) 98	4.7 (48) 96	4.6 (48) 94
70	4.8 (45)	4.8 (47) 100	4.6 (48) 96	4.4 (48) 92
74	4.7 (45)	4.6 (47) 98	4.7 (47) 100	4.4(48) 94
78	4.9 (44)	4.8 (47) 98	4.7 (45) 96	4.6 (48) 94
82	5.0 (43)	5.0 (45) 100	4.9 (44) 98	4.6 (48) 92
86	5.1 (42)	4.9 (44) 96	4.9 (42) 96	4.7 (47) 92
90	4.9 (40)	4.9 (44) 100	4.8 (42) 98	4.7 (45) 96
94	5.0(40)	4.9 (41) 98	4.8 (41) 96	4.6 (42) 92
98	4.9 (40)	4.8 (40) 98	4.8 (39) 98	4.6 (39) 94
102	4.8 (38)	4.6 (36) 96	4.6 (37) 96	4.4 (38) 92
104	4.8 (38)	4.7 (33) 98	4.6 (37) 96	4.3 (36) 90

TABLE 5FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

< >: No.of effective animals, (): No.of measured animals

Av.FC. : Averaged food consumption (Unit:g)

	$\operatorname{Control}$	$25~{ m ppm}$	100 ppm	$400~{ m ppm}$
	Av.FC.	Av.FC. % of	Av.FC. % of	Av.FC. % of
Weeks		cont.	cont.	cont.
on Study	<50>	<49>	<50>	<50>
1	3.3 (50)	3.3 (49) 100	3.2 (50) 97	3.1 (50) 94
2	3.2(50)	3.3 (49) 103	3.3 (50) 103	3.1 (50) 97
3	3.4(50)	3.4 (49) 100	3.3 (50) 97	3.2 (50) 94
4	3.6(50)	3.6 (49) 100	3.6 (50) 100	3.4 (50) 94
5	3.7 (50)	3.7 (49) 100	3.7 (50) 100	3.4 (50) 92
6	3.9 (50)	3.8 (49) 97	3.7 (50) 95	3.6 (50) 92
7	3.9 (50)	3.8 (49) 97	3.9 (50) 100	3.7 (50) 95
8	3.9(50)	3.9 (49) 100	3.9 (50) 100	3.7(50) 95
9	4.0 (50)	3.9 (49) 98	4.1 (50) 103	3.7 (50) 93
10	4.0 (50)	4.0 (49) 100	4.0 (50) 100	3.7 (50) 93
11	4.0 (50)	4.0 (49) 100	4.2 (50) 105	3.8(50) 95
12	4.1 (50)	4.0 (49) 98	4.1 (50) 100	3.9 (50) 95
13	4.0 (50)	4.0 (49) 100	4.0 (50) 100	3.9 (50) 98
14	4.1 (50)	4.0 (49) 98	4.1 (50) 100	3.9 (50) 95
18	4.1 (50)	4.0 (49) 98	4.2 (50) 102	3.9 (50) 95
22	4.1 (50)	4.1 (49) 1 00	4.2 (50) 102	3.9 (50) 95
26	4.2 (50)	4.1 (49) 98	4.3 (50) 102	4.0 (50) 95
30	4.3 (50)	4.3 (49) 100	4.5 (50) 105	4.2 (50) 98
34	4.5 (50)	4.4 (49) 98	4.5 (50) 100	4.3 (50) 96
38	4.3 (49)	4.3 (49) 100	4.5 (50) 105	4.3 (50) 100
42	4.4 (49)	4.2 (49) 95	4.5 (50) 102	4.1 (50) 93
46	4.2 (49)	4.3 (49) 102	4.4 (50) 105	4.1 (50) 98
50	4.4 (49)	4.3 (49) 98	4.4 (49) 100	4.0 (50) 91
54	4.3 (49)	4.2 (48) 98	4.3 (49) 100	4.0 (50) 93
58	4.4 (49)	4.4 (48) 100	4.3 (49) 98	3.9 (50) 89
62	4.4 (49)	4.2 (47) 95	4.3 (49) 98	3.9 (49) 89
66	4.2 (49)	4.4 (47) 105	4.3 (49) 102	3.8 (48) 90
70	4.3 (49)	4.1 (46) 95	4.1 (49) 95	3.8 (48) 88
74	4.1 (49)	4.1 (46) 100	4.3 (49) 105	3.8 (47) 93
78	4.4 (48)	4.3 (45) 98	4.3 (46) 98	3.9 (46) 89
82	4.5 (45)	4.3 (41) 96	4.2 (45) 93	3.9 (46) 87
86	4.4 (44)	4.4 (39) 100	4.2 (44) 95	4.0 (44) 91
90	4.5 (40)	4.3 (37) 96	4.1 (44) 91	4.0 (42) 89
94	4.4 (38)	4.5 (32) 102	4.3 (40) 98	3.9 (39) 89
98	4.5 (36)	4.4 (29) 98	4.2 (38) 93	3.8 (36) 84
102	4.4 (32)	4.3 (25) 98	4.2 (33) 95	3.8 (35) 86
104	4.5 (30)	4.3 (24) 96	4.2 (32) 93	3.8 (33) 84

TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

< >: No.of effective animals, (): No.of measured animals

Av.FC. : Averaged food consumption (Unit:g)

)

TABLE 7HEMATOLOGY OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	$25~\mathrm{ppm}$	100 ppm	400 ppm
No. of examined animals	36	31	34	32
RED BLOOD CELL (10 ⁶ / μ L)	9.66 ± 0.96	10.21 ± 1.25	9.68 ± 0.75	8.55 ± 1.44 **
HEMOGLOBIN (g/dL)	13.6 ± 1.4	13.8 ± 1.7	13.4 ± 1.0	12.3 ± 1.9 **
HEMATOCRIT (%)	44.0 ± 4.4	$45.0~\pm~6.0$	44.0 ± 3.1	40.7 ± 5.6 **
MCV (fL)	45.6 ± 1.5	44.1 ± 2.1	* 45.4 ± 1.3	48.0 ± 3.8 **
MCH (pg)	14.1 ± 0.3	13.5 ± 0.6	** 13.9 ± 0.5	14.5 ± 0.9
MCHC (g/dL)	30.9 ± 0.8	30.6 ± 0.5	30.5 ± 0.6 **	30.2 ± 0.9 **
PLATELET $(10^3/\mu L)$	1910 ± 287	$2034~\pm~408$	1923 ± 286	$1518 \pm 539 $ **
Differential WBC (%)				
EOSINO	2 ± 1	1 ± 1	** 2 ± 2	2 ± 2
OTHER	0 ± 1	0 ± 0	0 ± 1	3 ± 11 **
Mean ± S.D.		***************************************	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199	۵۰۵، ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۲۰۰۰ ۲۰۰۰ ۵۰۰ ۵۰۰ ۵
Significant difference: *: p<0.0	5 **:p<0.01 Test o	f Dunnett		

TABLE 8HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	$25~{ m ppm}$	100 ppm	400 ppm
No. of examined animals	30	23	31	31
MCV (fL)	45.0 ± 1.4	45.2 ± 2.3	47.1 ± 5.0	* 47.0 ± 2.1 **
MCHC (g/dL)	31.0 ± 0.8	30.8 ± 1.1	30.7 ± 1.5	30.6 ± 1.1 *
PLATELET ($10^3/\mu$ L)	1296 ± 259	1142 ± 362	1042 ± 384	** 1073 ± 323 *
Mean ± S.D.				
Significant difference: *:p<	0.05 **∶p<0.01 Test o	of Dunnett		

)

Group Name	Control	$25~{ m ppm}$	100 ppm	400 ppm
No. of examined animals	37	31	34	34
A/G RATIO	1.3 ± 0.2	1.2 ± 0.2	1.3 ± 0.2	1.4 ± 0.2 **
T-CHOLESTEROL (mg/dL)	103 ± 39	118 ± 41	100 ± 34	87 ± 25 *
PHOSPHOLIPID (mg/dL)	$194~\pm~45$	$219~\pm~61$	188 ± 43	163 ± 36 **
GPT (IU/L)	34 ± 59	57 ± 62 *	39 ± 42 *	62 ± 87 **
ALP (IU/L)	$141~\pm~53$	$159~\pm~120$	$140~\pm~33$	187 ± 77 **
G-GTP (IU/L)	1 ± 1	1 ± 1	1 ± 1	2 ± 1 *
UREA NITROGEN (mg/dL)	25.7 ± 9.9	24.1 ± 5.9	21.6 ± 3.2 *	19.1 ± 3.4 **
CHLORIDE (mEq/L)	122 ± 2	122 ± 3	124 ± 3 *	* 130 ± 4 **
Mean ± S.D.			<u>,</u>	

