2-アミノエタノールのラットを用いた経口投与によるがん原性試験(混水試験)報告書

試験番号:0641

TABLES

TABLES

TABLE A 1	SURVIVAL ANIMAL NUMBERS: MALE
TABLE A 2	SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE B 1	CLINICAL OBSERVATION: MALE
TABLE B 2	CLINICAL OBSERVATION: FEMALE
TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAI NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAI NUMBERS: MALE
TABLE E 2	WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAI NUMBERS: FEMALE
TABLE E 3	WATER CONSUMPTION CHANGES: MALE
TABLE E 4	WATER CONSUMPTION CHANGES: FEMALE
TABLE F 1	CHEMICAL INTAKE CHANGES: MALE
TABLE F 2	CHEMICAL INTAKE CHANGES: FEMALE

TABLES (CONTINUED)

TABLE G 1	HEMATOLOGY: MALE
TABLE G 2	HEMATOLOGY: FEMALE
TARIF H 1	BIOCHEMISTRY: MALE
TABLE H 2	BIOCHEMISTRY: FEMALE
TABLE I 1	URINALYSIS: MALE
TABLE I 2	URINALYSIS: FEMALE
TABLE J 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE J 2	GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
TABLE J 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
TABLE J 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE J 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE J 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
TABLE K 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE K 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE L 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE L 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE M 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
	MALE: ALL ANIMALS
TABLE M 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: DEAD AND MORIBUND ANIMALS
TABLE M 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

TABLE M 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
TABLE M 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE M 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS
TABLE N 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
TABLE N 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
TABLE O 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
TABLE O 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
TABLE P 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE P 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE Q 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
TABLE Q 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
TABLE R	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrl FEMALE RATS
TABLE S 1	CAUSE OF DEATH: MALE
TABLE S 2	CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE PAGE: 1

oup Name	Animals	Administ	ration (Wee	ks)	•										
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	. 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE

PAGE: 2

up Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0
2400 שעע	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104 SEX : MALE

PAGE: 3

oup Name	Animals	Administ	ration (Wee	ks)								-			
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100. 0	100.0
mqq 008	50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100. 0	100.0	100.0	98. 0	98. 0	98. 0	98. 0	98. 0	98.0	98. 0	98. 0
2400 թթտ	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
	•	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104 SEX : MALE

PAGE: 4

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100.0	100.0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98.0	98. 0	98. 0	98. 0	98. 0
800 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98. 0	98. 0	98.0	98. 0	98. 0	98.0	98.0	98. 0	98.0	98.0	98. 0	98.0	98. 0	98. 0
2400 րբա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104 SEX : MALE

PAGE: 5

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	47/50
		98. 0	98.0	98.0	98. 0	98. 0	96.0	96. 0	96. 0	96.0	96. 0	96. 0	94. 0	94. 0	94. 0
800 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98. 0	98.0	98. 0	98.0	98. 0	98. 0	98.0	98. 0	98.0	98.0	98. 0	98.0	98. 0	98. 0
2400 թթո	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	0.001	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104 SEX : MALE

PAGE: 6

p Name	Animals	Administ	tration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50
5,7,10,10,1	00	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	92. 0
800 ppm	50	49/50	49/50	49/50	49/50	49/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50
800 ppm		98. 0	98. 0.	98. 0	98. 0	98.0	96.0	94.0	94. 0	94. 0	94. 0	94. 0	94.0	94. 0	94. 0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	48/50	47/50	47/50	47/50	47/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	96.0	94. 0	94.0	94.0	94.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
		100.0	100.0	100.0	100.0	100.0	96.0	96.0	96. 0	96.0	96.0	96.0	96.0	96.0	96.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104
SEX : MALE

PAGE: 7

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	. 90	91	92	93	94	95	96	97
Control	50	46/50	46/50	46/50	46/50	46/50	45/50	45/50	45/50	45/50	45/50	44/50	43/50	43/50	42/50
		92.0	92.0	92.0	92. 0	92.0	90.0	90.0	90.0	90.0	90.0	88. 0	86. 0	86.0	84. 0
800 ppm	50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50
		94. 0	94. 0	94.0	94. 0	94.0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	92. 0	92. 0	92. 0
2400 թթտ	50	47/50	47/50	47/50	46/50	46/50	46/50	45/50	43/50	42/50	42/50	42/50	42/50	42/50	42/50
		94.0	94.0	94. 0	92. 0	92.0	92.0	90.0	86.0	84. 0	84.0	84. 0	84.0	84. 0	84. 0
7200 ppm	50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	46/50	46/50	45/50	45/50	45/50	45/50	44/50
		96.0	96. 0	96.0	96. 0	96.0	96.0	96.0	92.0	92.0	90.0	90. 0	90.0	90.0	88. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

SEX : MALE

PAGE: 8

roup Name	Animals	Administ	tration (Wee	ks)						
	At start	98	99	100	101	102	103	104		
Control	50	42/50	42/50	42/50	41/50	41/50	40/50	40/50		
		84. 0	84. 0	84.0	82. 0	82. 0	80.0	80. 0		
800 ppm	50	46/50	46/50	46/50	46/50	46/50	45/50	45/50		
		92. 0	92. 0	92. 0	92. 0	92. 0	90.0	90.0		
2400 բբա	50	42/50	41/50	41/50	41/50	40/50	39/50	38/50		
		84. 0	82. 0	82. 0	82. 0	80. 0	78. 0	76. 0		
7200 ppm	50	44/50	44/50	42/50	41/50	41/50	40/50	40/50		
		88. 0	88. 0	84.0	82. 0	82.0	80.0	80.0		

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

roup Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
50110101		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 10

roup Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	98.0	98.0	98. 0	98.0	98. 0	98.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 12

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98. 0	98.0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98.0	98. 0	98.0	98. 0	98.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BA1S4

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE: A1 104

SEX : FEMALE

PAGE: 13

oup Name	Animals	Adminis	tration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68 ,	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98. 0	98.0	98. 0	98. 0
2400 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0
7200 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	47/50	47/50	47/50	47/50	47/50	47/50
		98.0	98.0	98.0	98. 0	98.0	98.0	98.0	98. 0	94.0	94.0	94. 0	94. 0	94.0	94. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 14

up Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0	100.0	98. 0	98. 0
800 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	47/50	46/50	46/50	46/50
		98. 0	98.0	98.0	98. 0	98. 0	98.0	98. 0	96. 0	96. 0	96.0	94. 0	92. 0	92. 0	92. 0
2400 թբա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
7200 ppm	50	47/50	46/50	46/50	46/50	46/50	46/50	45/50	45/50	44/50	44/50	44/50	44/50	44/50	43/50
		94.0	92.0	92.0	92.0	92.0	92.0	90.0	90.0	88. 0	88.0	88. 0	88. 0	88.0	86. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : AI 104 SEX : FEMALE

PAGE: 15

up Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	47/50	47/50	46/50	46/50	45/50	45/50
		98. 0	98. 0	98. 0	98. 0	98. 0	96.0	96. 0	96. 0	94. 0	94. 0	92. 0	92. 0	90. 0	90.0
800 ppm	50	46/50	46/50	44/50	44/50	43/50	43/50	43/50	43/50	43/50	43/50	43/50	43/50	43/50	42/50
		92. 0	92. 0	88.0	88. 0	86.0	86. 0	86. 0	86. 0	86.0	86.0	86.0	86.0.	86. 0	84.0
2400 թբա	50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	48/50	48/50	48/50	47/50	47/50
		100. 0	100.0	100.0	100. 0	100.0	100.0	98. 0	98. 0	98.0	96.0	96.0	96. 0	94. 0	94. 0
7200 ppm	50	43/50	43/50	42/50	41/50	40/50	39/50	38/50	38/50	38/50	38/50	38/50	38/50	37/50	37/50
		86. 0	86.0	84.0	82. 0	80.0	78.0	76. 0	76. 0	76. 0	76.0	76. 0	76.0	74.0	74.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 16

Group Name	Animals	Administ	ration (Wee	ks)		~~~	·	
	At start	98	99	100	101	102	103	104
Control	50	44/50	41/50	41/50	41/50	40/50	40/50	38/50
	•	88. 0	82. 0	82. 0	82. 0	80. 0	80. 0	76. 0
800 ppm	50	42/50	42/50	41/50	40/50	39/50	38/50	38/50
		84. 0	84. 0	82.0	80. 0	78. 0	76. 0	76. 0
2400 թթա	50	46/50	46/50	46/50	44/50	44/50	43/50	42/50
		92.0	92.0	92.0	88. 0	88. 0	86.0	84. 0
7200 ppm	50	36/50	35/50	35/50	35/50	35/50	34/50	33/50
		72.0	70.0	70.0	70.0	70.0	68.0	66.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE B 1

CLINICAL OBSERVATION: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	. 0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0 ,	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	• 0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ô	0	0	Ō	0	0	Ô	Ö	Ö	ō	Ö	Ö	Ŏ	Õ
	2400 ppm	0	Ô	0	Ō	Ō	0	Ö	Ö	Ö	ō	Ö	Ŏ	Ŏ	ō
	7200 ppm	0	0	0	Ō	0	0	0	0	Ō	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	0	Ö	ő	Ö	Ö	0	Ŏ	ő	Ö	0	Õ	0	0
	2400 թթա	Ö	0	0	ő	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	ő	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TELD	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	2400 ppm	0	0	0		0	0	0				-		-	-
	7200 ppm	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0
I OPPOSITOR								-				-			-
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ó	0	0	Ō	Ō	Ö	Õ	Ŏ	Ö	ō	Õ	Ŏ	Ŏ	ŏ
	2400 ppm	Ŏ	o o	0	ő	ő	Ö	0	0	Ö	Ö	Ŏ	0	0	0
	7200 ppm	Õ	ů	0	0	0	Ö	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	istration We	ek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	267	27-7	28-7
IITA	Control	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0 .	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	. 0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	7200 ppm	ō	0	0	0	0	0	0	0	0	0	0	0	ō	ō
ILED	Control	0	0	0	. 0	0	0	. 0	0	0	0	0	0	0	0
	800 ppm	Ö	0	Ŏ	0	Ŏ	Ö	Ŏ	0	0	Ö	Ŏ	0	0	0
	2400 ppm	Ö	0	0	ő	0	0	Ö	Ö	0	0	0	0	0	0
	7200 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
JOHN JOHN	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
			0												
	2400 ppm 7200 ppm	0 0	0	0 0											
TIED DEDI_CENITALIA	C/ 1	0	0	0	•	0	0	0	0	^	•	•	•	•	•
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0.	. 0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	1	1	1	1	0	0	0	0	0
PIITIIALMOS	Control	0	0	0	0	0	0	0	0	0	Q	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
	7200 ppm	0	0	0	0	0	1	1	1	1	1	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE: A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	ek-day											
		29-7	30-7	31-7	32-7	33-7	347	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	2400 ppm	0	0	0	0	0.	0	0	0	0	0	0	0	0	. 0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	, 0	0	0	0	. 0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ррт	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
•	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	ō	0	0
	7200 ppm	0	0	0	0	0	0	0	0	Ō	0	0	Ö	ő	0
LOERECTION	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	Ö	Ö	Ō	0	ō
	2400 ppm	0	0	0	0	0	Õ	0	0	ŏ	Ö	0	ŏ	Ö	0
	7200 ppm	0	0	ō	Ō	Ö	Ö	ő	Ö	ő	ŏ	ő	Ö	ő	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	0	0	ő	0	0	0	0	0	0	0	0	0	0
	2400 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	Ö	0	Ŏ	0	0	0	0	0	0	0
DPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	0	0	ő	0	0	0	0	0	0	0	0	0	0
	2400 ppm	Ö	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	7200 ppm	0	3	3	3	3	3	3	3	3	3	3	3	3	3

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
	OZ OSEP TIOMEO	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
:ATN	0.4.1	0	0	0	,	i	,	,	í	•	,				•
EATH	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	I
	2400 ppm	0	0	0	0	0,	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	ō	0	Ö	0	0	0	0	0	Ō	0	0
	2400 ppm	0	0	ō	ō	0	Ö	ő	0	Ö	0	0	Ö	0	Ö
	7200 ppm	0	Õ	0	ō	ő	0	ō	ő	Ö	Ö	ő	ő	o	ő
RALYTIC GAIT	Control	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
MILITIO ONLI	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	тост ррш	v	v	v	v	v	v	ŭ	ŭ	ŭ	ŭ	v	v	v	v
STING	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	7200 բբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0 -	0	0	0	Ŏ	0	0	0	0	0	. 0
	2400 ppm	Ö	0	0	ő	0	0	0	0	0	0	0	0	0	0
	7200 ppm	ő	0	0	0	0	0	0	1	1	1	0	0	0	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TODITINGO INGT WATER	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0		
	• •								-		-	-	-	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	U	0	0	0	1	1	1	1	0	0	0	0	0
OPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0
	7200 ppm	3	3	3	3	3	3	3	2	2	2	2	2	2	2

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

iCrICrIj(F344/DuCrj) ALL

SEX : MALE

linical sign	Group Name	Admini 57-7	stration W 58-7	∍ek-day <u> </u>	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
					-										-
ATI I	Control	1	1	1	1	2	2	2	2	2	2	3	3	3	3
	800 ppm	1	1	1	1	1	1	i	1	1	ĭ	i	1	1	1
	2400 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	Ő	0	0	o	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	Ö	ŏ	0	ō	Ô	ő	Ö	ő	ō	Ö	Ö	ő
COMOTOR MOVEMENT DECR	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	o	0	0	ō	ō	0	ő	Ö	ő
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թբա	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 թթա	0	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0
	7200 րբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0 .	0
OERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0 -	0	0	0	0	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	i
LED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0,	0
•	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0
PRITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0 `	0	0	0	0
	2400 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	. 0
	7200 ppm	0	0	0	0	0	0	0	0 .	0	0	0	0	1	1

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
	VX OAP TOMO	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
									•						
SATH	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	800 ppm	1	1	1	1	2	3	3	3	3	3	3	3	3	3
	2400 ppm	0	0	0	0	0	0 -	0	0	1	2	2	2	2	2
	7200 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	800 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	7200 ppm	0	0	0 .	0	1	1	1	1	1.	1	1	1	1	1
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	1	1	1	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	1	1	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	7200 ppm	0	0	0	I	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ò	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	1	1	1	ő	ō	ō	0	ő	ō	ō	o	ŏ	Ŏ
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	i	1	i	1	0	0	0	0	0	Ō	0	Ö	0	ō
	2400.ppm	0	0	0	Õ	Ŏ	Ö	Ŏ	2	0	Ö	0	Ö	. 0	0
	7200 ppm	i	ĺ	i	1	ő	ő	ő	. 0	ő	ő	Ö	ŏ	ő	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	ó	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	o	0	1	1	1	1	1	1	. 0	0	ő	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
~	800 ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	. 0	. 0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1				1	1			
	7200 ppm	1	1	1	Ţ	1	1	1	1	- 1	1	1	1	1	1

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day						•					
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
SACUL	0 1	9		0	0			4	4		-		,	5	g.
EATH	Control	3	3 3	3	3	4	4	4	4	4	5	6	6	7	7
	800 ppm	3		3	3	3	3	3	3	3	3	4	4	4	4
	2400 ppm 7200 ppm	2 1	2 1	2 1	2 1	2 1	3 1	4 2	5 2	5 3	5 3	5 3	5 3	5 3	5 3
	7200 ppm		1	ı	1	1	1	2	4	3	3	3	3	3	3
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 2400 ppm	i	1	2	2	2	2	3	3	3	3	3	3	3	3
	7200 ppm	1	1	1	1	1	1	2	2	2	2	2	2	3	3
DOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	Õ	0	Ö	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	ì	0	Ö	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	, дос ррш	v	Ť	v	ŭ	•	. •	v	Ů	ŭ	v	v	Ů	. •	v
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	Ö	ō
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JILL	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	2400 ppm	0	0	0	0	0	0	0	0					. 0	
		0	0	2	2			0		0	0	0	0	0	0
	7200 ppm	U	U		4	1	1	U	0	O _i	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	1	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2400 ppm	0	0	0	0	1	1	0	0	0	0	1	1	1	2
	7200 ppm	0	0	0	0	0	2	0	0	0	0	0	0	ō	0
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
DAT GENTINGTH	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	1	-	0	0						
	7200 ppm	0	0	0	0	1	1 1	0	0	0 0	0 0	0 0	0 0	0 1	Ó 1
CODUMENT MOC		^	•	•	•		•	•	_	_		_	_		_
COPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	` 1

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admin	istration N	Week-dav					
		99-7	100-7	101-7	102-7	103-7	104-7		
								The first that the constraint constraint constraint to the control of the control	
DEATH	Control	7	7	8	. 8	8	8		
	800 ppm	4	4	4	4	4	5		
	2400 ppm	5	5	5	5	5	6		
	7200 ppm	3	5	6	6	7	7		
	. 7200 ppm	3	3	О	О	,	1		
MORIBUND SACRIFICE	Control	1	1	1	1	2	2		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	4	4	4	5	6	6		
	7200 ppm	3	. 3	3	3	3	3		
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0		
SOCOMOTOR MOTEMBRY DISCR	800 ppm	0	0	0	0	0	0		
	2400 ppm	.0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
PARALYTIC GAIT	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
WASTING	Cometine 1	0	0	٥	0	0	0	·	
MOLTING	Control		-	0				•	
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 թթա	1	1	1	1	0	0		
SOILED	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
ILOERECTION	C - t- 1	0	0	0	•			•	
TEOEKECTION	Control	0	0	0	0	1	1		
	800 ppm	0	0	0	0	1	1		
	2400 ppm	i	1	1	1	0	0		
	7200 ppm	0	0	0	0	1	1		
OILED PERI-GENITALIA	Control	0	1	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	Ö		
	7200 ppm	2	1	1	1	Ö	0		
EXOPHTHALMOS	Control	0	٥	. 0	^	0	0		
MOLUTIALMOS	Control	0	0	. 0	0	0	0		
	800 ppm	0	0	.0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	1	1	0	0	0	. 0		

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Adminia	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	i	1	1	1	1	1	1	i	1	1	1
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	1	1	I	1
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	0	Ö	Ö	Õ	ŏ	Ŏ	Õ	ŏ ·	Ö	Õ	ŏ	0	Ö
	2400 ppm	Ŏ	Ö	0	0	0	Ŏ	0	Ö	0	0	0	ō	0	0
	7200 ppm	ō	0	Ö	Ö	ō	Ö	0	Ö	Ö	Õ	ő	0	ő	ŏ
TTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	ŏ	ŏ	ő	Ö	ő	Ŏ	Ŏ	0	Ö	0	0	ő	0	0
	2400 ppm	ő	ő	0	0	0	0	0	0	0 .	0	0	0	0	0
	7200 թթո	0	Ö	Ö	0	0	0	0	0	0	0	0	, 0	Ö	ő
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOOL	800 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ЕУЕ	Control	0	0	. 0	0	0	0	0	0	0	. 0	0	0	0	٥
BIB S		0	0		-				0	0	•	0	0	. 0	0
	800 ppm			0	0	0	0	0	0	0	0	0	. 0	0	0.
	2400 ppm 7200 ppm	0	0 0	0 0	0 0	0 0	0.	0 0							
DDDT_MOUTH	041	0	0	0	0	0	•		^	^		•	•	^	^
PERT-MOUTH	Control	0	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	2400 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

OUN MILES															I AOL . I
Clinical sign	Group Name	Admini	stration W	eek-day _			•								*******
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
PATADA/T	(+ <u>1</u>	1	,	1	•		1		,	,	,	0	0	n	o.
CATARACT	Control	1	ı	1	1	1	1	1	1	1	1	2	2	2	2
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0	0 0	0	0 0	0 0	0 0	0 0	1 1	1 1	1	1 1	1 1	1	1 1
	, 200 ppm	U	v	U	U	v	Ü	U	1	1	1	1	1	. 1	1
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	Ţ	1	ı	1	1	1
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	Ö	0	0	0	0	0	0	0	0	Ö
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
			_												
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	Ō	ō	ō	Ô	0	Ō	Ŏ	Ŏ	Ö	0	Ö
	2400 ppm	0	0	0	Ö	ŏ	Ŏ	0	Ŏ	Ö	Ö	. 0	Ö	0	Ö
	7200 ppm	ō	0	Ô	Ö	Ö	ŏ	Ö	Ö	ő	ő	Õ	0	0	ő
W DVD						_									
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
M. PERI-MOUTII	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0.	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	ō	0	0	0
M. ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
We come city I I I	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	. 0		0		-			-			
	7200 ppm 7200 ppm	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	0
	7200 ppm	V	U	U	U	U	U	V	0	0	U	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration We	ek-day											
	•	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
NATA DAZYO	G 1 1	. 0	0	0	0		0	0	0	0	0			0	0
CATARACT	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	800 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթm 7200 թթm	1 2	1 2	1 2	1 3	. l 3	1 3	1 4	1 4						
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
CONVERT OF ACT I	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	Ĭ	i	1	0	0	0	0	0	0	0	0	1	1	1
ANTERIOR CHAMPER ORACION		•	•	•						_			_	_	-
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0 .
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	0	0	0
EXTERNAL MASS	Control	0	0	0.	0	0	0	0	0	0	0	0	. 0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -
	2400 ppm	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	.0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	7200 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	Ö	Ō	Ö	Ŏ	Õ	Ö
	2400 ppm	0	o	Ō	Ö	Ŏ	Ŏ	0	Ŏ	ŏ	Ö	0	Ö	0	Ö
	7200 ppm	0	0	0	0	0	Ō	0	Ô	ō	ō	ō	ŏ	0	Ö
M. EYE	Control	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ŏ.	Ŏ	0	ő	0	0	0	0	0	0	0	0	0	0
	2400 ppm	ŏ	0	0	ŏ	0	0	0	Ŏ	0	0	0	0	0	0
	7200 ppm	ő	0	0	ŏ	ő	ő	0	0	ŏ	ő	0	Ö	0	0
M. PERT-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	٥
	800 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0
•	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	. 0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
M. ORAL CAVITY	C	0		٥	0		•		0	•	•	•	•	•	•
M. ORAL CAVIII	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	ook-day											
TIMITON OIGH	or out mano	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ATARACT	Control	9	3	3	2	3	3	9	. 3	3	3	3	3	3	9
MIMMOI	Control 800 ppm	3 0	0	ა 0	3 0	•	.) 0	3 0	3 0	0	.3 0	ა 0	0	-	3
		1	1	2	2	0 2	2	2			2	2	2	0	. 0
	2400 թթտ 7200 թթտ	4	4	4	4	5	2 5	5	2 5	2 5	2 5	2 5	2 5	2 5	2 5
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ONNEAD OF NOTT	800 ppm	Ö	0	0	0	0	0	0	0	0	0	0 -	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	ĺ	1	1	i	1	1	ı	1		1	Ü	1	
	7200 ppm	1	1	1	1	1	1	1	ı	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	.0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	7200 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 բթա	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	2400 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 րթա	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	. 1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0
ЕУЕ	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	ō	Ö	Ö	0	0	Ö	Ŏ	Õ	Ö	ő	Ŏ
	2400 ppm	0	0	0	0	0	0	0	0	Ö	Ŏ	Ö	Ö	Ö	Ö
	7200 ppm	0	0	1	1	1	i	i	1	1	1	1	1	1	1
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TENT MOOTH	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	rzoo phiii	Ū	v	U	U	U	U	U	U	U	U	U	U	U	U
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

<u></u>	0 11°	41													
Clinical sign	Group Name	57-7	stration N 58-7	еек-day 59-7	60-7	617	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
				00 1		ŲI 1	02 1	03 7	04.7	00 7			00 1		10 1
CATARACT	Control	3	3	3	4	4	4	4	4	4	4	4	4	4	4
CATARACI	800 ppm	0	0	0	0	0	0	0	0	4 0	0	4 0	0	4 0	4 0
	2400 ppm	2	2	2	2	2	2	2	2	2	2	2	3		
	7200 ppm	5	5	5	5	5	5	5	5	5	5	5	5	3 5	3 5
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	1	t	2	2	2	2	2	2	3	6	5	5	5	7
	800 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	1	ī	1	1	1	1	1	1	1	1	1	1	1	1
	7200 ppm	1	t	1	1	1	1	1	1	2	4	4	4	4	4
INTERNAL MASS	Control	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	800 թթո	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 բթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NOSE	Control	1	1	2	2	2	2	2	2	3	4	3	3	3	3
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	1	i	1	1	1	1	1	1	1	1	1	1	1	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
M. ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admin	istration W	eek-day											
Olgn	oroup Name	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
TARACT	Control	5	5	5	5	. 5	5	5	5	5	5	5	. 5	4	4
IMMOI	800 ppm	0	0	0	0	3 1	3	4	3 4	4	4	4	4	4	4
	2400 ppm	3	3	3	3	3	3	3	3	3	3	3		4	
	7200 ppm	5	6	6	6 .	6	6	6	6	6	6	6	4 6	6	4 6
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	i	1	Ţ
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
TERNAL MASS	Control	7	7	7	7.	7	7	7	7	8	8	8	9	8	8
	800 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2400 ppm	1	2	2	2	2	2	2	3	3	3	3	4	4	5
	7200 ppm	4	4	4	5	4	5	6	. 7	7	7	6	7	7	8
ERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	3	3	3	3	3	3	3	3	3	3	3	4	4	4
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
•	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EYE	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0 ,	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	1	1	1	ı	1	1	1	1	1	I	1	1	1	. 1
	7200 ppm	0 .	0	0	0	0	. 0	0	0	0	0	0	0	0 .	0
DRAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
TIMIONI OISI	oroup rumo	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
TARACT	Control	4	4	4	4	4	4	4	4	4	4	3	4	4	4
immor	800 ppm	4	4	4	4	4	_	4		5	5	5	6		
							4		4					6	6
	2400 ppm	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	7200 ppm	6	6	6	6	6	6	5	5	5	5	5	5	6	6
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	0	0
TERIOR CHAMBER OPACITY	Control	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	ō	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	ő	0	0	0	0
TERNAL MASS	Control	9	10	10	10	10	10	10	10	12	15	15	15	15	15
	800 ppm	2	2	2	2	2	3	2	3	2	2	2	3	3	4
	2400 ppm	5	6	5	6	6	5	3	3	3	3	4	4	4	4
	7200 ppm	8	8	8	8	8	9	9	8	7	7	7	9	8	8
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	ŏ	0	0	ő	0	0	Ŏ	Ô	0	0	0	0	Ö	0
	2400 թթա	Ö	0	0	ő	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	5	5	5	5	5	5	5	a	5	5	5	5	_	_
NOSE	800 ppm	0	0	0	0	0	0	0	5 0	0	0	5 0	0	5	5
	2400 ppm	0	0	Ö			-	-				-	-	0	0
	7200 ppm	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	1	1 0	1 0
ЕУЕ	Control 1		0	^	•	0		•	•	•	٠.	•			
ыс	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
PERI-MOUTH	Control	0	0	0	0	. 0	0	0	0	0	0	0.	0	0	0
	800 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	2400 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ORAL CAVITY	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	. 0	ō	0	0	Ö	0	ŏ	. 0	Ö	ŏ	0	ő

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration \	Nook-day				 		
CIINICAL SIGN	Oroup Name	99-7	100~7	101-7	102-7	103-7	104-7		SV	
ATARACT	Control	4	5	5	7	6	6			
MITAMOI	800 ppm	6	6	6	7	7	7			
	2400 ppm	4	4	4	4	3	3			
	7200 ppm	6	7	6	6	6	6			
CORNEAL OPACITY	Control	0	0	0	1	0	0			
	800 ppm	0	0	0	0	0	0 :			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	0	0	0	0	0	0			
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
•	2400 ppm	0	0	0	0	0	0			
	7200 ppm	0	0	0	0	0	0			
EXTERNAL MASS	Control	15	15	15	18	17	17			
	800 ppm	4	4	4	4	5	5			
	2400 ppm	4	4	4	8	9	8			
	7200 ppm	8	8	. 7	7	6	6			
INTERNAL MASS	Control	0	0	0	0	0	0			
THIERING HINGS	800 ppm	0	0	0	0					
	2400 րթա 2400 րթա	0	0		0	0	0			
	2400 բրա 7200 բրա	0	0	0 0	0	0 0	0 0			
	7200 ppm	U	U	U	U	U	U			
M. NOSE	Control	5	5	5	5	5	5	•		
	800 ppm	0	0	0	0	0	0			
	2400 ppm	1	1	1	1	1	1			
	7200 ppm	0	0	0	0	0	0			
M. EYE	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	1	1	1	1	0	0			
M. PERI-MOUTU	Control	0	0	0	0	0	0			/
	800 ppm	0	0	0	0	0	0			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	1	1	1	1	1	0			
			-	•	•	•	v			
M. ORAL CAVITY	Control	1	1	1	1	0	0			
	800 ppm	. 0	0	0	0	0	0			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	0	0	0	0	0	0			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

ODA • MINDE															FAGE : I
Clinical sign	Group Name		stration We										,		
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14–7
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0
	800 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	800 ppm	0	0	Ö	o O	0	0	Ö	Õ	Ŏ	0	ů.	0	0	Ö
	2400 ppm	Ů	Õ	0	0	0	0	Ö	0	0	0	0	Ů	0	Ö
	7200 ppm	0	0	0	0	Õ	Ö	Ö	0	0	0	Ö	0	Ö	0
M. ANTERIOR, DORSUM	Control	0	0	0	0	0	0	0	0	0	.0	0	0	0	0
III THE TEXT DO NO ON	800 ppm	0	0	0	0	0	0	Ŏ	0	0	0	0	0	0	0 .
	2400 ppm	0	o o	0	0	0	0	0	0	0	0	0	0 -	0	. 0
	7200 ppm	0	0	Ö	0	ő	Ö	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	٥	0	0	o ·	0	^
MI-FOSTERIOR DORSOM	800 ppm	0	0	0	.0	0	0	0	-	0	-	•	0	0	0
·	2400 ppm	0	0	0			0		0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0 0	0	0 0 ·	0						
M CITATOL TAID						_			_						
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0 -	0	. 0	0	0	0 .	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· ·	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0 .	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 րթա	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
•	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	ō	0	0	. 0	Õ
	2400 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	7200 ppm	0	0	0	0	0 -	ō	Ō	0	0	ō	ō	ō	0	Ö
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0.	0	0	Ô	Ö	0	0	0	0	Ö	0	. 0	0	ŏ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm·	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
IEC K	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	.0	0	0	0	0	ō	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	Ô	0	0	0	Õ	Õ	ō
	· 2400 ppm	0	0	Ö	Ö	0	0	Ö	Õ	Ŏ	Ö	0	. 0	0	ŏ
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BDOMEN	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	Ö	Ö	Õ	0	0	Ö	Ö	Ô	Õ	Ö	ŏ
	2400 ppm	0	0	0	0	ō	0	0	0	Ö	Õ	0	Ö	0	ő
	7200 ppm	0	0	0	0	0	0	0	0	Ö	0	0	0	0	o
INTERIOR. DORSUM	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	800 ppm	0	Ö	Ö	Ö	Ö	0	0	0	0	0	0	ŏ	0	Ö
	2400 ppm	Ö	Ŏ	ŏ	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	ŏ	Ö	0	o	ő	. 0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OBTENION DONOOM	800 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
ITNDLIMB	Control	0	0	0	0	0	0	0	0	0	0	۸	0	0	٥
LITANIST MID	800 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0
			0	0						-		•			0
	2400 ppm 7200 ppm	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0 0	0 0	0 0	0 0
DNITAL TA	C 1	0	•		^	^	^	•	^	^	^	^	•	^	
ENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEX - METEL															I NOL .
Clinical sign	Group Name		stration W												
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50:-7	51-7	52-7	537	54-7	55-7	56-7
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0.	0
· Link	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	. 0 ,	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. HDDOMEN	800 թթա	0	0	0	0	0	.0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0 -	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	Ó
	2400 ppm	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0
•	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	Ō
. POSTERIOR DORSUM	Control	0 -	0 .	0	0	0	0	0	0	0	. 0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.HINDLIMB	Control	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
										:					
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	ō	ō	Ō	ō	ō	0	ŏ	o .	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
	2400 ppm	0	0	0	Ö	Ô	0	0	0	0	0	Ŏ	Ö	Õ	ŏ
	7200 ppm	0	0	0	0	0	0	0	Ō	Ō	0	0	0	0	Ö
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	800 ppm	0	0	0	Ö	0	0	0	0	0	Ô	Ō	0	0	o o
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	0	ő
	7200 ppm	0	0 ,	0	ō	0	ō	ō	0	ō	0	0	ō	0	ō
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	ō	Ö	0	Ŏ	Ö	Õ	Õ	ŏ	Ŏ	Ö	0	ŏ
	2400 ppm	Ö	0	ō	ŏ	. 0	Ö	0	Ŏ	0	0	Ŏ	Ô	0	ő
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 2
	800 ppm	0	Ů	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	2	2	2	2	2
HINDLIMB	Control	0	0	0	0	0	0	0	~o	0	0	0	0	0	0
IIT:ANDTHID	800 ppm	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0				0			-	-	0	0	0
	2400 ppm 7200 ppm	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0
GENITALIA	Con+u-1	0	0	0	٥	0	0	٥	0	0	0	0	0	^	0
PINIT LUPTV	Control			0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	·	717	72-7	73-7	74-7	75-7	76-7	77-7	787	79-7	80-7	81-7	82-7	83-7	84-7
. EAR	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	i	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	Į
	7200 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	1	1	1	, I	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	¹ . 0	0	0	0	0	0	0
	800 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	, 0	0	0	0	0	0	0	0	0	0	0	1
. ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	Mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	7200 թթա	0	0	0	0	0	1	1	1	1	1	1	1	1	1
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	′ 0	0	0	0	1	2	2	2	2	2	2	2	2
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. POSTERIOR DORSUM	Control	. 2	2	2	2	2	2	2	2	2	2	2	2	1	1
	800 ppm	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
	2400 ppm	0	2	2	2	2	2	2	2	2	2	2	2	2	2
	7200 ppm	2	2	2	2	2	2	3	3	3	3	3	4 ,	4	4
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0 .	0	0	0	ō
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0 -	Õ	ō	ő	ō	Ö	ō	ő	ő	ō	ő
. GENITALIA	Control	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	Ô	0	0	0	Ō	Ö	0	0	0	0	0	0
	2400 ppm	0	0	0	0	Ö	0	ŏ	0	Ŏ	0	ŏ	0	Ö	ő
	7200 ppm	0	Ō	0	0	Õ	0	Ö	Ŏ	Ô	Ö	o O	0	Ö	ő

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration W	eek-day											
· ·		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EAR	Cont	rol 0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800		1	1	1	1	1	1	1	1	1	1	1	1	1
	2400	ppm 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200		1	1	1	. 1	1	1	1	1	1	1	1	t	1
	1200	phu r	1	1	1	. 1	1	1	1	1	1	1	1	r	1
PERI EAR	Cont	rol 0	0	0	0	0	0	0	0	0	1	1	2	2	2
	800		0	0	0	0	0	0	0	0	0	õ	0	0	0
	2400		Ĺ	0	0	0	0	0	0	0	0	0	0	Ö	ō
	7200		ō	0	0	0	1	i	ō	0	0	Ŏ	0	Ö	ŏ
NECK	Cont		1	1	1	1	1	1	1	1	1	1	1	1	1
	800		0	0	0	0	0	0	0	0	0	0	0	0	0
	2400		0	0	0	0	0	0	0	0	0	0	0	0	0
	7200	ppm 0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Cont	rol 0	0	0	0	0	0	0	0	. 1	1	1	1	1	1
DIMINO!	800		0	0	0	0	0	0	0	0	0	0	0	0	0
	2400		1	1	1	1	1	1	ı		1				1
	7200		1	1	1	1	1	1	1	1 1	1	1 1	1 1	1 1	1
	1200	рры 1	1	1	1	1	1	1	1	. 1	1	1	1	1	1
ABDOMEN	Cont	rol 2	3	3	3	3	3	3	3	3	4	4	4	4	4
	800		0	0	0	0	1	0	0	0	0	0	1	Ī	1
	2400		1	1	1	1	1	0	0	0	0	0	0	0	ō
	7200		1	1	1	1	1	1	1	1	. 1	1	2	2	2
ANTERIOR. DORSUM	Cont		0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800		2	2	2	1	1	1	1	1	2	2	2	. 2	3
	2400		1	1	1	1	1	1	1	1	1	1	1	1	1
	7200	ppm 0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
POSTERIOR DORSUM	Cont	rol I	1	1	1	1	1	ı	1	2	2	2	2	2	2
LOGIBITOR DONDOM	800		0	0	0	0	0	0	0	0	0	0	0	0	0
	2400		2	2	3	3	2	ı	1			1			
	7200		4	4	4	3 4	4	4	4	1 3	3	3	1 3	1 3	1 3
	7200	րբա Վ	7	ч	4	*	4	4	4	ง	ð	ა	3	3	3
HINDLIMB	Cont	rol 0	0	0	0	0	0	0	0	1	2	2	2	2	2
	800		0	0	0	0	0	0	Ō	ō	0	0	0	0	0
	2400		0	0	0	0	0	0	ő	Ō	Õ	0	Ö	0	ő
	7200		0	Õ	ŏ	ő	Ö	0	ŏ	Ö	Ö	Ö	0	0	Ö
GENITALIA	Cont		0	0	0	0	0	0	0	0	0	0	0	0	0
	800		0	0	0	0	0	0	0	0	0	0	0	0	0
	2400		0	0	0	0	0	0	0	0	0	0	0	0	0
	7200	ррт О	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO.: 0641
ANIMAL: RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE: A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day _			+		*			
		99-7	100-7	101-7	102-7	103-7	104-7					
											-	
M. EAR	Control	0	0	0	0	0	0					
	800 ppm	i	1	1	1	1	1					
	2400 ppm	Õ	ō	ō	ō	0	Ô					
	7200 ppm	i	1	1	1	1	1					
M. PERI EAR	Control	2	2	2	2	2	2					
	800 ppm	0	0	0	0	0	0					
	2400 ppm	. 0	0	0	0	0	0					
	7200 ppm	. 0	0	0	0	0	0					
M. NECK	Control	1	1	1	1	1	1					
	800 ppm	Ô	0	0	0	0	0					
	2400 ppm	0	0	0	0	1	1					
	7200 ppm	0	0	0	0	0	0					
	(200 ppm	v		Ů	v	Ū	v					
M. BREAST	Control	1	1	1	2	0	0					
	800 ppm	0	. 0	0	0	0	0					
	2400 ppm	1	1	1	2	2	1					
	7200 ppm	1	1	1	1	1	1					
M. ABDOMEN	Control	4	4	4	4	4	4					
	800 թթա	1	Ĺ	1	1	2	2					
	2400 թթա	0	0	0	2	2	2					
	7200 թթա	2	2	2	2	2	2					
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0					
	800 ppm	3	3	3	3	3	3					
	2400 ppm	1	ĭ	ĺ	2	2	2					
	7200 ppm	0	Ô	0	0	0	0					
M. POSTERIOR DORSUM	Control	2	2	2	4	4	. 4					
	800 ppm	. 0	0	0	0	0	0					
	2400 ppm	1	l	1	1	1	1					
	7200 ppm	3	3	2	2	2	2					
M. HINDLIMB	Control	2	2	2	2	2	2					
W. T. T. L. M. D. J. M. D.	800 ppm	0	0	0	0	0						
							0					
	2400 ppm	0	0	0 0	0 0	0	0					
	7200 ppm	0	0	U,	U	0	0					
M. GENITALIA	Control	0	0	0	0	1	1	,				
	800 ppm	0	0	0	0	0	0					
	2400 ppm	0	0	0	0	0	0					
	7200 ppm	0	0	0	0	0	0					
	1											