TABLE 9BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Significant difference: *:p<0.05 **:p<0.01 Test of Dunnett

)

)

TABLE 10BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100 ppm	400 ppm	
No. of examined animals	30	23	31	32	
TOTAL PROTEIN (g/dL)	5.2 ± 0.6	5.3 ± 0.6	4.8 ± 0.8 **	5.0 ± 0.4	
A/G RATIO	1.3 ± 0.2	1.5 ± 0.4	1.6 ± 0.3 **	1.6 ± 0.3	**
CPK (IU/L)	104 ± 62	$191~\pm~425$	136 ± 123	73 ± 44	*
CHLORIDE (mEq/L)	$122~\pm~3$	123 ± 3	124 ± 3	127 ± 4	**
Mean ± S.D.		t the second second data are second and the second s			
Significant difference: *:p<0.04	5 **:p<0.01 Test of	Dunnett			

Group Name		Control	25 ppm	100 ppm	400 ppm
No. of examined ar	umals	38	34	36	36
	Grade				
pH	5.0	0	0	0	0
	6.0	0	5	5	8
	6.5	4	4	11	22
	7.0	4	5	10	4
	7.5	19	12	5	1
	8.0	7	8	2	0
	8.5	4	0	3	1
	Chi square tes	t		**	**
Protein		1	0	0	0
	±	10	8	4	0
	· +	25	22	23	17
	2+	2	3	8	17
	3+	0	1	1	2
	4+	0	0	0	0
	Chi square test	t.			**
Ketone body		16	22	8	4
	±	20	10	14	9
	+	2	2	12	17
	2+	0	0	2	6
	3+	0	0	0	0
	4+	0	0	0	0
	Chi square test	;		**	**

)

)

TABLE 11URINALYSIS OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE

Group Name		Control	25 ppm	100 ppm	400 ppm
No. of examined	animals	30	24	32	33
	Grade				
pH	5.0	0	1	0	0
	6.0	1	1	3	3
	6.5	2	4	3	15
	7.0	2	0	2	3
	7.5	4	3	3	6
	8.0	19	15	18	6
	8.5	2	0	3	0
	Chi square tes	t			**
Protein	_	0	1	0	0
	± '	7	4	0	2
	+	13	13	14	12
	2+	7	6	16	16
	3+	3	0	2	3
	4+	0	0	0	0
	Chi square tes	t		*	
Ketone body	. 	9	8	0	0
	±	14	13	13	13
	+	6	3	15	9
	2+	1	0	4	11
	3+	0	0	0	0
	4+	0	0	0	0
	Chi square test	;		**	**

1

)

TABLE 12URINALYSIS OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE

Group Name	Control	$25~\mathrm{ppm}$	100 ppm	$400 \mathrm{ppm}$
No. of examined animals	38	33	37	36
Body weight (g)	42.5 ± 7.0	41.4 ± 7.7	38.3 ± 7.4 *	36.1 ± 7.3 **
Testes (g)	0.220 ± 0.038	0.213 ± 0.038	0.206 ± 0.031	0.183 ± 0.033 **
Testes (%)	0.525 ± 0.098	0.532 ± 0.123	0.558 ± 0.133	0.522 ± 0.125
Heart (g)	0.218 ± 0.020	0.220 ± 0.020	0.213 ± 0.024	0.203 ± 0.023 *
Heart (%)	0.521 ± 0.068	0.545 ± 0.084	0.576 ± 0.133	0.576 ± 0.082 **
Lungs (g)	0.231 ± 0.171	0.335 ± 0.250	0.309 ± 0.219	0.304 ± 0.169
Lungs (%)	0.604 ± 0.747	$0.891 \pm 0.876 **$	0.879 ± 0.917 **	0.880 ± 0.550 **
Kidneys (g)	0.640 ± 0.186	0.620 ± 0.063	0.624 ± 0.062	1.006 ± 2.200
Kidneys (%)	1.524 ± 0.415	1.529 ± 0.202	1.672 ± 0.258 **	2.598 ± 4.628 **
Spleen (g)	0.144 ± 0.257	0.077 ± 0.032	0.065 ± 0.027	0.102 ± 0.141 *
Spleen (%)	0.354 ± 0.651	0.187 ± 0.072	0.175 ± 0.080	0.312 ± 0.489
Liver (g)	1.543 ± 0.267	1.838 ± 0.737	1.580 ± 0.315	1.729 ± 0.587
Liver (%)	3.679 ± 0.616	4.564 ± 1.937 *	$4.246 \pm 1.124 **$	$4.956 \pm 2.176 **$
Brain (g)	0.455 ± 0.016	0.457 ± 0.018	0.463 ± 0.022	0.442 ± 0.014 **
Brain (%)	1.102 ± 0.198	1.141 ± 0.217	1.268 ± 0.343 *	1.268 ± 0.232 **