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration We	ek-day											
· · · · · · · · · · · · · · · · · · ·		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. 14100	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1200 ppin	Ü	U	U	U	U	U	U	U	U	U	U	U	U	U
SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	800 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	٥	0	0	0	0	0	0	0	0	0	•	0	0
DEMA	Control 800 ppm	0	0	0 0	0	0 0	0 0	0	. 0	0	0 0	0	0 0	0 0	0 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
A Province A			_	_		_									
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KUSIA	Control	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm			. 0	0	0	0	-	0	0	0	0	0 -	0	0
	2400 ppm	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0
	7200 ppm	U	U	U	0	0	U	U	0	0	0	0	0	0	0
WELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	ő	ő	ő	Ö	0	0	0	0	0	0	0	0	0	0
DOLARCE OF DENIES	0 1	^	^		•	•		•	•	•	•	•			
ROLAPSE OF PENIS	Control	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0
	800 ppm			0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0 0	0	0 _. 0	0 0	0	0	0	0 0	0	0 0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	237	24-7	25-7	26-7	27-7	28-7
ANUS	Control	0	0	0	o d	0	0		0	0	0	0	0	0	0
. Altob	800 ppm	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0
	2400 բթա	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppiii	U	U	U	U	U	. 0	U	U	٠.	U	U	U	U	U
SCROTUM	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	ō	0	0	0	0	Ö	0	Õ	ő	Ö	Ö	0	Ö
	2400 ppm	Ö	0	0	0	ŏ	Ö	ő	0	0	Ö	0	0	0	0
	7200 ppm	ő	0	0	ő	0	0	ō	0	0	ō	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CMIA	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0			0							
	2400 ppm 7200 ppm	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0	0
	•														
CER	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	. 0
	100 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	ő	ő	0	0	Ő	0	0	0	0	0	0	0	0	0
	2400 ppm	ŏ	Ö	o O	0	Ő	0	Ö	0	0	0	0	0	0	0
	7200 ppm	0	Ö	Ö	Ö	0	ő	ŏ	0	0	Ö	ő	ő	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	٥	0	0	0	0	0	0
SMOR(HMOI)	Control	0	0		0				0	0		0	0	0	0
	800 ppm			0	0	0	0-	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0-
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

linical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	387	39-7	40-7	41-7	42-7
•															
. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
SCROTUM	Control	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
	800 ppm	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0
	·2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	800 ppm	Ö	0	0	ŏ	Õ	0	Ŏ	Õ	Ö	0	Ö	ő	ő	. 0
	2400 ppm	Ö	Õ	Ö	ő	0	0	Ö	0	0	0	0	Ŏ	0	0
	7200 ppm	0	ő	ŏ	ő	o	0	ő	0	0	0	0	0	0	ő
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
<i>N</i> LK	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0		-
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	. 0
	1 acc ppm		v	· ·	Ü	·	v	v	٠,	v	U	v		v	U
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	Ö	ő	0	0	Ŏ	0	. 0	0	0	Õ	0	. 0
	2400 ppm	Õ	0	o O	ő	0	0	ő	0	0	0	0	0	0	o
	7200 ppm	Ö	ő	Ö	ő	ő	Ö	ő	0	. 0	0 .	0	0	0	0
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0.	0	0	0		
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1200 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

SEX - MALE															PAGE - 2
Clinical sign	Group Name		stration W												
	•	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	527	53-7	54-7	55-7	56-7
M. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m. 11100	800 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	ő	0	0	0	Õ	ő	Ö	0	0	0	0	0	0	Ŏ
	7200 ppm	Ö	ő	0	ő	ő	ő	ő	ō	o o	ő	ő	0	ő	0
M. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ,
EDEMA	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	10	0	0	0	0	0	0	0	0	0
•	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
CRUSTA	Control	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SWELLING	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0 .
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0 .	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	Ō	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

AND THE RESERVE TO TH															
Clinical sign	Group Name		istration W										-MP-14		
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	647	65-7	66-7	67-7	68-7	69-7	70-7
. ANUS	Control	0	0	0	0	0	o o	0	0	0	1	1	1	1	1
i. Milos	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0.	0	0	0	0	0
. SCROTUM	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
NEMIA	Control	0	. 0	1	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0. 0	0 0	0	0 0	0 0
JLCER		0	0	^	^	0		•	^	•		•	•	•	
DLCER	Control 800 ppm	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0
	2400 թթա 2400 թթա		0						0	0	0	0	0	0	0
	7200 թթա 7200 թթա	0 0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	800 ppm	0	0	0	0	0	0	Ö	Ö	Ö	0	ō	Ō	Ö	Ŏ
	2400 ppm	0	0	Ö	Ŏ	0	0	ő	0	Ö	0	0	Ŏ	Ö	0
	7200 ppm	0	0	ő	ő	ő	ő	0	ŏ	ő	0	0	Ö	1	1
WELLING .	Control	0	0	0	0	0	. 0	0	0	0	. 0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0

STUDY NO.: 0641
ANIMAL: RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE: A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEA · MALE															PAGE - 30
Clinical sign	Group Name	Admini	stration W	eek-dav											·
		71-7	72-7	73-7	74-7	75-7	76-7	77–7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. ANUS	Control	i	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	1	1	1	0	0	0	0
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	Ö	0	ō	0	0	Ö	Õ	Ŏ	Ō	ő	Ö
	2400 ppm	0	0	Ō	0	Ö	Ö	Ö	Ŏ	Ö	Õ	Ŏ	Ö	Ö	ŏ
	7200 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	Ō	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	Ö	ő	Ö	o o	0	ő	0	Ô	0	0	0	ŏ
	2400 ppm	Ö	0	0	0	ő	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	Ö	Ö	ō	0	0	0	Ö	0	0	ő	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	800 ppm	Ŏ	0	0	Ö	. 0	ő	0	0	0	0	0	Ô	. 0	0 .
	2400 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	Ö	ő	0	ő	0	0	0	0	0	0
SWELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O"BBBINO	800 ppm	Ö	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2400 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	
	7200 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	1	0	0	^
TIPMOREMENTS	Control 800 ppm	0 0	0	0	0 0	0 0	0 0	0	0	0 0	0	1	0	0	0
			0								-	0	0	0	0
	2400 ррт 7200 ррт	0 0	0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0
DROLABCE OF DENIC	0 1	^	^	•	•	•				•					
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
•		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ANUS	Control	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1
	800 ppm	Ô	Ô	0	0	0	0	0	0	0	Ô	Ō	0	Ō	0
	2400 ppm	Ö	Õ	0	Ő	0	Ö	0	0	0	0	0	0	0	0
	7200 ppm	ŏ	0	0	ő	ő	ŏ	ŏ	. 0	ő	ő	0	ő	0	0
SCROTUM	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	Ô	0	0	Ō	0	0	0	0	0	0	ō
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	. 0	0	0	0	0	0	0	0	0	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	1	. 1	1	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
CER	Control	0	0	0	0	0	0	0	0	1	1	1	1	0	0
	เทนุน 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
USTA	Control	1	1	1	. 1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
ELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
	7200 ppm	0	0	0	0	,0	0	0	0	0	0	0	0	0	0
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	1	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign Gro M. ANUS M. SCROTUM EDEMA ANEMIA ULCER	Control 800 ppm 2400 ppm 7200 ppm	99-7 1 0 0	100-7 100-7 100-7	101-7	102-7	103-7	104-7	-14.0		:	
M. SCROTUM EDEMA ANEMIA	800 ppm 2400 ppm 7200 ppm	0	_								
M. SCROTUM EDEMA ANEMIA	800 ppm 2400 ppm 7200 ppm	0	_								
EDEMA ANEMIA	2400 ppm 7200 ppm	0	0		1	1	1	,			
EDEMA ANEMIA	7200 ppm			0	0	0	0				
EDEMA ANEMIA		0	0	0	0	0	0				
EDEMA ANEMIA	0 4 1		0	0	0	0 .	0				
ANEMIA	Control	0	0	0	0	0	0			•	
ANEMIA	800 ppm	0	0	0	0	0	0				
ANEMIA	2400 ppm	0	0	0	0	0	0				
ANEMIA	7200 ppm	0	0	0	0	0	0				
	Control	0 .	0	0	0	0	0				
	800 ppm	0	0	0	0	0	0				
	2400 ppm	0	0	0	0	0	0				
	7200 ppm	0	0	0	0	0	0				
ULCER	Control	0	0	0	0	0 .	1				
ULCER	800 ppm	0	0	0	0	0	0				
ULCER	2400 ppm	0	0	0	0	0	0				
ULCER	7200 ppm	0	0	0	0	0	1				
	Control	0	0	0	0	0	0				
	800 ррш	0	0	0	0	0	0				
	2400 թթա	0	0	0	0	0	0				
	7200 թթա	0	0	0	0	0	0				
CRUSTA	Control	0	0	0	0	0	0				
	800 ppm	0	0	0	0	0	0				
	2400 ppm	0	0	1	0	0	0				
	7200 ppm	. 0	0	0	0.	0	0				
SWELLING	Control	0	0	0	0	0	0				
	800 ppm	0	0	0	0	0	0				
	2400 ppm	1	1	1	0	0	0				
	7200 ppm	0	0	0	0	0	0				
HEMORRHAGE	Control	0	0	0	0	0	0				
	800 ppm	0	0	0	0	0	Ö				
	2400 ppm	0	ĺ	o	ő	0	ů				
	7200 ppm	0	0 ·	ō	0	ő	0				
PROLAPSE OF PENIS	Control	0	0	0	0	0	0				
	800 ppm	0	ŏ	Ŏ	ŏ	0	ŏ				
	2400 ppm	Ö	ő	0	ŏ	0	ő				
	7200 ppm	0	0	0	ő	0	ŏ				

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

Clinical sign	Group Name	Adminis	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	117	12-7	13-7	14-7
		_	_	_											
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0 '	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DISY	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0		
	1200 ppm	U	U	U	U	U	U	U	U	U	U	U	U	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	ō	Ō	0	0	0
	7200 բթո	0	0	0	ō	ō	0	0	0	Ö	Ö	0	ő	Ö	o
MALL STOOL	Control		0	0	0	0	0	0	^	0	0	0		0	
MULL SIOOL	Control 800 ppm	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0
			0	0						-	0			0	0
	2400 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	U	0	0	0	0	0	0	0	0	. 0	0	0
JIGO STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	49	49	49	49
The state of the s	800 ppm	50	50	50	50	50	50	50	50 50	50	50 50	50	50	50	50
	2400 ppm	50	50 50	50	50	50 50									
	7200 ppm	49	49	49	49		50 49	50 49							50
	1200 ppm	49	49	49	49	49	49	49	49	49	49	48	48	48	48

STUDY NO.: 0641
ANIMAL: RAT F344/DuCr1Cr1;[F344/DuCrj]
REPORT TYPE: A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
	2400 ppm	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
ISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0 .	0	0	0	. 0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D URINE	Control	0	0	0	0	0	.0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0,	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	2400 ppm	0	0	0	0	0	0	ō	ō	0	0	0	Ŏ	Ö	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	ō	0
GO STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	49	49	49	49	49	49	49	49	49	49	48	48	48	48
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2400 ppm	50	50	50	50	50	50	50	49	49	49	49	49	49	49
	7200 ppm	48	48	48	48	48	46	46	45	45	46	47	47	47	47

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
REGULAR BREATHING	C t 1	0	0	0	0	0	0	0	0	0	0	0	0		0
KEGULAR DREATHING	Control 800 ppm	0	0 0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	Ö	ŏ	. 0	0	ő	ő	o	ő	0	0	ō	0	Ő
ISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0
URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOW URINE	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	7200 բբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NLL STOOL	Control	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0
IGO STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	47 50	47	47	47	47	47	47	47	47	47	47	17	47	47
	800 ppm	50	50	50	50	50	49	49	49	49	49	49	49	49	49
	2400 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	7200 ppm	46	46	46	46	46	46	46	46	46	46	46	46	45	45

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
REGULAR BREATHING	Control	. 0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	800 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	. 0	0	0	.0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	7200 ppm	0	0	0	0	0	0	0	Ō	ō	0 .	ō	0	ő	ō
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	Ö	0	0	0	ō	0
	7200 ppm	0	0	0	'o	0	0	0	0	0	0	0	0	ő	ō
LLOW URINE	Control	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	. 0	0	0	0.	0	0	0	0
OWN URINE	. Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0-	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
IGO STOOL	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	7200 ppm	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	47	47	47	46	46	46	46	46	46	45	45	45	45	45
	800 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	2400 ppm	49	49	48	48	48	48	48	48	48	48	47	47	47	47
	7200 ppm	45	45	44	44	43	42	42	42	42	42	43	43	43	43

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name		stration W												
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-
REGULAR BREATHING	Control	0	1	1	1	0	0	0	0	. 0	0	0	0	0	0
TRESCENT DREATHENG	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	i	1	0	0	0	ő	0	0	0	ő	0	0	1
ISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2400 ppm	0	0 ·	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	, 0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	1	1	0	0	0	0	0	0	. 0	0	0	0
LLOW URINE	Control	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
•	2400 ppm	0	0 0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	C
	7200 ppm		U	0	U	U	0	U	0	0	0	0	0	0	0
ROWN URINE	Control	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա 2400 թթա	0 -	0	0	0 0	0 0	0	0	-	0	0	0	0	0	0
	2400 րթա 7200 րթա	0	0	0	0	1	0 1	0							
MALL STOOL	0 - 4- 1	0				0			2	•				•	
MUDE OIOOP	Control 800 ppm	0	1 0	1 0	1 0	0 0	0	0 0	0	0 0	0	0 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	7200 ppm	0	1	0	0	0	. 0	0	0	0	0	0	0	0	1
			•	ŭ	v								v	Ÿ	1
LIGO STOOL	Control	0	1	1	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	45	44	43	42	42	42	42	42	41	38	37	37	38	. 37
	800 ppm	49	49	48	48	48	48	48	48	48	48	47	47	47	47
	2400 ppm	47	47	47	47	47	47	47	47	47	47	47	46	46	46
	7200 ppm	42	42	41	41	41	42	42	42	41	39	39	39	38	37

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	767	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	7200 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
DISY	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0 .	0	0	0	0	0 .	0	0	0	0	0	0	0	0
	. 800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	1	ı	1	1	1	1	1	1	1	1	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	ı	1	2	1	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	1	0	0	0	1	0	0	0	1	i	ī
	7200 ppm	1	1	2	3	1	0	0	0	0	0	ō	ō	ō	ĩ
LIGO STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	i	1	1	0	0	0	0	0	Ō	0	. 0	0	ō
	2400 ppm	0	0	ō	0	0	0	0	1	0	ō	0	0.	0	1
	7200 ppm	0	1	2	ı	ō	ō	0	Ô	0	ō	ō	o	ō	0
ON REMARKABLE	Control	36	36	36	36	36	36	36	36	35	35	34	33	33	33
	800 ppm	46	46	46	46	45	42	41	41	41	41	41	41	41	41
	2400 ppm	46	45	45	44	45	45	44	42	42	41	41	39	39	38
	7200 ppm	37	36	35	35	36	35	34	33	33	33	34	34	34	33

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
									a.						
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2400 ppm	0 -	0	0	0	1	1	0	0	0	0	0	0	0	1
	7200 ppm	0	1	· 1	1	1	1	0	0	1	1	1	1	. 1	1
ISY	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	800 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	2	2	2	2	. 0	0 -	ō	ō	1	1 .	ō	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 բթա	0	0	0	0	0	0	2	2	2	2	1	1	1	2
ALL STOOL	Control	0	1	1	1	1	1	1	2	2	2	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2400 ppm	1	2	1	1	1	1	0	0	0	0	1	1	1	2
	7200 ppm	1	2	3	2	2	2	0	0	0	2	2	2	1	1
IGO STOOL	Control	0	1	1	1	0	0	0	1	1	1	0	1	0 -	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2400 ppm	i	1	0	0	0	0	0	0	0	0	1	1	1	1
	7200 ppm	0	1	2	2	2	3	1	1	1	1	1	2	1	1
N REMARKABLE	Control	33	32	32	32	30	31	31	30	29	26	27	27	26	26
	800 ppm	41	41	41	41	41	41	41	40	40	39	39	37	37	36
	2400 ppm	38	37	37	37	37	37	36	35	35	35	33	33	33	32
	7200 ppm	33	32	32	32	32	31	31	32	32	32	32	29	30	30

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

	Group Name	Month		Week-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
IRREGULAR BREATHING	Control	0	1	0	I	0	0		
	800 ppm	0	0	0	0	0	1		
	2400 ppm	0	0	1	0	0	0		
	7200 ppm	1	2	1	1	0	0		
NOISY	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
RED URINE	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
YELLOW URINE	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
BROWN URINE	Control	0	0	0	0	0	0		
	800 թթա	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 թբա	2	i	1	1	1	1		
SMALL STOOL	Control	0	1	0	2	1	1		
	800 ppm	0	0	0	2	1	2		
	2400 ppm	1	2	2	1	0	0		
	7200 ppm	2	2	2	2	1	1	·	
OLIGO STOOL	Control	1	1	0	i	0	1		
	800 ppm	0	0	0	1	1	1		
	2400 ppm	0	1	2	i	0	. 0		
	7200 ppm	2	1	1	1	0	0		
NON REMARKABLE	Control	25	24	24	20	19	19		
	800 ppm	36	36	36	35	34	33		
	2400 ppm	32	32	32	28	27	27		
	7200 ppm	30	27	27	27	26	26		

TABLE B 2

CLINICAL OBSERVATION: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

SEX - PEMALE															PAGE: 41
Clinical sign	Group Name		stration W												
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
	74 / 101/- 101/									·					
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0 -	0	0	0 .	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	ō	0	0	Õ	Õ	ŏ	Ŏ	Ŏ	ō	Ö	0	Ö	Ö	Ö
	2400 ppm	Ö	0	0	0	Ö	ŏ	Õ	Ö	Ö	Ö	ů	Ö	Ö	Ö
	7200 ppm	Ō	0	0	Ö	Ö	Ö	Ö	0	0	Ö	0	0 .	ő	0
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. 250576011011	800 ppm	Ö	0	Õ	Ö	0	ŏ	ő	Ŏ	0	0	Ů	Ö	0	Ö
	2400 րթա	Ö	0	0	0	0	0 -	.0	0	0	0	0	0	0	ő
	7200 րթա	0	0	0	ő	0	0	0	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THOO BEEST	800 ppm	0	0	0	Ö	0	0	0	Ŏ	0	0	0	Ö	0	ő
	2400 ppm	0	0	0	0	0	ő	ő	0	0	0	0	Ö	0	Ö
	7200 ppm	ő	0	0	ő	0	0	0	0	0	0	0	0	0	0
SOILED PERI GENITALIA	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
Jozana I But Obive Hibrit	800 ppm	ő	0	0	0	0	Õ	0	0	0	0	0	Ŏ	0	Ö
	2400 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	ő	0	1	1	3	3	3	3	5	5	6	6	. 6	6
EXOPIITIIALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THE STATE OF THE S	800 ppm	0	0	0	0	0	0	0	0	0	1	1	t t	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
~	800 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(200 քիա	J	v	U	U	U	U	U	U	U	U .	U	U	U	U

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

linical sign	Group Name	Admini	stration W	eek-dav											
	· •	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	247	25-7	26-7	27-7	28-7
									-	•				,	
SATH	Control	0	0	0	0	0	0	0	0	0.	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	Ō	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	Õ	ō	ō	Ö	0	Ö	0	Ö	ō	Ö
DOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	. 0	0	0	0	0	0	0	0	Õ	0	0	0	Õ
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	Ö	ō	0	ō	ō	0	0	0	ō	ő	ő	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	Ô	0	0	ō	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թրա	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō	. 0
	2400 ppm	0	0	0	0	0	0	ō	0 -	0	Ö	Ŏ	Ö	0	ŏ
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0 .	ō	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mag 008	0	0	0	0	0	0	ō	Ö	. 0	Ŏ	ō	ŏ	0	ő
	2400 ppm	0	0	0	0	0	0	Ö	Ö	Ö	ő	0	Ö	Ö	ŏ
	7200 ppm	0	0	0	Ō	0	0	Ö	0	0	ő	o	o o	ő	0
DILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	0	0	0	0	0	0	0	Ō	Ö	ő	Ö	ő	0	ŏ
•	2400 ppm	0	0	0	0	0	0	ŏ	ŏ	ŏ	ő	Ö	. 0	0	0
	7200 ppm	6	6	6	6	7	6	7	7	8	8	8	8	8	8
OPIITIIALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	1	1	i	ī	1	. 1	1	· i	1	1
	2400 ppm	ō	0	0	0	0	0	0	Ô	ō	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	ì	ĺ	1	1	1	1	1	1
TARACT	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	2	2	2	2	2	2	2	2	2	2	2	2
	2400 ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	Ö	Õ	Ö	Ö	Ö	0	0	0	0	0	Õ	0	0	ő

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ATU	Control	0	0	0	0	0	0	0	0		0	0	0	0	0
3/111	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
															0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	Ö	0	Õ	. 0	Ō	Ŏ	Ö	Ō	ŏ	Ö	Ö	ŏ	0
	2400 ppm	Ö	ő	0	ő	0	0	0	0	0	0	0 -	0	. 0	0
	7200 ppm	ŏ	ő	0	ő	0	Ő	0	ő	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOEKEOTION	800 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	. 0	0		-
		0	0	0	0	0	0	0					Ö	0	0
	7200 թթա	U	U	U	U	U	U	U	0	0	0	0	U	0	0
OG BELLY	.Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	. 0
ILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	8	8	9	11	17	18	20	20	16	16	23	23	21	21
OPUTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
	800 ppm	1	i	í	1	1	1	ì	1	1	1	1	1	0	0
	2400 ppm	0	0	0	0	Ô	0	0	0	Ô	0	0	0	0	0
	7200 ppm	1	ì	1	1	. 1	. 1	i	1	1	1	1	1	1	1
TARACT	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	2	2	2	3	3	3	3	4	4	4	4	4	4	4
	2400 ppm	0	0	0	0	0	0	1	i	1	1	_	1	4 1	1
	7200 ppm	0	0	0	0	0	0	0	0	0	0	1 0	0	0	0
	1200 ppiii	v	v	U	U	U	U	U	U	U	v	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47~7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	557	56-7

EATH ·	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	i	1	1	1	1	1	1	1	1	1	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	Ö	Ö	0	0	0	Ö
	7200 ppm	ŏ	Õ	0	ō	Ő	ŏ	ő	ő	0	ő	0	ő	0	ő
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tott mortanta inpot	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0.	0
	1200 ppm	U	U	U		U	U	U	U	U	U	U	U		U
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	. 1	1	1	1	1	1	1	1	i	1	1	1
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	0	0	Ŏ	Ů	Ö	0	0	Ŏ	0	0 '	Ö	0	ő
	2400 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
OG BELLY	Conduct	0	0	0	0	0	0	0	0						
OG BELLI	Control			0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	U	U	U	U	0	0	0	0	0	0	0	0 .	0	0
ILED PERI GENITALIA	Control	1	1	0	0	0	0	0	0	0	0	0	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
•	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	13	13	11	11	11	11	11	12	12	12	12	13	13	- 13
OPHTHALMOS	Control	0	0 .	0 .	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TARACT	Control	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1
	800 ppm	4	. 4	4	4	4	4	4	4	4	4	4	4	4	4
	2400 ppm	ī	1	ī	ī	ĩ	ī	1	ī	1	î	i	i	î	· î
	7200 ppm	ō	0	1	1	1	1	i	1	. 1	î	1	1	î	î

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

															I NOL .
Clinical sign	Group Name	Admini	stration W	Veek-day											
		57-7	587	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATII	0.4.1	0	0		0	0		0	0	0		•			0 :
EATH	Control 800 ppm	0	0 0	0 0	0 0	0	0	0 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0 0	1 0	.1	1 0	1 0	1
	7200 ppm	1	1	1	1	1	1	1	2	2	2	2	2	2	0 2
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0
	7200 ppm	0	0	0	0	0	, 0	0	1	1	1	1	1	1	1
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	-0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 1
TLOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THOUMBOTTON	mqq 008	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	Ō	0	ő	0	Ö	o	ŏ	0	2	2	ő	0	2
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI GENITALIA	Control	1	1	1	1	1	1	1	1	1	0	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	13	13	13	13	13	18	18	16	16	15	14	13	13	15
COPIITIIALMOS	Control 800 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0					0		0
	7200 ppm	1	1	1	1	1	1	i	0 1	0 1	0 1	0	0 1	0 1	0 1
ATARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	2
	800 ppm	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	2400 ppm	i	1	î	1	i	1	i	1	1	l	î	i	1	1
	7200 ppm	1	1	1	1	2	2	2	2	2	2	3	3	3	3

1:[0044/0.0.1]

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

Clinical sign	Group Name	A.Ju. 3 - 2	stration W	'll											
linical sign	Group Name	71-7	72-7	еек-дау <u> —</u> 73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	847
					1.451	10-1	10-1		10-1	19-1		01-1	04-1	03-1	04-7
:ATH	Control	0	0	0	0	0	0	0	0	0	0	0	,		,
MIII			0 1	0	0	0	0	0 2	0	0	0	0	1	1	1
	800 ppm	1		1	1	1	1		2	2	3	4	4	4	4.
	2400 ppm 7200 ppm	0 3	0 3	0 3	0 3	0 3	0 4								
	1200 ppiii	J	,	3	,	J .	4	7	-1	-1	-1	• •	4	4	-3
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	2	2	2	2	2	3	3
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2400 ppm	ő	0	0	o	0	0	0	0	0	0	0	ő	0	0
	7200 ppm	ő	Ô	Ö	Ö	0	0	0	0	0	0	0	Ö	0	0
		-	•	•		•	•		•	·		Ť	ŭ		Ť
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	. 1	0	0	0	. 0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ó	0	0	0	0	0	i	3	3	i	1	i	i	i
	2400 ppm	0	0	0	0	0	0	0	i	1	0	0	0	0	Ô
	7200 ppm	2	1	1	1	1	1	1	2	2	2	2	2	i	Ö
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O BEEE!	800 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	. 0	0	0	-			-		-
	7200 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0
	1200 ppm	U	U	U	U	U	U	U	U	U	U	0	U	U	0
ILED PERI GENITALIA	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0 -	0	0	0	0	0	• 0	0	0	0	0	0
	7200 ppm	15	12	12	11	11	14	14	13 .	13	13	13	12	11	9
OPHTHALMOS	Control	0 .	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ö	Ö	0	ŏ	Ö	0	0	0	0	0	0	ő	0	0
	2400 ppm	ő	0	0	Ö	0	0	0	0	0	0	0	0	0	o o
	7200 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
ATARACT	Control	2	9		n	9		ń	0	0	0	0	•	0	0
IIAAOI	Control		2 4	2	2	2	2	2	2	2	2	2	2	2	2
	800 ppm	4	_	4	4	5	5	5	5	5	5	5	5	5	5
•	2400 ppm	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	7200 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3

STUDY NO. : 0641 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
, , , , , , , , , , , , , , , , , , ,		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ATIJ	Control	1	1	1	1	1	1	1	1	1	2	2	2	2	3
2111	800 ppm	4	4	4	5	5	5	5	5	5	5	5	5	6	6
	2400 ppm	0	0	0	0	0	1	1	1	2	2	2	3	3	
	7200 ppm	4	5	6	7	8	9	9	9	9	9	9	3 9	9	4 10
,	1200 ppm	4	Ş	0	ī	٥	9	9	9	9	9	9	9	9	10
RIBUND SACRIFICE	Control	0	0	0	0	1	1	1	2	2	2	2	3	3	3
	800 ppm	0	2	2	. 2	. 2	2	2	2	2	2	2	2	2	2
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	3	3	3	3	3	3	3	3	3	3	3	4	4	4
DOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tambion Motomatic Profit	800 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	1 .	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1200 ppiii	v	v	v	v	v		U	v	v	U	Ū	v	U	v
DILED	Control	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0 .	0	0	0	. 0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ווועע 008	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	7200 թթո	0	1	1	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOO DEEE!	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	Ö	0	0	. 0	0	0	0	0	0	0	0			
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	1200 ppm	U	v	Ū	U	U	U	U	U	U	U	U	U	U	U
ILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	1	1	1	1	0	0	0	0	0	0
	7200 ppm	9	8	7	8	9	7	7	7	7	7	7	4	4	5
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	ő	ő	ŏ	ŏ	ő	ő	ő	0	ő	ő	0	- 0	0	ő
TADACT	0	2	0		0	4		-	-	-	-	-	-	-	_
TARACT	Control	3	3	3	3	4	4	5	5	5	5	5	5	5	5
	800 ppm	5	5	5	5	5	. 5	5	5	5	5	5	5	5	5
	2400 ppm	2	2	2	2	2	2	2	2	2	2	2	2	3	3
	7200 ppm	3	3	3	3	3	3	3	3	3	3	3	2	. 2	2

ANIMAL : RAT F344/DuCr1Cr1 [F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration '	Week-day					
	·	99-7	100-7	101-7	102-7	103-7	104-7		
ЕАТИ	Control	5	5	5	6	6	7		
	800 ppm	6	6	7	8	9	9		
	2400 ppm	4	4	6	6	7	8		
	7200 ppm	11	11	11	11	12	13		
ORIBUND SACRIFICE	Control	4	4	4	4	4	5		
	800 ppm	2	3	3	3	3	3		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	4	4	4	4	4	4		
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	. 0	0		
SOILED	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
PILOERECTION	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 թթա	0	0	0	0	0	0		•
	7200 բթա	0,	0	0	0	0	0		
FROG BELLY	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0	,	
GOILED PERI GENITALIA	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0	·	
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	4	4	4	5	5	5		
EXOPIITHALMOS	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
CATARACT	Control	5	5	5	5	5	4		
	800 ppm	5	5	5	4	3	3		
	2400 ppm	3	3	3	3	3	2		
	7200 ppm	2	2	2	2	2	2		
		_	-		_	_	_		

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
	oroup realic	1-7	2-7	3-7	4-7	5-7	67	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
TTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ЕУЕ	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	800 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	ō
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	ō
	7200 ppm	0	0	0	0	0	0	0	0	Ō	0	0	Ō	0	ō
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	. 0	0	Ō	0	ō	0	ō
	7200 ppm	0	0	0	0	0	0	0	0	0	Ō	0	ō	Ō	ō

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
	-														
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	· 1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
TTERNAL MASS	Control	0	0	0	0 -	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ЕУЕ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	ο.	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	Ö	Ö	o O	Ö	. 0	Ö	ő
	7200 ppm	0	0	0	o	0	ō	Ō	0 .	Ö	0	ŏ	Ö	ō	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	Ô	Ō	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE: A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	Ō	0	0	ō	ō	ō	ō	ō	ō	ō	0	0	0	ō
	7200 ppm	i	1	1	ĭ	i	i	ĭ	1	ı	i	1	ĭ	ĺ	ĺ
ITERNAL MASS	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	800 ppm	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	t sọc phu	U	U	U	Ū	v	Ū	1 .	U	Ū	U	U	U	U	J
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	ō	0	0	0	0	0	ō	0
EAR	Control	. 0	0	0	0	0	0	0	0	1	ı	1	1	1	1
	800 ppm	0	Ö	0	0	0	ō	Ö	Ŏ	0	ō	Ô	0	Ô	Ô
	2400 ppm	Ŏ	ő	0	Ö	0	Ö	Ö	0	0	ů	Ö	0	Ö	0
	7200 ppm	ŏ	0	0	0	0	0	0	0	0	. 0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lanz am	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
HOK	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWNEVE OLVETLI	800 ppm	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	,0	0
TERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	1	1	1	1	1	2	2	2	1	1	1	1	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0 0	0 0	0	0 0										
ORAL CAVITY	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
OMAL CAVIII	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
•	7200 թթա 7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	ō	ō	ō	0	Ō	Ô	ō
	2400 ppm	0	0	0	Ŏ	Ö	0	ŏ	0	Ö	0	Ö	Ö	ő	ő
	7200 ppm	0	0	ō	ő	Ö	. 0	Ö	0	ō	ő	0	ō	ő	ő
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0 -	0	0	0	0	0	0
	7200 ppm	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	.0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

ODA - I DREIDE															TAGE . O.
Clinical sign	Group Name	Admin	istration W												
		577	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	677	68-7	69-7	70–7
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMMEND OF NOT IT	800 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	ő	. 0
	7200 ppm	Ô	ŏ	0	ő	ő	ő	o	ő	o ·	ő	ő	ő	0	0
EXTERNAL MASS	Control	1	l	1	1	1	1	1	1	1	1	2	3	3	3
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	2	2
	2400 ppm	0	0	0	0	0	0	0	1	2	2	2	2	2	2
	7200 ppm	1	1	1	1	1	1	1	0	0	0	1	1	2	2
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm 7200 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	1	i	1
n. 1111	800 ppm	ŏ	0	0	0	. 0	0	0	0	0	0	0	0	0	0 -
	2400 ppm	Ö	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	7200 ppm	Ő	ŏ	0	ő	0	ő	0	0	ő	ő	o	ő	ő	0
M. ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	i	1	1	1	1	1	i	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	2400 ppm 7200 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 1	0 1	0 1
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MI DAIL DAIN	800 ppm	. 0	0	0	0	0	Ö	Ŏ	0	0	0	0	0	0	0
	2400 ppm	ŏ ·	ŏ	0	0	0	0	0	o ·	Ŏ	Ö	0	0	0	0
	7200 ppm	0	0	0	ŏ	Ö	ō	0	ő	ő	ő	ő	ő	ő	0
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	i
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration	Veek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
DRNEAL OPACITY	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
ORNERD OF WOTH	800 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
			•	0	0		0		0 .	0			0		. 0
	2400 ppm	0	0	0	0	0 0		0	0	0	0	0		0	1
	7200 ppm	0	0	U	U	U	0	0	U	U	1	1	1	1	I
XTERNAL MASS	Control	3	3	3	3	3	3	3	3	3	3	3	3	5	5
	800 ppm	2	2	3	3	3	4	4	5	5	4	3	3	3	4
	2400 ppm	2	2	2	2	2	3	3	3	3	3	3	2	2	3
	7200 ppm	2	2	2	2	2	2	3	3	3	3	3	3	3	3.
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EYE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	Õ	ō	ō	ō	ō	ō	ō	ō	0	ō	ō	ō
	2400 ppm	0	0	ō	ō	Ō	ō	0	0	Ö	Ō	0	Ō	0	ō
	7200 ppm	Ö	0	0	o	ō	0	Ô	Ö	0	ō	0	Ö	Ö	ő
ORAL CAVITY	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
COULD ON III	800 ppm	. 0	0	0	0	0	ő	0	Ö	0	Ô	0	0	0	0
	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1200 ppm	U		U	U	U	U	U	U	U	U	U	U	U	U
I. EAR	Control	1	1	. 1	1	1	1	1	1	1	1	1	1	2	1
	800 ppm	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	2400 ppm	0	0	0	0 -	0	0	0	0	. 0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	800 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	i
. NECK	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	Ö	Ö	0	0	0	0	Ö	Ö	ő
	2400 ppm	0	0	0	0	0	0	0	0	Õ	0	0	0	0	0
	7200 ppm	0	0	Ō	, o	ő	0	ő	o	ő	0	Ö	0	ő	ő
. BREAST	Control	0	0	0	,	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	1
	· 2400 ppm	1	ı	1	ı	1	1		1	1	1	1			_
		0	0	0	0	0	0	1	0		_		1	1	2
	7200 ppm	U	v	U	U	U	U	0	U	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