)

)

TABLE 13ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

TABLE 14ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	$25~\mathrm{ppm}$	100 ppm	400 ppm
No. of examined animal	s 30	24	32	33
Body weight (g)	27.5 ± 4.5	$27.9 ~\pm~ 4.2$	26.3 ± 2.8	25.0 ± 2.4
Heart (g)	0.172 ± 0.022	0.185 ± 0.038	0.171 ± 0.017	0.157 ± 0.015 *
Heart (%)	0.639 ± 0.106	0.668 ± 0.125	0.652 ± 0.071	0.635 ± 0.081
Lungs (g)	0.195 ± 0.023	$0.272 \pm 0.175 **$	* 0.263 ± 0.191 **	0.266 ± 0.157 **
Lungs (%)	0.721 ± 0.086	1.042 ± 0.940	$1.024 \pm 0.861 **$	1.071 ± 0.626 **
Kidneys (g)	0.576 ± 0.855	0.496 ± 0.309	0.518 ± 0.471	0.441 ± 0.053
Kidneys (%)	2.108 ± 3.014	1.802 ± 1.163	$1.926 \pm 1.486 *$	$1.779 \pm 0.246 **$
Brain (g)	0.494 ± 0.055	0.472 ± 0.023	0.468 ± 0.020 *	$0.445 \pm 0.016 **$
Brain (%)	1.848 ± 0.396	1.727 ± 0.253	1.797 ± 0.188	1.801 ± 0.187
Mean ± S.D. Significant difference:	*:p<0.05 **:p<0.01	Test of Dunnett		

TABLE 15INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF MALE MICEIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name		Control	25 ppm	100ppm	400ppm	\mathbf{Peto}	Cochran
Number of examined anima	ls	50	50	50	50	test	Armitage
			· · · · · · · · · · · · · · · · · · ·				test
Respiratory system							
lung		<50>	<50>	<50>	<50>		
bronchiolar-alveolar	adenoma	5(10%)	21(42%)**	20(40%)**	26(52%)**	11	↑ ↑
bronchiolar-alveolar	carcinoma	3(6%)	29(58%)**	26(52%)**	26 (52 %) **	ſ	Ť
adenosquamous carci	noma	0(0%)	0(0%)	0(0%)	1(2%)		
squamous cell carcine	oma	0(0%)	0(0%)	1(2%)	0(0%)		
Digestive system							
stomach		<50>	<50>	<50>	<50>		
squamous cell papillo	ma	1(2%)	1(2%)	2(4%)	8(16 %)*	↑ ↑	↑ ↑
liver		<50>	<50>	<50>	<50>		
hepatocellular adeno	ma	4(8%)	10(20%)	8(16%)	14(28%)**	↑ ↑	1
hepatocellular carcin	oma	3(6%)	5(10%)	3(6%)	3(6%)		
hepatoblastoma		0(0%)	0(0%)	1(2%)	1(2%)		
Special sense organs/append	lage						
Harderian gland		<50>	<50>	<50>	<50>		
adenoma		4(8%)	4(8%)	4(8%)	13(26%)*	11	↑ ↑
0	-	**:p<0.01			or neoplastic lesio		
↑(> :Number of animals	-	↑↑(↓↓):p<(the site	0.01 Pet	o or Cochran-Ari	nitage test for ne	oplastic	lesion