															I AUL
Clinical sign	Group Name		stration	Week-day _								•			
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
MANUAL AND AND THE	Cartual	0	0	0	0	0	0					0	0		0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	5	5	5	5	4	4	5	4	4	5	5	5	5	5
•	Mqq 008	4	4	4	4	4	4	4	4	4	4	5	6	5	8
	2400 ppm	3	3	3	3	4	4	5	5	6	6	6	7	7	7
	7200 ppm	- 3	2	2	2	2	2	2	2	3	4	4	4	4	- 5
TERNAL MASS	Control	0	0	. 0	0	0	0	0	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0 .	0	1	0	0	0	0	0	0	1	0	0	0
EYE	Control	i	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	Ō	0	0	0	0	0	0	0	0	0	ō
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
·	7200 ppm	0	0	0	0	0	0	Ō	0	Ō	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թբա	Ō	0	0	ŏ	ō	Ö	Ö	0	Ö	ō	Ö	Ö	Ő	ő
	2400 թթա	0	ő	0	ŏ	ŏ	Ŏ	0	0	0	0	0	0	0	0
	7200 թթա	Ö	0	0	0	0.	0	0	0	ő	ő	0	0	0	o
EAR	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2710	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
	7200 ppm	1	ì	1	1	1	1	1	1	1	1	1	1	1	1
PERI EAR	,		•			•	•	•	•	•		•			
PEKI EAK	Control	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	1	1	. 1	1	1	i	i	1	1	1 -
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	5
	2400 ppm	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	7200 ppm	0	0	0 .	0	ō	0	0	0	1	1	1	1	1	2

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration '	Week-day _				 					
		99-7	100-7	101-7	102-7	103-7	104-7						
CORNEAL OPACITY	Control	0	0	0	0	0	0						
	800 ppm	0	0	0	0	0	0						
	2400 ppm	0	0	0	0	0	0						
	7200 ppm	ō	0	0	Ō	0	0						
EXTERNAL MASS	Control	6	6	6	6	7	7						
	800 ppm	9	9	9	8	9	9						
	2400 ppm	8	8	8	8	9	8						
	7200 ppm	5	6	6	6	5	- 5						
INTERNAL MASS	Control	1	1	1	0	0	0						
INTIMUMS MADE	800 ppm	o O	0	0	ő	0	3						
	2400 ppm	ĺ	l	0	0	0	0						
	7200 ppm	ō	Ô	1	1	1	0						
M. EYE	Control	1	1	1	1	i	1						
M. LIE	800 ppm	0	0	0	0	. 1.	0			t			
	2400 ppm	0	0	0	0	0	0						
	7200 ppm	0	0	0	0	0	0						
M. ORAL CAVITY	Control	0	0	0	0	0	0						
M. ORAL CAVIII	800 ppm	. 0		0	0	0	0						
		. 0	0	0	0	0	0						
	2400 ррп	0	0	0	0	0	0						
	7200 թթա	0	1	1	1	1	1						
M. EAR	Control	1	1	1	1	1	1						
	800 ppm	. 0	0	0	0	0	0						
	2400 ppm	0	0	0	0	0	0						
	7200 ppm	1	1	1	1	1	1						
M. PERI EAR	Control	0	0	0	0	0	0						
	800 ppm	0	0	0	0	0	0						
	2400 ppm	0	0	0	0	0	0						
•	7200 ppm	0	. 0	0	0	0	0						
M. NECK	Control	1	ı	1	1	1	1						
	800 ppm	0	0	0	0	0	0						
	2400 ppm	0	0	0	0	0	0						
	7200 ppm	0	0	0	0	0	0						
M. BREAST	Control	2	2	2	2	2	2						
	800 ppm	6	6	6	6	6	6						
	2400 ppm	4	4	4	4	4	3						
	7200 ppm	2	2	2	2	2	2						
	PPm	-	_	-	_		-						

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0641 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	ek-day	· · · · · · · · · · · · · · · · · · ·										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIDOMEN	800 ppm	0	ŏ	0	ő	0	0	Ö	0	0	Ö	ő	0	0	ő
	2400 ppm	Õ	ŏ	Ö	ő	0	Ö	Ö	0	0	0	0	0	0	ŏ
	7200 ppm	0	ŏ	. 0	o ·	Ö	Ö	ŏ	ŏ	Ö	ő	ő	ŏ	Ö	ő
ANTERIOR, DORSUM	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	•0	0	0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 թբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0.

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											···
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	1	-1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0.	0	0	0	0	0	0	0	. 0	0	1	1	1
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ազգ 008	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	2400 թթտ	0	0	0	0	0	0	0	0	0	0 -	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
•	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
MORRHAGE	Control	0	0	. 0	0	0	0	. 0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

DEA . I LAURED															TAGE
Clinical sign	Group Name		stration W												
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WI. ADDONIEN	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	0	0	Ô	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	ĭ	1	1	1	1	1	1	1	1	1	1	1	1
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ррш	0	0	0	0	0	0	0	, 0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	1	1	1	1	0
JAUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0 .	0	0	0	, 0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Mqq 008	0	0	0	0	0	Ō	0	0	. 0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0 ·	0	0	0
•	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	~ 0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

ODA - PEMBELO															I MOL . O
Clinical sign	Group Name	Admini	istration W	eek-day				1	14						
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	537	54-7	55-7	56-7
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m. ADDOMEN	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	1	1	1	1	1	i	1	1	1	1	ĭ	1	1
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	2400 ppm	0	0	0	0.	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	i	0	0	0	0	0	0	0
	800 բթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0 ·	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JAUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200·ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	. 0	0 -	0	0
	800 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

															PAGE -
Clinical sign	Group Name	Admin	stration												***************************************
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	677	68-7	69-7	70-7
												,			
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	1	1	1	1	1	1	I	1	1	1	1	1	1
	2400 ррт	0	0	0	0	0	0	0	1	1	i	0	0	0	0
	7200 ppm	1	1	1	1	1	1	1	0	0	0	0	0	1	1
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2400 ppm	0	0	0	0	0	0	0	0	1	1	I	1	1	i
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	.0	0
	800 թթա	0	0	0	0	0	0	0	0	0	Ō	Ō	0	1	i
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	0
	7200 ppm	0	0	0	ō	0	0	1	0	0	Ö	0	ō	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
·	800 ppm	0	Õ	Ŏ	o ·	ŏ	0	Ö	0	Õ	ŏ	Ŏ	0	0	ő
	2400 ppm	0	Õ	Ö	o ·	ŏ	0	0	0	0	Ö	0	0	0	0
	7200 ppm	ő	. 0	Ŏ	ő	ő	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lob I II	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0								
	7200 ppm	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0
BMORRHAGE	Control	٥	0	0	0	0	0	0	0	0	0	^	^	0	0
MOUNTAUE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2400 ppm	0	.0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-dav											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. ABDOMEN	Control	. 0	. 0	0	0	0	0	0	0	0	0	0	0	1	,
a. ADDOMEN			U									-		Ţ	1
	800 ppm	1	1	2	2	2	2	2	2	2	1	1	1	1	1
	2400 ppm	0 1	0 1	0 1	0 1	0 1	0	0 1	0 1	0	0 1	0	0	0 1	- 0
	7200 ppm	1	1	ı	1	1	1	ı	. 1	1	1	1	1	1	1
M. ANTERIOR. DORSUM	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	1	i	2	2	2	1	1	1	1
	2400 ppm	0	0	0	0	0	1	i	1	1	1	1	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	1	1	1	1	1	1	ι	1	1	1	1	1	1	1
	mqq 008	1	1	1	1	1	1	l	1	1	1	1	1	1	1
	2400 ppm	1	1	1	ī	1	1	i	ī	1	i	ì	i	1	ī
	7200 ppm	0	0	0	ō	0	0	0	0	0	0	0	0	ō	0
EDEMA	Control ⁻	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
								-		-			-		0
	2400 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0 .
NEMIA	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	800 թբա	i	1	1	1	1	1	1	1	1	0	0	0	0	0
	. 2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	1	1	0	0	0
AUND1CE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	ō
	7200 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
CRUSTA	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	1	1	1	1	1	i	1	1	1	1	1	1	i
IEMODDIA GE		_	_									-		-	_
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	1	1	0	0	0	1	ı	1	1	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	ō	õ
	7200 ppm	0	0	0	Ō	0	0	0	0	Ŏ	ŏ	0	Ö	ő	ő

STUDY NO. : 0641 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

SEA . PEMALE										•					PAGE . C
Clinical sign	Group Name	Admini	istration W	eek-day											
	·	85-7	86-7	87-7	88-7	89-7	907	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
A. ABDOMEN	Control	1	1	1	1	1	1	2	2	2	2	2	1	1	1
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	2	2	2
	2400 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	7200 ppm	1	Ĺ	1	1	1	1	1	1	1	1	1	1	1	1
I. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	800 ppm	1	ı	1	1	1	1	. 1	1	1	1	1	1	1	1
	2400 ppm	0	0	0	0	. 0	0	2	1	1	1	1	1	1	1
	7200 ppm	0	0	0	0	0	0	0	0	Ö	Ö	0	0	0	0
M. GENITALIA	Control	1	ı	1	1	1	1	1	0	0	1	1	2	2	2
	800 ppm	í	i	ī	î	î	1	1	1	1	i	i	2	1	1
	2400 ppm	1	ì	î	ì	2	2	2	2	3	3	3	4	4	4
	7200 ppm	Ō	0	Ô	0	ō	0	0	0	Ö	1	ì	1	1	1
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLINIA	800 ppm	ő	-0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0		0	0	
	7200 ppm	0	0	1	1	1	0	0	0	0	0	0 0	0	0	0 0
ANEMIA	Control	1	0	1	1	1	1	1	0	0	1	1	0	1	1
UIAEWIY	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		0	0	0	0	1		0				•			0
	2400 թթո 7200 թթո	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	2 1	2 . 1
JAUNDICE	Control	0	0	0	0	0	0	0		0	0	0		0	
JAUNDICE	Control	0		-	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
CRUSTA	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	1	i	1	1	1	1	1	1	1	1	1	I	1	1
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	1	0	Ô	0	ŏ	Ŏ	ŏ	ő	Ö	Õ	0	Ö	ī	ő
	2400 ppm	0	Ô	0	ő	0	1	1	i	0	0	0	0	0	0
				-					_			-			
	7200 ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name		istration						
		99-7	100-7	101-7	102-7	103-7	104-7		
M. ABDOMEN	Control	1	1	1	1	2	3		
	800 ppm	2	2	2	1	2	2		
	2400 ppm	1	1	1	1	2	2		
•	7200 ppm	1	1	1	1	1	1		
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0		
	. 800 ppm	1	i	1	1	1	1		
	2400 ppm	1	1	1	1	1	1		
	7200 ppm	0	0	0	0 .	0	0		
M. GENITALIA	Control	1	1	1	1	1	0		
	800 ppm	1	1	1	1	1	1		
	2400 ppm	4	4	4	4	4	4		
	7200 ppm	1	i	1	1	0	0		
EDEMA	Control	0	0	0	0	0	0		
	800 ppm	0	0	0	. 0	0	0		
	2400 ppm	0	0	0	0	0	0		
	7200 ppm	0	0	0	0	0	0		
ANEMIA	Control	1	t	1	0	0	1		
	800 ppm	0	0	0	0	1	1		
	2400 ppm	2	ĺ	0	1	0	0		
	7200 քթա	1	1	2	1	0	0		
JAUNDICE	Control	0	0	0	0	0	0		
•	800 ppm	0	. 0	0	0	0	0		
	2400 ppm	0	ĺ	0	0	0	0		
	7200 ppm	0	ō	0	0	0	0		
CRUSTA	Control	0	0	0	0	0	0		
31.00 111	800 ppm	0	ő	0	0	0	0		
	2400 ppm	0	0	0	0	. 0	0		
	7200 ppm	ı	i	1	1	1	1		
HEMORRHAGE	Control	0	0	0	0	0	0		
CIDMORIGINOD	Control 800 ppm	0 0	0	0	. 0	0 0	0 0		
		0	0						
	2400 ppm 7200 ppm	0	0	0 0	0 0	0 0	0 0		
IRREGULAR BREATHING	Control	0	0	0	0	0	٥		
THEOUGH DIENHING	800 ppm	1	0	0	0	0	0		
	ovv ppm				0	0	0		
	2400 ppm	0	0	0	1	1	0		
	7200 ppm	0	0	0	0	1	0		

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 65

Clinical sign	Group Name	Admini	stration W	eek-day											
	·	1-7	2-7	3-7	4-7	57	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
									,						
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	. 0	0	0 ·	0	0
	800 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	i	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ppm	50	50	50	50	50	50	50	50	50	49	49	49	49	49
	2400 ppm	50	50	50	50	49	50	50	50	50	50	50	50	50	50
	7200 ppm	50	50	49	49	47	47	47	47	45	45	44	44	44	44

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 66

Clinical sign	Group Name	Admini	stration W	eek-day _	*	_									
·	-	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ED URINE .	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	. 0
	800 ppm	0	. 0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթո	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
•	800 ppm	49	49	48	48	48	48	48	48	48	48	48	47	47	47
	2400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	7200 ppm	44	44	43	43	42	43	42	42	41	41	41	40	40	40

(IIAN190)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 67

Clinical sign	Group Name	Admin	istration W	eek-dav											
	· ,	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·····															
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0
ON REMARKABLE	Control	50	49	49	49	49	49	49	49	47	47	47	47	47	47
	800 ppm	47	47	47	46	46	46	46	45	45	45	45	45	45	45
	2400 ppm	50	50	50	50	50	50	49	49	49	49	49	. 49	49	49
	7200 ppm	40	40	40	38	32	30	28	28	32	32	25	25	27	27

(IIAN190)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 68

linical sign	Group Name	Admini	stration W	eek-day											
**	•	43-7	44-7	457	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	, 0	0	0
	2400 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	800 ppm	0	0	0	0	0	0	0	0	.0	0	0	0	0	0
	. 2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	- 0	0
	7200 ppm	0.	0	0	0	0	0	0	0	0	0	. 0	0	0	0
IGO-STOOL	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
•	800 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	47	47	48	48	48	48	47	48	48	48	48	47	47	47
	800 ppm	45	45	45	45	45	44	44	44	45	45	45	45	45	45
	2400 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	7200 ppm	35	35	35	35	35	35	35	34	34	34	34	33	33	33

(HAN190)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX FEMALE

PAGE: 69

Clinical sign	Group Name	Admini	stration W	eek-day <u> </u>											
		57-7	58-7	59-7	607	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ED URINE	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0,
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	ı	1	1	2	2	3	3	3
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	.0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 բրա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	47	47	47	47	47	47	47	47	47	48	46	45	45	44
	800 ppm	45	45	45	45	45	45	45	45	45	44	44	44	43	42
	2400 ppm	49	49	49	49	49	49	49	48	47	47	47	47	47	47
	7200 ppm	33	33	33	34	34	29	28	29	29	29	29	29	28	26

(HAN190)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 70

Clinical sign	Group Name	Admin	istration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
			- T												
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
	800 ppm	0	0	0	0	0	0	0	0 .	. 0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	3	3	4	4	4	6	6	8	8	8	10	11	10	10
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	ı	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	7200 ppm	0	0	1	1	1	0	0	0	0	0	1	1	1	1
LIGO-STOOL	Control	0	0	1	0	0	0	0	0	0	0	0	2	2	1
	800 բթա	0	0	0	0	0	0	0	0	0	0	0	0	2	2
	2400 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 թթա	0	1	1	1	1	0	0	1	1	0	1	1	2	1
ON REMARKABLE	Control	44	45	45	45	44	44	44	44	44	44	44	42	41	42
	800 ppm	42	42	41	41	40	40	39	36	36	37	37	37	36	35
	2400 ppm	47	47	47	47	47	46	46	45	45	46	46	47	47	46
	7200 ppm	25	27	26	27	27	23	23	22	22	- 22	22	21	21	22

(IIAN190)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 71

Clinical sign	Group Name		istration W												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	947	957	96-7	97-7	98-7
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
RED GRINE	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	Ö
	2400 ppm	ő	ů 0	0	ő	0	0	0	Ö	ŏ	0	0	ő	0	Ö
	7200 ppm	0	0	ō	Ö	0	. 0	Õ	ō	Ö	Ö	ő	2	2	2
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7200 ppm	10	12	12	11	8	12	12	13	13	14	14	12	12	13
SMALL STOOL	Control	1	1	1	1	0	0	0	0	1	1	1	0	1	2
	800 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0	1
	2400 ppm	0	0	0	0	1	1	1	1	0	0	0	0	ı	0
	7200 ppm	2	1	1	1	1 .	0	0	0	0	0	1	0	0	0
OLIGO-STOOL	Control	1	1	1	1	0	0	0	0	0	1	1	0	0	0
	800 ppm	2	1 .	1	0	0	0	0	0	0	0	0	0	1	2
	2400 ррт	0	0	0	0	0	0	ŧ	0	0	0	0	0	0	1
	7200 րթա	3	1	1	3	2	0	t	1	1	I	2	0	0	0
NON REMARKABLE	Control	41	41	41	41	40	40	38	37	37	35	35	34	34	32
	800 ppm	35	34	34	34	34	34	34	34	34	34	33	33	33	30
	2400 ppm	46	46	46	4 6	44	43	42	42	41	41	41	39	35	34
	7200 ppm	22	20	20	19	19	18	18	18	17	15	15	16	16	15

(HAN190)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day _						
	·	99-7	100-7	101-7	102-7	103-7	104-7			
RED URINE	Control	0	0	0	. 0	0	0		•	
	800 ppm	0	. 0	0	0	0	0			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	2	2	2	3	3	3			
YELLOW URINE	Control	1	1	1	0	0	0			
	mqq 008	0	0	0	0	0	1			
	2400 ppm	1	1	0	0	0	0			
	7200 ppm	0	0	1	i	0	0			
BROWN URINE	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	. 0	. 0	0			
	2400 ppm	0	0	0	0	0	0			
	7200 ppm	12	13	12	. 15	15	14			
SMALL STOOL	Control	2	2	2	1	1	1			
	800 ppm	2	ı	1	0	1	1			
	2400 ppm	1	2	0	1	1	0			
	7200 ppm	0	1	2	2	2	1			
OLIGO-STOOL	Control	1	1	1	1	1	0			/
	800 թթա	2	1	1	0	1	1			
	2400 բբա	2	3	1	2	1	0			
	7200 թթա	0	t	2	3	4	3			
NON REMARKABLE	Control	30	30	30	30	30	29			•
	800 ppm	29	29	28	28	26	24			
	2400 ppm	32	32	33	32	32	32			
	7200 ppm	15	13	12	10	9	9			
										•

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0641 : RAT F344/DuCr1Cr1j[F344/DuCrj] ANIMAL

UNIT : g

REPORT TYPE : A1 104 SEX : MALE

	Control			וועע 008			2400 p	μm		7200 p	pm		
Week-Day on Study	Av. Wt.	No. of Surviv. <50>	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. \t.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.		
0-0	121 (50) 50/50	121 (50)	100	50/50	121 (50)	100	50/50	121 (50)	100	50/50		
1-7	150 (50		149 (50)	99	50/50	149 (50)	99	50/50	141 (50)	94	50/50		
2-7	181 (50		179 (50)	99	50/50	179 (50)	99	50/50	170 (50)	94	50/50		
3-7	206 (50		204 (50)	99	50/50	205 (50)	100	50/50	194 (50)	94	50/50		
4-7	225 (50		224 (50)	100	50/50	225 (50)	100	50/50	214 (50)	95	50/50		
5-7	240 (50		239 (50)	100	50/50	241 (50)	100	50/50	229 (50)	95	50/50		
6-7	253 (50		252 (50)	100	50/50	254 (50)	100	50/50	241 (50)	95	50/50		
7-7	264 (50		263 (50)	100	50/50	265 (50)	100	50/50	252 (50)	95	50/50		
8-7	274 (50		273 (50)	100	50/50	274 (50)	100	50/50	260 (50)	95	50/50		
9-7	283 (50		282 (50)	100	50/50	282 (50)	100	50/50	266 (50)	94	50/50		
10-7	290 (50		291 (50)	100	50/50	290 (50)	100	50/50	273 (50)	94	50/50		
11-7	296 (50		299 (50)	101	50/50	299 (50)	101	50/50	279 (50)	94	50/50		
12-7	303 (50		306 (50)	101	50/50	305 (50)	101	50/50	285 (50)	94 94	50/50		
13-7	309 (50		312 (50)	101	50/50	312 (50)	101	50/50	290 (50)	94	50/50		
14-7	315 (50		318 (50)	101	50/50	317 (50)	101	50/50	295 (50)	94 94	50/50 50/50		
18-7	333 (50		336 (50)	101	50/50	334 (50)	101	50/50	309 (50)	93	50/50		
22-7	347 (50		350 (50)	101	50/50	348 (50)	100	50/50 50/50	320 (50)	93 92	50/50 50/50		
26-7	359 (50		362 (50)	101	50/50	360 (50)	100	50/50 50/50	329 (50)				
30-7	372 (50		373 (50)	101	50/50	370 (50)		50/50 50/50		92	50/50		
34-7	382 (50		385 (49)	101		380 (50)	99		337 (50)	91	50/50		
38-7	390 (50		394 (49)		49/50	388 (50)	99	50/50	345 (50)	90	50/50		
30−7 42−7	396 (50		401 (49)	101	49/50		99	50/50	351 (50)	90	50/50		
42-7 46-7	404 (49		401 (49)	101 100	49/50	394 (50) 399 (50)	99	50/50	356 (50)	90	50/50		
50-7	411 (49				49/50		99	50/50	359 (50)	89	50/50		
			411 (49)	100	49/50	405 (50)	99	50/50	363 (50)	88	50/50		
54-7	417 (49		418 (49)	100	49/50	410 (50)	98	50/50	366 (50)	88	50/50		
58-7	422 (49		424 (49)	100	49/50	416 (50)	99	50/50	369 (50)	87	50/50		
62-7	430 (48		430 (49)	100	49/50	421 (50)	98	50/50	374 (50)	87	50/50		
66-7	434 (48		435 (49)	100	49/50	426 (50)	98	50/50	377 (50)	87	50/50		
70-7	438 (47		434 (49)	99	49/50	429 (50)	98	50/50	379 (50)	87	50/50		
74-7	440 (47		434 (49)	99	49/50	433 (50)	98	50/50	379 (50)	86	50/50		
78 7	443 (47		442 (47)	100	47/50	433 (50)	98	50/50	385 (48)	87	48/50		
82-7	447 (47		446 (47)	100	47/50	436 (47)	98	47/50	385 (48)	86	48/50		
86-7	440 (46		448 (47)	102	47/50	437 (47)	99	47/50	386 (48)	88	48/50		
90-7	438 (45		448 (47)	102	47/50	439 (45)	100	45/50	383 (48)	87	48/50		
94-7	435 (44		444 (47)	102	47/50	436 (42)	100	42/50	386 (45)	89	45/50		
98-7	434 (42		441 (46)	102	46/50	435 (42)	100	42/50	386 (44)	89	44/50		
102-7	428 (41		433 (46)	101	46/50	439 (40)	103	40/50	386 (41)	90	41/50		
104-7	428 (40) 40/50	426 (45)	100	45/50	431 (38)	101	38/50	387 (40)	90	40/50		

< >:No. of effective animals, ():No. of measured animals

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0641 MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

		Contr	rol		800 p	pm		2400 թյ	JID .		7200 p	pm and		
Veek-Day on Study	Av. Wt.	No. Surv <50>		Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Λv. Wt.	% of cont. <50>	No. of Surviv.		
0-0	100 (5	0) 50)/50	100 (50)	100	50/50	100 (50)	100	50/50	100 (50)	100	50/50		
1-7	116 (5		/50	115 (50)	99	50/50	115 (50)	99	50/50	110 (50)	95	50/50		
2-7	128 (5		/50	127 (50)	99	50/50	128 (50)	100	50/50	123 (50)	96	50/50		
3-7	137 (5)/50	135 (50)	99	50/50	135 (50)	99	50/50	132 (50)	96	50/50		
4-7	145 (5)/50	143 (50)	99	50/50	144 (50)	99	50/50	138 (50)	95	50/50		
5-7	150 (5)/50	149 (50)	99	50/50	149 (50)	99	50/50	144 (50)	96	50/50		
6-7	155 (5)/50	154 (50)	99	50/50	155 (50)	100	50/50	148 (50)	95	50/50		
7-7	160 (5		0/50	158 (50)	99	50/50 50/50	159 (50)	99	50/50	152 (50)				
8-7	164 (5)/50)/50	162 (50)	99 99			99 99			95	50/50		
9-7	167 (5)/50)/50	165 (50)	99	50/50 50/50	163 (50) 166 (50)	99 99	50/50	156 (50) 159 (50)	95 05	50/50		
	171 (5)/50)/50	168 (50)		50/50			50/50		95	50/50		
10-7					98	50/50	170 (50)	99	50/50	162 (50)	95	50/50		
11-7	173 (5)/50	172 (50)	99	50/50	173 (50)	100	50/50	165 (50)	95	50/50		
12-7	177 (5)/50	176 (50)	99	50/50	176 (50)	99	50/50	167 (50)	94	50/50		
13-7	178 (5)/50	177 (50)	99	50/50	178 (50)	100	50/50	169 (50)	95	50/50		
14-7	180 (5)/50	179 (50)	99	50/50	180 (50)	100	50/50	170 (50)	94	50/50		
18-7	186 (5)/50	187 (50)	101	50/50	188 (50)	101	50/50	176 (50)	95	50/50		
22-7	191 (5)/50	192 (50)	101	50/50	193 (50)	101	50/50	180 (50)	94	50/50		
26-7	196 (5)/50	197 (50)	101	50/50	199 (50)	102	50/50	185 (50)	94	50/50		
30-7	202 (5)/50	203 (50)	100	50/50	205 (50)	101	50/50	189 (50)	94	50/50		
34-7	207 (5)/50	210 (50)	101	50/50	210 (50)	101	50/50	192 (50)	93	50/50		
38-7	210 (5	0) 50)/50	213 (50)	101	50/50	213 (50)	101	50/50	195 (49)	93	49/50		
42-7	215 (5	0) 50)/50	218 (50)	101	50/50	219 (50)	102	50/50	199 (49)	93	49/50		
46-7	218 (5	0) 50)/50	221 (50)	101	50/50	222 (50)	102	50/50	201 (49)	92	49/50		
50-7	224 (5	0) 50	/50	226 (50)	101	50/50	226 (50)	101	50/50	203 (49)	91	49/50		
54-7	227 (5	0) 50	/50	230 (50)	101	50/50	230 (50)	101	50/50	207 (49)	91	49/50		
58-7	231 (5		/50	234 (50)	101	50/50	234 (50)	101	50/50	209 (49)	90	49/50		
62-7	238 (5		/50	241 (50)	101	50/50	243 (50)	102	50/50	212 (49)	89	49/50		
66-7	244 (5)/5 0	247 (49)	101	49/50	249 (50)	102	50/50	217 (47)	89	47/50		
70-7	250 (5		/50	253 (49)	101	49/50	254 (50)	102	50/50	219 (47)	88	47/50		
74-7	255 (5)/50	258 (49)	101	49/50	259 (50)	102	50/50	222 (46)	87	46/50		
78 7	261 (5		/50	264 (48)	101	48/50	264 (50)	101	50/50	223 (44)	85	44/50		
82-7	265 (4		9/50	270 (46)	102	46/50	270 (50)	102	50/50	223 (44)	85	44/50		
86-7	267 (4)/50 9/50	273 (44)	102	44/50	275 (50)	102	50/50	224 (44)		-		
90-7	273 (4		3/50	280 (43)	102		273 (30)	100			85	42/50		
90-7 94-7	278 (4		i/50			43/50			49/50	232 (38)	85	38/50		
				284 (43)	102	43/50	281 (48)	101	48/50	230 (38)	83	38/50		
98-7	279 (4		1/50	284 (42)	102	42/50	283 (46)	101	46/50	227 (36)	81	36/50		
102-7	280 (4)/50	285 (39)	102	39/50	284 (44)	101	44/50	222 (35)	79	35/50		
104~7	280 (3	8) 38	3/50	281 (38)	100	38/50	283 (42)	101	42/50	221 (33)	79	33/50		

< >:No. of effective animals, ():No. of measured animals

TABLE C 3

BODY WEIGHT CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

REPORT TYPE: A1 104

SEX : MALE

PAGE: 1

roup Name	Administration	week-day						
	0-0	1-7	2-7	3-7		4-7	5-7	6-7
			- V - Plants					
Control	121± .5	150土 7	181± 9	206生	11	225± 12	240± 13	253 ± 14
800 ppm	121± 5	149± 7	179± 11	204±	12	224± 14	239± 14	252± 16
2400 ppm	121± 5	149± 7	179± 10	205±	11	225± 12	241± 13	254± 14
7200 րթո	121± 5	141± 7**	170± 10**	194±	12**	214± 12**	229± 13**	241± 13**

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

REPORT TYPE : AI 104

SEX : MALE

PAGE: 2

Name	Admini	Administration week-day												
	7-7		8-7		9-7		10-7		11-7		12-7		13-7	
Control	264±	15	274±	16	$283 \pm$	16	290±	16	296 ±	18	303±	18	309土	18
800 ppm	$263\pm$	17	273±	18	282±	17	291±	18	299±	18	306±	18	312±	18
2400 ppm	265±	15	274±	15	282±	16	290±	16	299±	16	305±	17	312±	17
7200 թթո	252±	13**	260±	14**	266±	14**	273±	15**	279±	16**	285±	16**	290±	16**
			·											
Significant differenc	e; *:P≦(). 05 *	* : P ≦ 0.0)1			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

BODY WEIGHT CHANGES

(SUMMARY)

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

ıp Name	Administration	Administration week-day											
	14-7	18-7	22-7	26-7	30-7	347	38-7						
Control	315± 19	333± 19	347 ± 21	359± 21	372± 22	382± 24	390土 26						
800 pmm	318± 17	336± 17	350± 18	362± 19	373± 19	385± 20	394± 20						
2400 ppm	317± 17	334± 18	348± 19	360± 21	370± 21	380± 22	388± 23						
7200 ррт	295± 16**	309± 17**	320± 19**	329± 20**	337± 22**	345± 23**	351± 24**						
Significant difference	e; *:P≦0.05 *	* : P ≤ 0.01		Test of Dunnett									

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

p Name	Administration	week-day					
	42-7	46-7	50-7	54-7	58-7	62-7	66-7
	-						
Control	$396\pm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	404± 24	411± 23	417± 23	422± · 23	430± 23	434± 26
800 ppm	401± 21	406± 22	411± 24	418± 23	424± 23	430± 24	435± 24
2400 ppm	394± 24	399± 25	405± 26	410± 26	416± 27	421± 27	426± 28
7200 թթա	356± 25**	359± 27**	363± 29**	366± 28**	369± 31**	374± 29**	377± 31**
			<i>;</i> *				
Significant difference	e; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
260)							

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

UNIT : g REPORT TYPE : AI 104

SEX : MALE

PAGE: 5

p Name	Administration v	reek-day					
	70-7	74-7	78-7	82-7	86-7	90-7	94-7
Control	438± 23	440± 24	443± 28	447 ± 46	440± 31	438± 35	435± 32
800 ppm	434± 30	434± 38	442± 26	446± 27	448 ± 26	448± 27	444± 27
2400 ppm	429± 28	433± 28	433± 29	436± 28	437± 34	439± 27	436± 29
7200 թթա	379± 30**	379± 42**	385± 29≉≉	385± 31**	386± 34**	383± 41**	386± 40**
						V-1000000000000000000000000000000000000	
Significant difference	e; *:P≦0.05 **	: P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

p Name	Administration w	reek-day			
	98-7	102-7	104-7		
Control	434± 31	428± 41	428± 42		
800 ppm	441± 29	433± 32	426± 40		
2400 ppm	435± 50	439± 82	431± 26		
7200 ррш	386± 49₩	386± 61**	387± 59**		

(HAN260)

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE: A1 104 BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

ıp Name	Admini	stration	week-day											
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
Control	100±	4	116±	5	128±	6	137±	6	145±	7	150±	7	155土	8
800 ppm	100±	4	115±	4	127±	5	135±	6	143±	6	149±	7	154±	7
2400 ppm	100±	4	115±	4	128±	4	135±	5	144±	6	149±	7	155±	6
7200 թթա	100±	4	110±	5**	123±	5≉≉	132±	6**	138±	7**	. L44±	7**	148±	7**
													•	

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

Significant difference; $*: P \leq 0.05$

ALL ANIMALS

** : P ≤ 0.01

BODY WEIGHT CHANGES

(SUMMARY)

UNIT : g REPORT TYPE : AI 104

SEX : FEMALE

PAGE: 8

ıp Name	Administration	week-day				*	
	7-7	8-7	9–7	10-7	11-7	12-7	13-7
							75 THE STATE OF TH
Control	160± 8	164± 8	167± 9	171± 9	173± 10	177± 10	178土 10
800 թթա	158± 8	162± 8	165± 8	168± 8	172± 9	176± 9	177± 9
2400 ppm	159± 7	163± 8	166± 8	170± 9	173± 9	176± 9	178± 10
7200 թթա	152± 8 **	156± 9**	159± 9**	162± 9**	165± 1 0* ≉	167士 9**	169± 10**

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

Name	Administration	week-day					
	14-7	18-7	22-7	26-7	30-7	34-7	38-7
Control	180± 10	186± 10	191± 11	196± 11	202± 13	207± 12	210± 13
800 ppm	179± 9	187± 10	192± 10	197± 10	203± 11	210± 13	213± 12
2400 ррт	180± 10	188± 10	1 93 ± 11	199± 11	205± 12	210± 12	213± 13
7200 թթա	170± 10**	176± 10**	180± 1 0**	185± 11**	189± 10**	192± 12**	195± 12**

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

BODY WEIGHT CHANGES

(SUMMARY)

UNIT : g

REPORT TYPE: A1 104

SEX: FEMALE

PAGE: 10

Name	Admini	stration	week-day											
	42-7		467		50-7		54-7		58-7		62-7		66-	7
Controi	215土	13	218±	14	$224\pm$	15	227±	15	231±	15	238生	18	244土	20
800 ppm	218±	13	221±	14	226±	15	230±	16	234±	17	241±	18	247±	20
2400 ррт	219±	14	222±	14	$226\pm$	14	230±	15	234±	16	243±	18	249±	18
7200 թթա	199±	12**	201±	13**	203±	15**	207±	15**	209±	16**	212±	18**	217±	19**

Significant differenc	e; *:P≤0). 05 *	* : P ≤ 0.0	01			Test of D	mnott						

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

UNIT : g REPORT TYPE : AI 104

SEX : FEMALE

PAGE: 11

Name		Admini	istration	week-day											
		707		74-7		78-7		82-7		86-7		90-7		94-7	
Out to 1		oro-t	00	. OFF. I	01	001	o.	oct 1	on.	ora I	05		o.c	070	07
Control		250±	20	255±	21	$261\pm$		265±	22	267土	25	273±	26	278± .	27
800 ppm		253±	22	258±	23	264±	23	270±	23	273±	24	280±	24	284±	23
2400 ppm		254±	21	259±	22	$264\pm$	26	270±	30	275±	29	274±	28	281±	26
7200 ppm		219±	20**	222±	23**	223±	24**	224±	26**	227±	25**	232±	23**	230±	23**
Significant difference;	*	: P ≦ (0.05	** : P ≦ 0.	01			Test of D	innet†						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX: FEMALE

PAGE: 12

p Name	Administration w 98-7			
		102-7	104–7	
Control	279 ± 29	280± 31	280 ± 31 .	
800 ppm	284± 21	285± 24	281± 29	
2400 ppm	283± 28	284± 28	283± 30	
7200 թթա	227± 22 * *	222± 27**	221± 25 * *	
Significant difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of Dunnett	

(HAN260)