)

TABLE 16INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF FEMALE MICE
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100ppm	400ppm	Peto	Cochran
Number of examined animals	50	49	50	50	test	Armitage
	4					test
Respiratory system						
lung	<50>	<49>	<50>	<50>		
bronchiolar-alveolar adenoma	2(4%)	19(39%)**	25 (50 %) **	30(60 %)**	11	↑ ↑
bronchiolar-alveolar carcinoma	2(4%)	12(24 %)**	20(40%)**	13 (26 %) **		
Digestive system						
stomach	<50>	<49>	<50>	<50>		
squamous cell papilloma	0(0%)	0(0%)	1(2%)	8(16 %)**	î î	î î
squamous cell carcinoma	0(0%)	1(2%)	0(0%)	1(2%)		
Special sense organs/appendage						
Harderian gland	<50>	<49>	<50>	<50>		
adenoma	3(6%)	0(0%)	2(4%)	14(28%)**	11	↑ ↑
Significant difference *: p<0.05	**:p<0.01			or neoplastic lesio		
↑(↓):p<0.05 > Number of animals examined at	↑ ↑(↓↓):p<0	0.01 Pet	o or Cochran-Ar	mitage test for ne	oplastic	lesion

)

)

TABLE 17INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF MALE MICE
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name		Con	trol			25p	pm			$100_{\rm H}$	opm			400 ₁	ppm	
Number of examined animals		5	0			5	0			5	0			5	0	
Grade of non-neoplastic lesion	1	2	3	4		2	3	4	1	2	3	4		2	3	4
Respiratory system																
nasal cavity		<5	0>			<5	0>			<5	0>			<5	0>	
respiratory metaplasia:olfactory epitheliun	4	1	0	0	3	1	0	0	5	0	0	0	29	19	0	0 **
atrophy:olfactory epithelium	0	1	0	0	0	1	0	0	0	0	0	0	37	0	0	0 **
eosinophilic change:olfactory epithelium	10	1	0	0	14	0	0	0	18	0	0	0	17	5	0	0 *
exudate	0	1	0	0	0	1	0	0	0	1	0	0	3	0	0	0
respiratory metaplasia:gland	8	0	0	0	9	0	0	0	9	0	0	0	23	23	1	0 **
nasopharynx		<5	0>			<5)>			<5)>			<5	0>	
eosinophilic change	5	0	0	0	3	0	0	0	6	1	0	0	34	3	0	0 **
lung		<5	0>			<50)>			<5()>			<5) >	
bronchiolar-alveolar cell hyperplasia	3	1	0	0	20	4	0	0 **	23	3	0	0 **	27	6	0	0 *
Digestive system																
stomach		<5	0>			<50)>			<5()>			<5(0>	
squamous cell hyperplasia:forestomach	2	0	0	0	1	2	0	0	4	0	0	0	17	1	0	0 **
Special sense organs/appendage																
Harderian gland		<50)>			<5()>			<5()>			<5()>	
hyperplasia	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
Grade 1:Slight 2:Moderate 3:Marked < >:Number of animals examined at the site Significant difference; $*:P \leq 0.05$ $**:P \leq 0.01$. 1		Seve: of Cl	re hi Squa	are											-

TABLE 18INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF FEMALE MICE
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name		Control				2 5ppm					400ppm					
Number of examined animals		5	0			4	9			5	0			5	0	
Grade of non-neoplastic lesion	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Respiratory system																
nasal cavity		<5	0>			<4	9>			<5	0>			<5	0>	
respiratory metaplasia:olfactory epitheliun	5	0	0	0	6	0	0	0	9	0	0	0	4	42	3	0 *
atrophy olfactory epithelium	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0 **
eosinophilic change:olfactory epithelium	23	3	1	0	16	4	4	0	22	3	0	0	9	32	8	1 **
exudate	0	0	0	0	0	0	0	0	2	0	0	0	20	0	0	0 **
respiratory metaplasia:gland	8	0	0	0	9	0	0	0	11	0	0	0	13	32	1	0 **
nasopharynx		<50)>			<4) >			<5()>			<5)>	
eosinophilic change	10	1	0	0	11	3	0	0	22	2	0	0 *	38	5	0	0 **
exudate	0	0	0	0	0	0	0	0	1	0	0	0	17	0	0	0 **
ung		<50)>			<49) >			<5()>			<5)>	
bronchiolar-alveolar cell hyperplasia	7	0	0	0	20	1	0	0 **	28	3	0	0 **	20	7	0	0 **
Digestive system																
stomach		<50)>			<49)>			<50)>			<50)>	
squamous cell hyperplasia:forestomach	2	2	0	0	2	0	0	0	10	1	0	0 *	18	3	0	0 **
Nervous system																
orain		<50)>			<49)>			<50	>			<5()>	
mineralization	21	0	0	0	10	0	0	0 *	16	0	0	0	4	0	0	0 **
Special sense organs/appendage																
Harderian gland		<50)>			<49	>			<50	>			<50)>	
hyperplasia	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0

)

TABLE 19CAUSE OF DEATH OF MALE AND FEMALE MICE IN THE 2-YEAR
INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

)

)

		М	ale		Female					
Group name	Control	25 ppm	100 ppm	400 ppm	Control	25 ppm	100 ppm	400 ppn		
Number of dead or moribund animals	12	17	13	14	20	25	18	17		
No microscopical confirmation	0	0	1	0	0	0	1	0		
Hydronephrosis	0	0	1	4	1	1	0	0		
Urinary retention	3	0	0	0	1	0	0	0		
Hemorrhage	1	0	0	0	0	0	0	1		
Tumor death :leukemia	4	4	4	4	9	13	5	7		
subcutis	0	0	0	0	0	1	0	· 0		
lung	0	6	1	4	1	0	3	0		
spleen	0	0	1	0	0	0	0	1		
large intestine	0	0	0	0	0	0	1	0		
liver	3	7	4	2	1	1	0	0		
urinary bladder	1	0	0	0	0	0	0	0		
pituitary gland	0	0	0	0	2	3	0	0		
adrenal gland	0	0	0	0	0	0	0	1		
uterus				******	4	6	7	7		
mammary gland	0	0	0	0	1	0	0	0		
peripheral nerves	0	0	1	0	0	0	1	0		

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Lung Bronchiolar-alveolar adenoma Bronchiolar-alveolar carcinoma Adenosquamous carcinoma Squamous cell carcinoma	1495	$\begin{array}{c} 120\\ 162\\ 0\\ 0\end{array}$	8.0 10.8 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Stomach Squamous cell papilloma	1495	3	0.2	0-2
Liver Hepatocellular adenoma	1496	273	18.2	4 - 34
Harderian gland Adenoma	1495	69	4.6	0 - 10

TABLE 20HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS
IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1 MALE MICE

30 carcinogenicity studies examined in Japan Bioassay Research Center were used.

)

Study No. : 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372, 0402, 0406

TABLE 21HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONSIN JAPAN BIOASSAY RESEARCH CENTER :Crj:BDF1 FEMALE MICE

Organs Tumors	No. of animals examined	No. of animals bearing tumor	Incidence (%)	Min Max. (%)
Lung Bronchiolar-alveolar adenoma Bronchiolar-alveolar carcinoma	1498	$54\\43$	$\begin{array}{c} 3.6\\ 2.9\end{array}$	0 - 10 0 - 8
Stomach Squamous cell papilloma Squamous cell carcinoma	1497	4 2	$\begin{array}{c} 0.3\\ 0.1 \end{array}$	0 - 2 0 - 2
Harderian gland Adenoma	1498	47	3.1	0 - 12

30 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No. : 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372, 0402, 0406

FIGURES

- FIGURE 1 1-BROMO-3-CHLOROPROPANE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM
- FIGURE 2 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 4 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

\

- FIGURE 5 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

)

Ĵ

FIGURE 1 1-BROMO-3-CHLOROPROPANE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM

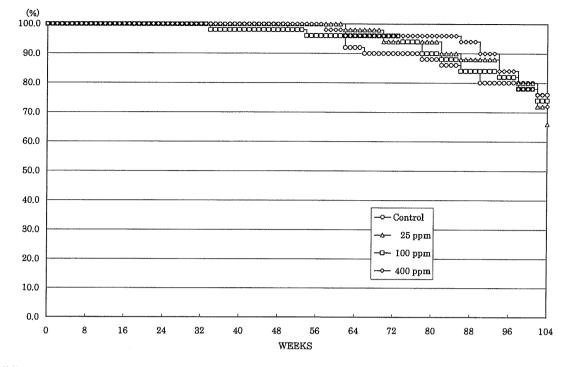


FIGURE 2 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

ì

j

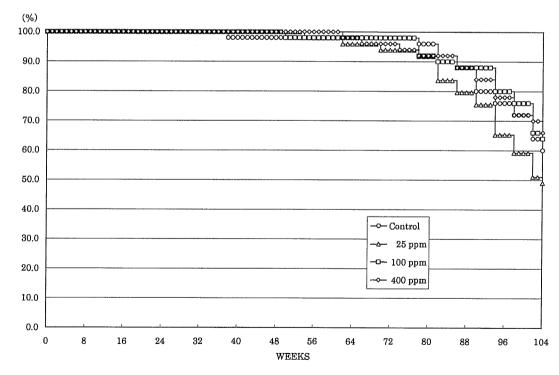


FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

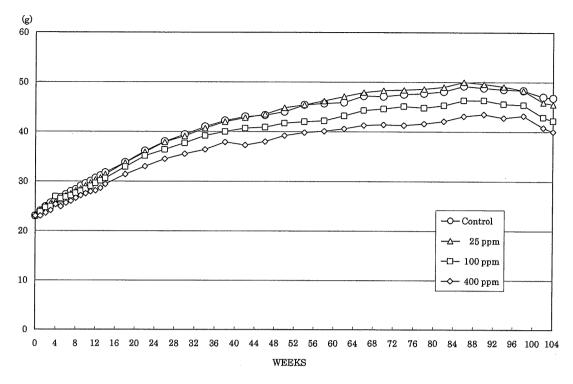


FIGURE 4 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

`}

Ì

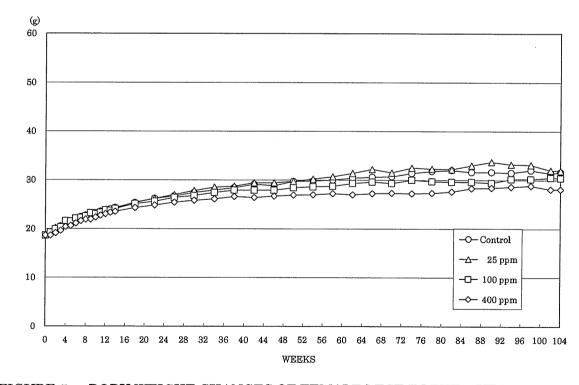


FIGURE 5 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

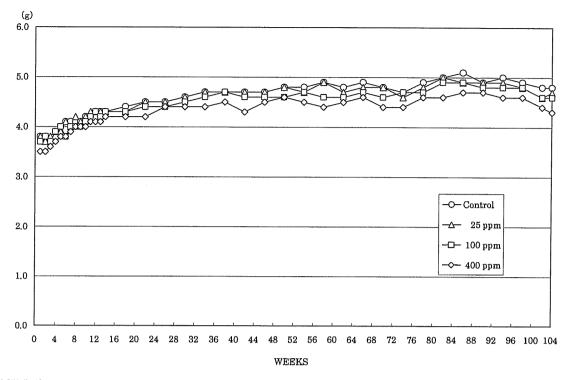
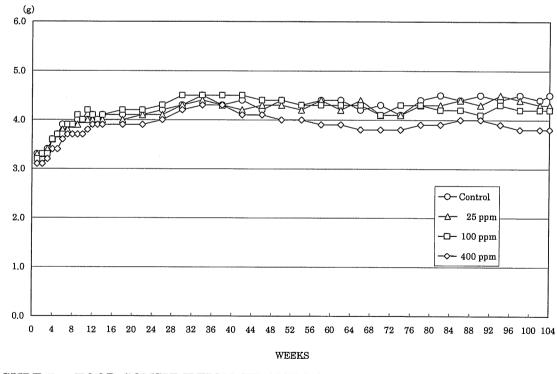
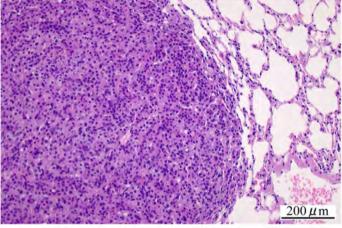
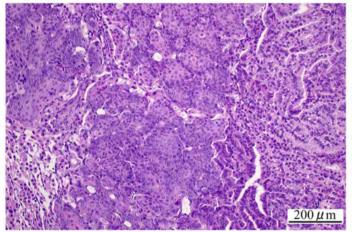
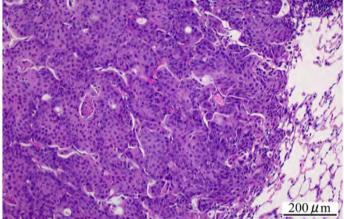