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

STUDY NO. : 0641 MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

ANIMAL RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

: MALE

		Control		800 p	ħm		2400 p	um		7200 pj)m			
eek-Day n Study	Av. FC.	No. of Surviv. <50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	_		
1-7	13.3 (50) 50/50	13. 3 (50)	100	50/50	13.4 (50)	101	50/50	11.8 (50)	89	50/50			
2-7	15.0 (50) 50/50	15.1 (50)	101	50/50	14.7 (50)	98	50/50	13.6 (50)	91	50/50			
3-7	15.7 (50) 50/50	15.5 (50)	99	50/50	15.5 (50)	99	50/50	14.2 (50)	90	50/50			
4-7	16.0 (50) 50/50	15.7 (50)	98	50/50	15.6 (50)	98	50/50	14.4 (50)	90	50/50			
5-7	15.6 (50) 50/50	15.6 (50)	100	50/50	15.6 (50)	100	50/50	14.5 (50)	93	50/50			
6-7	15.1 (50) 50/50	15.1 (50)	100	50/50	15.2 (50)	101	50/50	14.2 (50)	94	50/50			
7-7	14.9 (50) 50/50	15.0 (50)	101	50/50	14.9 (50)	100	50/50	14.0 (50)	94	50/50			
8-7	15.4 (50) 50/50	15.7 (50)	102	50/50	15.3 (50)	99	50/50	14.1 (50)	92	50/50			
9-7	14.9 (50) 50/50	15.4 (50)	103	50/50	15.0 (50)	101	50/50	13.6 (50)	91	50/50			
10-7	15.1 (50) 50/50	15.4 (50)	102	50/50	15.5 (50)	103	50/50	14.0 (50)	93	50/50			
11-7	14.4 (50) 50/50	14.7 (50)	102	50/50	14.7 (50)	102	50/50	13.6 (50)	94	50/50			
12-7	14.5 (50) 50/50	14.7 (50)	101	50/50	14.7 (50)	101	50/50	13.6 (50)	94	50/50			
13-7	14.5 (50) 50/50	14.6 (50)	101	50/50	14.4 (50)	99	50/50	13.4 (50)	92	50/50			
14-7	14.7 (50) 50/50	14.7 (50)	100	50/50	14.6 (50)	99	50/50	13.6 (50)	93	50/50			
18-7	14.5 (50) 50/50	14.6 (50)	101	50/50	14.3 (50)	99	50/50	13.2 (50)	91	50/50			
22-7	14.8 (49) 50/50	14.8 (50)	100	50/50	14.8 (50)	100	50/50	13.5 (50)	91	50/50			
26-7	15.0 (50) 50/50	15.1 (50)	101	50/50	14.8 (50)	99	50/50	13.3 (50)	89	50/50			
30-7	14.8 (50) 50/50	14.8 (50)	100	50/50	14.6 (50)	99	50/50	13.3 (50)	90	50/50			
34-7	15.0 (50) 50/50	15.1 (49)	101	49/50	14.9 (50)	99	50/50	13.6 (50)	91	50/50			
38-7	15.3 (50) 50/50	15.3 (49)	100	49/50	15.2 (50)	99	50/50	13.7 (50)	90	50/50			
42-7	15.4 (50) 50/50	15.5 (49)	101	49/50	15.3 (50)	99	50/50	13.9 (50)	90	50/50			
46-7	15.8 (49) 49/50	15.8 (49)	100	49/50	15.5 (50)	98	50/50	14.2 (50)	90	50/50			
50-7	16.1 (49) 49/50	15.9 (49)	99	49/50	15.7 (50)	98	50/50	14.1 (50)	88	50/50			
54-7	15.6 (49) 49/50	15.7 (49)	101	49/50	15.4 (50)	99	50/50	14.1 (50)	90	50/50			
58-7	15.8 (49) 49/50	15.9 (49)	101	49/50	15.6 (50)	99	50/50	14.2 (50)	90	50/50			
62-7	15.9 (48) 48/50	15.8 (49)	99	49/50	15.3 (50)	96	50/50	14.2 (50)	. 89	50/50			
66-7	16.2 (48) 48/50	16.1 (49)	99	49/50	15.8 (50)	98	50/50	14.8 (50)	91	50/50			
70-7	16.4 (47) 47/50	15.8 (49)	96	49/50	15.8 (50)	96	50/50	14.8 (50)	90	50/50			
74-7	16.2 (47) 47/50	15.9 (49)	98	49/50	15.9 (50)	98	50/50	14.6 (50)	90	50/50			
78-7	16.7 (47) 47/50	16.4 (47)	98	47/50	16.0 (50)	96	50/50	14.6 (48)	87	48/50			
82 7	16.4 (47) 47/50	16.2 (47)	99	47/50	15.8 (47)	96	47/50	14.4 (48)	88	48/50			
86-7	16.5 (46) 46/50	16.3 (47)	99	47/50	15.8 (47)	96	47/50	14.4 (48)	87	48/50			
90-7	16.2 (49) 45/50	16.1 (47)	99	47/50	15.6 (45)	96	45/50	14.3 (48)	88	48/50			
94-7	16.6 (44) 44/50	15.8 (47)	95	47/50	15.9 (42)	96	42/50	14.6 (45)	. 88	45/50			
98-7	16.2 (41) 42/50	15.9 (46)	98	46/50	15.5 (42)	96	42/50	14.7 (44)	91	44/50			
102-7	15.6 (41		15.1 (46)	97	46/50	15.2 (39)	97	40/50	14.3 (41)	92	41/50			
104-7	15.6 (39) 40/50	15.1 (45)	97	45/50	15.5 (38)	99	38/50	14.3 (40)	92	40/50			

(BI0040)

PAGE: 1

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0641

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 2

		Contro]	l	800 p	pm		2400 p	þm		7200 p	pm		
ieek-Day m Study	Av. FC.	No. of Surviv		% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	_	
1-7	10.5 (5	0) 50/5	50 10.6 (50)	101	50/50	10. 4 (50)	99	50/50	9.1 (50)	87	50/50		
2-7	10.7 (5				50/50	10.6 (50)	99	50/50	10.0 (49)	93	50/50	•	
3-7	10.5 (5	0) 50/9			50/50	10.3 (50)	98	50/50	9.8 (50)	93	50/50		
4-7	10.6 (5				50/50	10.5 (50)	99	50/50	9.6 (50)	91	50/50		
5-7	10.3 (5				50/50	10. 2 (50)	99	50/50	9. 4 (50)	91	50/50		
6-7	10.1 (5				50/50	9.9 (50)	98	50/50	9. 2 (50)	91	50/50		
7-7	10.0 (5				50/50	9.9 (50)	99	50/50	9. 2 (50)	92	50/50		
8-7	10.1 (5				50/50	9.9 (50)	98	50/50	9. 2 (50)	91	50/50		
9-7	9.9 (5				50/50	9.9 (50)	100	50/50	9. 0 (50)	91	50/50		
10-7	10.0 (5				50/50	9.8 (50)	98	50/50	9.1 (50)	91	50/50		
11-7	9.9 (5				50/50	9, 9 (50)	100	50/50	9. 0 (50)	91	50/50		
12-7	10.1 (5				50/50	10.0 (50)	99	50/50	9. 1 (50)	90	50/50		
13-7	9.9 (5				50/50	9.9 (50)	100	50/50	9. 0 (50)	91	50/50		
14-7	10.1 (5				50/50	10. 1 (50)	100	50/50	9. 2 (50)	91	50/50		
18-7	9.9 (5				50/50	10. 0 (50)	101	50/50	9. 0 (50)	91	50/50		
22-7	10.3 (5				50/50	10. 2 (50)	99	50/50	9. 2 (50)	89	50/50		
26-7	9.9 (5				50/50	10.0 (50)	101	50/50	9. 1 (50)	92	50/50		
30-7	10.1 (5				50/50	10.3 (50)	102	50/50	9. 2 (50)	91	50/50		
34-7	10.3 (5				50/50	10.3 (50)	100	50/50	9. 2 (50)	89	50/50		
38-7	10.3 (5				50/50	10.4 (50)	101	50/50	9.4 (49)	91	49/50		
42-7	10.5 (5				50/50	10.6 (50)	101	50/50	9.8 (49)	93	49/50		
46-7	10.6 (5				50/50	10.7 (50)	101	50/50	9.7 (49)	93 92	49/50		
50-7	10.8 (5				50/50	10.9 (50)	101	50/50	9.9 (49)	92	49/50		
54-7	11.0 (5				50/50	11.3 (50)	103	50/50	10.1 (49)	92 92	49/50		
58-7	11.1 (5				50/50	10.9 (50)	98	50/50	10. 0 (49)	90	49/50		
62-7		0) 50/8			50/50	11.3 (50)	100	50/50	10.1 (49)	89	49/50		
66-7	11.5 (5				49/50	11.4 (50)	99	50/50	10.1 (43)	90	47/50		
70-7	11.7 (5				49/50	11. 3 (50)	97	50/50	10.6 (47)	91	47/50		
74-7	11.6 (5				49/50	11.5 (50)	99	50/50 50/50	10.6 (47)	91	46/50		
78-7	12.0 (5				48/50	11.9 (50)	99	50/50 50/50	10. 5 (46)	88	44/50		
82 7	11.8 (4				46/50	11.9 (50)	101	50/50 50/50	10. 5 (44)		44/50 44/50		
86-7	11.5 (4				44/50					88			
90-7	11.8 (4				43/50	11.9 (50)	103	50/50	10.4 (42)	90	42/50		
90-7 94-7	12.1 (4				43/50	11.6 (49)	98	49/50	10.8 (38)	92	38/50		
94-7 98-7						12.4 (48)	102	48/50	10.5 (38)	87	38/50		
96-7 102-7	12. 1 (4 12. 1 (4				42/50	12.0 (46)	99	46/50	10.8 (36)	89	36/50		
					39/50	11.8 (44)	98	44/50	10. 5 (35)	87	35/50		
104-7	11.8 (3	8) 38/9	50 11.7 (38)	99	38/50	11.7 (42)	99	42/50	10.5 (33)	89	33/50		

< >:No. of effective animals, ():No. of measured animals

Av. FC.: g

(BI0040)

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

2-7(7) 3 15.0± 0.9	3-7(7)	4-7(7)	5-7 (7) 15. 6生 0. 8	6-7 (7) 15. 1 ± 1. 0	7-7 (7)
	15.7± 1.1	16.0± 0.9	15.6± 0.8	15.1± 1.0	14.9± 1.0
) IF 1.4 1.0					
3 15.1± 1.3	15.5 ± 1.2	15.7± 1.1	15.6± 1.0	15.1± 1.0	15.0± 1.0
14.7± 1.0	15.5± 1.0	15.6± 1.1	15.6± 1.0	15.2± 1.1	14.9± 1.1
** 13.6± 1.0**	14.2± 1.1**	14.4± 1.0**	14.5± 0.8**	14.2± 0.9**	14.0± 0.9**
		is 13.6± 1.0** 14.2± 1.1**	⊫* 13.6± i.0** 14.2± 1.1** 14.4± 1.0**	⊫* 13.6± 1.0** 14.2± 1.1** 14.4± 1.0** 14.5± 0.8**	⊫* 13.6± 1.0** 14.2± 1.1** 14.4± 1.0** 14.5± 0.8** 14.2± 0.9**

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

ame		week-day(effective)_					* *************************************
	8-7(7)	97 (7)	10-7 (7)	11-7(7)	12-7(7)	13-7 (7)	14-7 (7)
Control	15.4生 1.1	14.9± 1.1	15.1 \pm 1.2	14.4± 1.1	14.5± 1.0	14.5生 0.9	14.7± 0.9
800 ppm	15.7± 1.2	15.4± 1.2	15.4± 1.2	14.7± 1.0	14.7± 1.0	14.6± 0.9	14.7± 0.9
2400 ppm	15.3± 1.1	15.0± 1.1	15.5± 1.0	14.7± 1.0	14.7± 0.9	14.4± 0.9	14.6± 1.0
7200 բթա	14.1± 1.0**	13.6± 1.0**	14.0± 1.0**	13.6± 1.0≠≠	13.6± 1.0**	13.4± 1.0**	13.6± 0.9**

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g

REPORT TYPE: AI 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

roup Name	Administration	week-day(effective)					
-	18-7 (7)	22-7 (7)	26-7 (7)	30-7 (7)	34-7(7)	38-7 (7)	42-7 (7)
Control	14.5生 0.9	14.8生 1.0	15.0± 0.9	14.8生 0.9	15.0± I.1	15.3± 1.0	15.4生 1.0
800 ppm	14.6± 0.8	14.8± 1.0	15.1± 1.0	14.8± 0.9	15.1± 0.9	15.3± 0.9	15.5± 0.9
2400 ppm	14.3± 1.1	14.8± 1.0	14.8± 1.1	14.6± 0.9	14.9± 1.0	15.2± 0.9	15.3± 1.1
7200 ppm	13.2± 1.0**	13.5± 1.0**	13.3± 1.1**	13.3± 0.9**	13.6± 1.0**	13.7± 1.0**	13.9± 1.1**

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Name	Administration v 46-7(7)	week-day(effective) 50-7(7)	54-7(7)	58-7 (7)	62-7(7)	66-7 (7)	70-7(7)
	40 7 (1)	50 1(1)	94-7(1)	50-1(1)	02-1(1)	00-1(1)	10-1(1)
Control	15.8土 0.9	16.1± 0.8	15.6± 0.8	15.8生 1.3	15.9± 0.9	16.2± 1.3	16.4 ± 0.9
800 ppm	15.8± 1.0	15.9± 1.1	15.7± 0.9	15.9± 0.9	15.8± 1.0	16.1± 1.0	15.8± 2.1*
2400 ppm	15.5± 1.1	15.7± 1.1*	15.4± 1.0	15.6± 1.0	15.3± 1.0*	15.8± 1.0	15.8± 1.1*
7200 ррш	14.2± 1.0**	14.1± 1.6**	14.1± 1.1**	14.2± 1.2**	14.2± 1.1**	14.8± 1.1**	14.8± 1.1**
Significant difference	; *: P ≤ 0.05 **	* : P ≤ 0.01		Test of Dunnett			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE: A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

up Name	Administration	week-day(effective)						******
	74-7 (7)	78-7 (7)	82-7 (7)	86-7(7)	90-7(7)	94-7(7)	98-7(7)	
Control	16.2± 1.0	16.7± 1.1	16.4 ± 1.5	16.5± 1.4	16.2± 1.6	16.6± 2.0	16.2± 1.3	
800 ppm	15.9± 1.4	16.4± 1.0	16.2± 1.0	16.3± 0.8	16.1± 1.1	15.8± 2.4	15.9± 1.3	
2400 ррш	15.9± 1.1	16.0± 2.4	15.8± 1.3	15.8± 2.2	15.6± 1.6	15.9± 1.3	15.5± 2.2	
7200 ррт	14.6± 1.4**	14.6± 1.2**	14.4± 1.2**	14.4± 1.4**	14.3± 1.8**	14.6± 1.2**	14.7± 1.4**	
Significant difference ;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett				
N260)			· ·			1000		BAIS

PAGE: 5

FOOD CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g

REPORT TYPE: A1 104

SEX : MALE

PAGE: 6

Group Name	Administration 102-7(7)	week-day(effective) 104-7(7)			
Control	15.6± 2.7	15.6± 2.1			
800 ppm	15.1± 1.8	15. 1± 2. 2			
2400 ppm	15.2± 1.4	15.5± 1.3			
7200 թթո	14.3± 1.6**	14.3± 1.8**			
	A44-18 8 4				
Significant difference	e; *: P ≦ 0.05	* : P ≤ 0.01	Test of Dunnett		
(HAN260)				 	DATC

(HAN260)

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 7

oup Name	Administration	week-day(effective)_					
	1-7 (7)	2-7(7)	3-7 (7)	4-7 (7)	5-7 (7)	6-7(7)	7-7(7)
Control	10.5± 0.7	10.7生 0.6	10.5± 0.7	10.6± 0.6	10.3± 0.6	10.1± 0.7	10.0生 0.6
800 ppm	10.6± 0.6	10.7± 0.6	10.5± 0.7	10.6± 0.6	10.3± 0.7	10.0± 0.6	10.0± 0.7
2400 ppm	10.4± 0.5	10.6± 0.6	10.3± 0.5	10.5± 0.7	10.2± 0.8	9.9± 0.6	9.9± 0.7
7200 թթա	9.1± 0.6**	10.0± 0.6**	9.8± 0.6**	9.6± 0.7**	9.4± 0.6**	9.2± 0.7**	9.2± 0.7**

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Froup Name	Administration	week-day(effective)					
	8-7 (7)	9-7(7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14-7(7)
Control	10.1± 0.7	9.9± 0.7	10.0 ± 0.7	9.9± 0.7	10.1± 0.7	9.9± 0.7	10.1± 0.7
800 ppm	10.1± 0.7	9.9± 0.6	10.0± 0.6	10.0± 0.7	10.2± 0.7	10.1± 0.6	10.4± 0.7
2400 ppm	9.9 ± 0.7	9.9± 0.7	9.8± 0.7	9.9± 0.7	10.0± 0.7	9.9± 0.7	10.1± 0.6
7200 ррш	9.2± 0.6**	9.0± 0.7**	9.1± 0.7**	9.0± 0.7**	9.1± 0.6**	9.0± 0.6**	9.2± 0.6**

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : AI 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	week-day(effective)_						
	18-7(7)	22-7(7)	26-7 (7)	30-7(7)	34-7 (7)	38-7 (7)	42-7(7)	
Control	9.9± 0.7	10.3± 0.6	9.9± 0.6	10.1± 0.7	10.3± 0.5	10.3± 0.5	10.5生 0.6	
800 ppm	10.2± 0.6	10.4± 0.7	10.1± 0.6	10.3± 0.6	10.4± 0.7	10.4± 0.6	10.7± 0.8	
2400 ppm	10.0± 0.7	10.2± 0.7	10.0± 0.6	10.3± 0.6	10.3± 0.8	10.4± 0.8	10.6± 0.7	
7200 ppm	9.0± 0.6**	9.2± 0.5**	9.1± 0.6**	9.2± 0.5**	9.2± 0.5**	9.4± 0.6**	9.8± 0.8**	

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$

Test of Dunnett

(HAN260)

BAIS 4

PAGE: 9

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

FOOD CONSUMPTION CHANGES (SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

up Name	Administration	week-day(effective)					
	46-7 (7)	50-7(7)	54-7(7)	58-7(7)	62-7(7)	66-7(7)	70-7(7)
		7.000					
Control	10.6 \pm 0.7	10.8生 0.8	11.0 ± 0.7	11.1 \pm 0.6	11.3 \pm 0.9	11.5± 0.9	11.7生 1.1
800 ppm	10.8± 0.7	11.0± 0.8	11.1± 0.9	11.0± 0.9	11.5± 0.9	11.4± 1.0	11.9± 1.1
2400 ppm	10.7± 0.7	10.9± 0.8	11.3± 2.6	10.9± 0.9	11.3± 0.9	11.4± 0.8	11.3± 1.0
7200 բթա	9.7± 0.8**	9.9± 0.9**	10.1± 0.8**	10.0± 0.7** .	10.1± 0.9**	10.3± 0.8**	10.6± 0.9**
Significant difference	e; *: P ≤ 0.05	** : P ≤ 0.01	1744 pt. 195 pt. 1444 pt. 144	Test of Dunnett			
1260)							

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX: FEMALE

PAGE: 11

Name	Administration 74-7(7)	week-day(effective) 78-7(7)	82-7 (7)	86-7(7)	90-7(7)	94-7 (7)	98-7(7)

Control	11.6± 0.8	12.0± 0.9	11.8± 1.0	11.5± 1.1	11.8± 1.1	12.1± 1.9	12.1± 1.8
800 ppm	11.8± 1.2	12.2± 1.2	12.0± 1.1	11.6± 1.9	12.1± 1.1	12.7± 1.5	12.3± 1.6
2400 ppm	11.5± 0.8	11.9± 1.0	11.9± 1.3	11.9± 2.1	11.6± 1.2	12.4± 1.0	12.0± 1.5
7200 բթա	10.6± 1.0**	10.5± 1.2**	10.4± 1.6**	10.4± 1.1**	10.8± 1.1**	10.5± 1.5**	10.8± 1.2**
				-			
ignificant difference;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

Group Name	Administration 102-7(7)	week-day(effective) 104-7(7)		
Control	12. 1 ± 1.3	11.8± 1.2		
800 ppm	12. 1 ± 1.6	11.7± 1.9		
2400 ppm	11.8± 1.1	11.7± 1.0		
7200 թթա	10.5± 2.0**	10.5± 1.4**		
Significant difference	e; *:P≦ 0.05	** : P ≦ 0.01	Test of Dunnett	
(HAN260)				BAIS