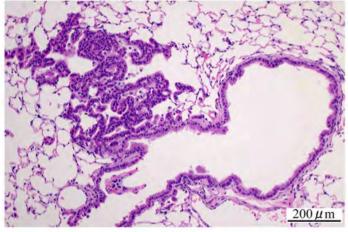
FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

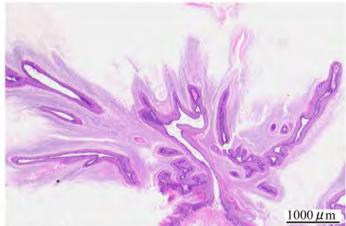



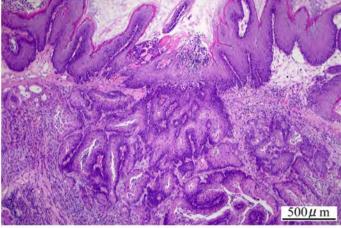

FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

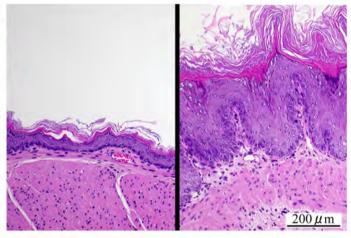


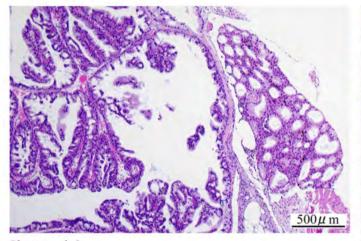
Photograph 1 Lung: Bronchiolar-alveolar carcinoma Mouse, Male, 400 ppm, Animal No. 0418-1347 (H&E)

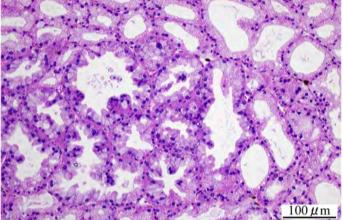

Photograph 2 Lung: Bronchiolar-alveolar adenoma Mouse, Male, 400 ppm, Animal No. 0418-1326 (H&E)


Photograph 3 Lung: Adenosquamous carcinoma Mouse, Male, 400 ppm, Animal No. 0418-1342 (H&E)


Photograph 4 Lung: Squamous cell carcinoma Mouse, Male, 100 ppm, Animal No. 0418-1206 (H&E)


Photograph 5 Lung: Bronchiolar-alveolar cell hyperplasia (Bronchiolar type) Mouse, Male, 400 ppm, Animal No. 0418-1339 (H&E)


Photograph 6 Forestomach: Squamous cell papilloma Mouse, Male, 400 ppm, Animal No. 0418-1305 (H&E)


Photograph 7 Forestomach: Squamous cell carcinoma Mouse, Female, 400 ppm, Animal No. 0418-2318 (H&E)

Photograph 8 Left: Forestomach: Normal Mouse, Female, Control, Animal No. 0418-2002 (H&E) Right: Forestomach: Squamous cell hyperplasia Mouse, Female, 400 ppm, Animal No. 0418-2302 (H&E)

Photograph 9 Harderian gland: Adenoma Mouse, Male, 400 ppm, Animal No. 0418-1305 (H&E)

Photograph 10 Harderian gland: Hyperplasia Mouse, Male, 400 ppm, Animal No. 0418-1306 (H&E)