PAGE: 12

TABLE E 1

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

STUDY NO. : 0641

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

SEX MALE

PAGE: 1

		Control		800 p	pai		2400 p	pm		7200 p	pm	
Week-Day on Study	Av. WC.	No. of Surviv. <50>	Av. WC.	% of cont. <50>	No. of Surviv.	Av. WC.	% of cont. <50>	No. of Surviv.	Av. WC.	% of cont. <50>	No. of Surviv.	
1-7	16.3 (50) 50/50	15.6 (50)	96	50/50	14.6 (50)	90	50/50	13.1 (50)	80	50/50	
2-7	17.5 (50) 50/50	16.9 (50)	97	50/50	15.7 (50)	90	50/50	13.4 (50)	77	50/50	
3-7	18.0 (50) 50/50	17.6 (49)	98	50/50	16.3 (50)	91	50/50	13.0 (49)	72	50/50	
4-7	17.9 (50	50/50	18.4 (50)	103	50/50	16.2 (50)	91	50/50	12.8 (50)	72	50/50	
5-7	17.8 (49) 50/50	17.7 (50)	99	50/50	16.2 (50)	91	50/50	12.9 (50)	72	50/50	
6-7	17.5 (50) 50/50	17.5 (49)	100	50/50	16.7 (50)	95	50/50	12.6 (50)	72	50/50	
7-7	17.1 (50) 50/50	18.1 (48)	106	50/50	16.5 (50)	96	50/50	12.8 (50)	75	50/50	
8-7	16.8 (50) 50/50	18.7 (47)	111	50/50	16.6 (50)	99	50/50	12.7 (50)	76	50/50	
9-7	17.0 (50) 50/50	18.1 (49)	106	50/50	17.3 (49)	102	50/50	13. 1 (50)	77	50/50	
10-7	17.2 (50) 50/50	17.5 (49)	102	50/50	17.2 (49)	100	50/50	13.3 (50)	77	50/50	
11-7	17.2 (50) 50/50	16.8 (50)	98	50/50	16,6 (50)	97	50/50	12.5 (50)	73	50/50	
12-7	17.5 (50) 50/50	17.1 (48)	98	50/50	15.9 (50)	91	50/50	12.0 (50)	69	50/50	
13-7	16.7 (50		16.7 (49)	100	50/50	15.4 (49)	92	50/50	11.6 (50)	69	50/50	
14-7	17.1 (50) 50/50	16.8 (49)	98	50/50	15.4 (50)	90	50/50	12.5 (50)	73	50/50	
18-7	16.0 (50) 50/50	16.3 (50)	102	50/50	15.0 (50)	94	50/50	11.3 (50)	71	50/50	
22-7	15.8 (50) 50/50	16.1 (50)	102	50/50	14.9 (50)	94	50/50	11.4 (50)	72	50/50	
26-7	16.1 (50) 50/50	16.5 (50)	102	50/50	15.5 (50)	96	50/50	12.4 (50)	77	50/50	
30-7	15.7 (50) 50/50	16.3 (50)	104	50/50	15.0 (50)	96	50/50	12.5 (50)	80	50/50	
34-7	16.0 (50		16.4 (49)	103	49/50	15.2 (50)	95	50/50	12.3 (50)	77	50/50	
38-7	16.1 (50) 50/50	16.1 (49)	100	49/50	15.3 (50)	95	50/50	12.2 (50)	76	50/50	
42-7	16.1 (50) 50/50	16.7 (49)	104	49/50	15.4 (50)	96	50/50	12.6 (50)	78	50/50	
46-7	16.5 (49) 49/50	16.7 (49)	101	49/50	15.6 (50)	95	50/50	13.0 (50)	79	50/50	
50-7	16.4 (49) 49/50	17.1 (49)	101	49/50	15.9 (50)	97	50/50	13.0 (50)	79	50/50	
54-7	16.3 (49) 49/50	16.6 (49)	102	49/50	15.8 (50)	97	50/50	12.9 (50)	79	50/50	
58-7	16.4 (49) 49/50	16.6 (49)	101	49/50	15.8 (50)	96	50/50	13.0 (50)	79	50/50	
62-7	17.0 (48) 48/50	16.9 (49)	99	49/50	15.9 (50)	94	50/50	13. 1 (50)	77	50/50	
66-7	16.8 (48) 48/50	16.7 (49)	99	49/50	15.9 (50)	95	50/50	13.6 (50)	81	50/50	
70-7	17.5 (47		16.8 (49)	96	49/50	16.1 (50)	92	50/50	14.0 (50)	80	50/50	
74-7	17.5 (47) 47/50	16.7 (49)	95	49/50	16.4 (50)	94	50/50	14.1 (50)	81	50/50	
78-7	18.0 (46) 47/50	17.7 (47)	98	47/50	16.5 (50)	92	50/50	14.9 (48)	83	48/50	
82 7	18.4 (46		17.3 (47)	94	47/50	16.4 (47)	89	47/50	14.2 (48)	77	48/50	
86-7	18.5 (44) 46/50	18.0 (47)	97	47/50	16.5 (47)	89	47/50	13.9 (48)	75	48/50	
90-7	18.4 (42) 45/50	17.7 (47)	96	47/50	16.9 (45)	92	45/50	14.4 (48)	78	48/50	
94-7	18.3 (39		18.5 (47)	101	47/50	17.2 (41)	94	42/50	14.7 (45)	80	45/50	
98-7	18.7 (37) 42/50	18.8 (46)	101	46/50	18.2 (41)	97	42/50	15. 1 (44)	81	44/50	
102-7	19.0 (37) 41/50	19.2 (45)	101	46/50	18.4 (38)	97	40/50	15.0 (41)	79	41/50	
104-7	20.0 (36		18.7 (41)	94	45/50	18.8 (37)	94	38/50	15.3 (40)	77	40/50	

< >:No. of effective animals, ():No. of measured animals

Av. WC.: g

TABLE E 2

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

STUDY NO. : 0641

ANIMAL : RAT F344/DuCr1Cr1i[F344/DuCri]

UNIT : g

REPORT TYPE: A1 104 : FEMALE SEX

Control 800 ppm 2400 ppm 7200 ppm Av. WC. No. of Av. WC. % of No. of Av. WC. No. of Av. WC. No. of % of % of Week-Day Surviv. cont. Surviv. cont. Surviv. cont. Surviv. on Study <50> <50> <50> <50> 1-7 13.9 (50) 15.4 (49) 50/50 15.7 (48) 102 50/50 50/50 10.8 (50) 50/50 90 2-715.9 (49) 50/50 18.0 (48) 113 50/50 14.1 (50) 89 50/50 10.3 (50) 65 50/50 16.0 (47) 50/50 15.9 (38) 3-7 99 50/50 14.5 (44) 91 50/50 10.7 (50) 67 50/50 4-7 15.6 (45) 50/50 16.7 (36) 107 50/50 15.6 (47) 100 50/50 10.3 (50) 66 50/50 18.0 (48) 50/50 5-7 18.0 (39) 100 50/50 16.3 (48) 91 50/50 10.1 (50) 56 50/50 6-7 16.1 (44) 50/50 17.3 (36) 107 50/50 16.2 (44) 50/50 9.9 (50) 101 61 50/50 15.9 (44) 7-7 50/50 18.0 (31) 113 50/50 15.5 (37) 97 50/50 10.6 (49) 67 50/50 16.6 (43) 50/50 8-7 16.5 (30) 99 50/50 15.0 (38) 90 50/50 10.0 (50) 60 50/50 9-7 16.5 (47) 50/50 18.5 (33) 112 50/50 16.1 (44) 98 50/50 9.6 (50) 58 50/50 16.4 (47) 50/50 17.6 (39) 10 - 7107 50/50 89 14.6 (41) 50/50 9.5 (50) 58 50/50 16.5 (42) 50/50 95 11-7 18.2 (40) 110 50/50 15.6 (41) 50/50 9.4 (49) 57 50/50 18.7 (34) 12-7 15.9 (43) 50/50 118 50/50 14.6 (43) 92 50/50 9.6 (50) 60 50/50 13-7 16.4 (46) 50/50 18.4 (34) 112 50/50 16.0 (39) 98 50/50 9.8 (50) 60 50/50 14-7 16.3 (43) 50/50 18.0 (29) 110 50/50 15, 2 (39) 93 50/50 9.7 (49) 60 50/50 18-7 17.2 (46) 50/50 16.7 (27) 97 50/50 15.4 (39) 90 50/50 10.4 (50) 60 50/50 22-7 16.8 (44) 50/50 18.6 (42) 98 111 50/50 16.4 (43) 50/50 10.3 (50) 61 50/50 26-7 17.0 (47) 50/50 18.5 (40) 109 50/50 16.5 (44) 97 50/50 10.7 (48) 63 50/50 30-7 16.5 (47) 50/50 18.4 (40) 112 50/50 15.6 (38) 95 50/50 10.5 (50) 64 50/50 34-7 16.7 (48) 50/50 17.3 (44) 104 50/50 15.1 (43) 90 50/50 10.5 (48) 63 50/50 38-7 16.2 (47) 50/50 17.9 (45) 110 50/50 15.4 (43) 95 50/50 10.8 (49) 67 49/50 42 - 715.9 (49) 50/50 18.3 (44) 115 50/50 16.0 (44) 101 50/50 11.1 (49) 70 49/50 46-7 15.7 (49) 50/50 16.0 (45) 102 50/50 16.7 (46) 106 50/50 10.8 (48) 69 49/50 50-7 15.1 (49) 50/50 16.6 (44) 110 50/50 17.0 (43) 113 50/50 11.8 (49) 78 49/50 54-7 15.3 (49) 50/50 15.5 (45) 15.2 (44) 101 50/50 99 50/50 11.4 (48) 75 49/50 58-7 14.7 (50) 50/50 15.2 (49) 103 50/50 14.9 (47) 101 50/50 11.1 (49) 76 49/5062-7 14.7 (50) 50/50 16.4 (49) 112 50/50 14.3 (47) 97 50/50 11.3 (48) 77 49/50 66-7 14.7 (49) 50/50 16.6 (46) 113 49/50 14.2 (47) 97 50/50 11.2 (47) 76 47/50 70-7 14.7 (50) 50/50 15.5 (47) 105 49/50 96 14.1 (47) 50/50 12.4 (47) 84 47/50 74-7 14.4 (50) 50/50 15.5 (47) 108 49/50 14.8 (48) 103 50/50 12.4 (46) 86 46/50 78-7 14.6 (50) 50/50 16.3 (46) 112 48/5014.5 (48) 99 50/50 12.5 (44) 86 44/50 82 7 14.3 (48) 49/50 15.6 (46) 109 46/50 14.3 (49) 100 50/50 12.9 (43) 90 44/50 15.0 (47) 86-7 49/50 15.8 (42) 105 44/50 15.4 (48) 103 50/50 13.2 (42) 88 42/50 90-7 14.9 (46) 48/50 15.3 (43) 103 43/50 14.4 (49) 97 13.8 (38) 93 49/50 38/50 94-7 15.5 (45) 46/50 15.6 (41) 101 43/5014.8 (47) 95 48/50 15.3 (37) 99 38/50 98-7 16.1 (44) 44/50 16.4 (41) 102 42/50 15, 3 (45) 95 16.8 (36) 46/50 104 36/50 102-7 16.7 (40) 40/50 16.4 (34) 98 39/50 16.4 (44) 98 44/50 17.1 (35) 102 35/50 16.8 (38) 38/50 104-7 16.4 (36) 98 38/50 15.9 (42) 95 42/50 18.4 (31) 110 33/50 < >:No. of effective animals, ():No. of measured animals Av. WC. : g

(BI0040)

PAGE: 2

TABLE E 3

WATER CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

ıp Name	Administration	week-day(effective)					
	1-7(3)	2-7(3)	3-7(3)	4-7 (3)	5-7(3)	6-7(3)	7-7(3)
Control	16.3± 1.6	17.5± 1.4	18.0± 1.8	17.9± 1.5	17.8± 1.7	17.5± 1.9	17.1± 1.8
800 ppm	15.6± 1.0	16.9± 1.8*	17.6± 2.3	18.4± 3.9	17.7± 2.5	17.5± 3.0	18.1± 2.4*
2400 ppm	14.6± 1.0**	15.7± 1.2**	16.3± 1.2**	16.2± 1.6**	16.2± 1.6**	16.7± 3.3**	16.5± 2.3*
.7200 ррш	13.1± 4.5**	13.4± 2.1**	13.0± 1.2**	12.8± 1.0**	12.9± i.1**	12.6± 0.9**	12.8± 1.1**

Significant difference;	$*: P \leq 0.05$	** : P ≦ 0.01		Test. of Dunnett			
(260)							77.007.00

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : AI 104

SEX : MALE

PAGE: 2

8-7(3)	9-7(3)					
* ' '	9-1 (3)	10-7(3)	11-7(3)	12-7(3)	13-7(3)	14-7(3)
16.8± 1.4	17.0± 1.8	17.2± 2.0	17.2± 2.3	17.5 \pm 2.3	16.7± 1.8	17.1± 2.5
18.7± 2.1**	18.1± 2.1**	17.5± 2.7	16.8± 2.0	17.1± 3.0	16.7± 2.6	16.8± 3.0
16.6± 2.0	17.3± 2.1	17.2± 1.4	16.6± 2.4	15.9± 2.5**	15.4± 1.5**	15.4± 2.2**
12.7± 1.1**	13.1± 1.3**	13.3± 1.2**	12.5± 1.1**	12.0± 1.2**	11.6± 0.9**	12.5生 2.2**
	16.8± 1.4 18.7± 2.1** 16.6± 2.0	$16.8 \pm$ 1.4 $17.0 \pm$ 1.8 $18.7 \pm$ $2.1 **$ $18.1 \pm$ $2.1 **$ $16.6 \pm$ 2.0 $17.3 \pm$ 2.1	$16.8 \pm$ 1.4 $17.0 \pm$ 1.8 $17.2 \pm$ 2.0 $18.7 \pm$ $2.1 **$ $17.5 \pm$ 2.7 $16.6 \pm$ 2.0 $17.3 \pm$ 2.1 $17.2 \pm$ 1.4	$16.8 \pm$ 1.4 $17.0 \pm$ 1.8 $17.2 \pm$ 2.0 $17.2 \pm$ 2.3 $18.7 \pm$ $2.1 ***$ $17.5 \pm$ 2.7 $16.8 \pm$ 2.0 $16.6 \pm$ 2.0 $17.3 \pm$ 2.1 $17.2 \pm$ 1.4 $16.6 \pm$ 2.4	$16.8 \pm$ 1.4 $17.0 \pm$ 1.8 $17.2 \pm$ 2.0 $17.2 \pm$ 2.3 $17.5 \pm$ 2.3 $18.7 \pm$ $2.1 \pm$ $17.5 \pm$ 2.7 $16.8 \pm$ 2.0 $17.1 \pm$ 3.0 $16.6 \pm$ 2.0 $17.3 \pm$ 2.1 $17.2 \pm$ 1.4 $16.6 \pm$ 2.4 $15.9 \pm$ $2.5 \pm$	$16.8 \pm$ 1.4 $17.0 \pm$ 1.8 $17.2 \pm$ 2.0 $17.2 \pm$ 2.3 $17.5 \pm$ 2.3 $16.7 \pm$ 1.8 $18.7 \pm$ $2.1 \pm$ $17.5 \pm$ 2.7 $16.8 \pm$ 2.0 $17.1 \pm$ 3.0 $16.7 \pm$ 2.6 $16.6 \pm$ 2.0 $17.3 \pm$ 2.1 $17.2 \pm$ 1.4 $16.6 \pm$ 2.4 $15.9 \pm$ $2.5 \pm$ $15.4 \pm$ $1.5 \pm$

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

p Name	Administration 18-7(3)	week-day(effective) 22-7(3)	26-7(3)	30-7 (3)	34-7(3)	38-7(3)	42-7(3)
Control	16.0± 1.4	15.8± 1.4	16. l± 1. 0	15.7± 1.2	16.0± 1.3	16.1± 1.3	16.1± 1.3
800 ppm	16.3± 2.1	16.1± 2.4	16.5± 1.7	16.3± 1.7	16.4± 1.5	16.1± 1.4	16.7± 1.4**
2400 ppm	15.0± 1.4**	14.9± 1.5**	15.5± 1.2**	15.0± 1.1**	15.2± 0.9**	15.3± 1.0**	15.4± 0.9**
7200 թթո	11.3± 1.1**	11.4± 0.9**	12.4± 1.1**	12.5± 1.1**	12.3± 0.9**	12.2± 0.9**	12.6± 1.1**
	Ann						
Significant differenc	e; *:P≦0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : AI 104

SEX : MALE

PAGE: 4

oup Name	Administration week-day(effective)							
	46-7(3)	50-7(3)	54-7 (3)	58-7 (3)	62-7(3)	66-7(3)	70-7(3)	
0 1	10.5 1.0	10.41 1.0	10.01.1.0	10.41.15	17.01.10	10.01.00	15.51.00	
Control	16.5± 1.2	16. $4\pm$ 1. 2	16.3 ± 1.0	16.4± 1.5	17.0± 1.3	16.8 ± 2.0	17.5 \pm 2.0	
800 ppm	16.7± 1.4	17.1± 2.7*	16.6± 1.3	16.6± 1.2	16.9 ± 1.4	16.7± 1.4	16.8± 2.1	
2400 ppm	15.6± 1.3**	15.9± 1.0	15.8± 1.2	15.8± 1.0**	15.9± 1.3**	15.9± 1.1**	16.1± 1.3**	
7200 բթա	13.0± 1.0**	13.0± 1.2**	12.9± 1.3**	13.0± 1.2**	13.1± 1.3**	13.6± 1.5**	14.0± 1.5**	
Significant differen	ce; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett				

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

up Name	Administration	week-day(effective)					
	74-7(3)	78-7 (3)	82-7(3)	86-7(3)	90-7(3)	94-7 (3)	98-7(3)
Control	17.5 \pm 2.3	18.0± 2.3	18.4± 3.0	18.5± 3.3	18.4± 3.3	18.3 ± 4.1	18.7± 3.6
800 ppm	16.7± 2.0	17.7± 1.5	17.3± 1.5	18.0± 1.9	17.7± 2.2	18.5± 3.5	18.8± 3.2
2400 ppm	16.4± 1.3*	16.5± 2.4**	16.4± 1.8**	16.5± 2.1**	16.9± 2.2	17.2± 2.4	18.2± 3.0
7200 թթո	14.1± 1.4**	14.9± 1.7**	14.2± 1.5**	13.9± 2.0 * *	14.4± 2.2**	14.7± 2.0**	15.1± 2.8**
ignificant difference	ce; *:P≦0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

PAGE: 5

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g

REPORT TYPE: A1 104

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration 102-7(3)	week-day(effective) 104-7(3)			
			· · · · · · · · · · · · · · · · · · ·		
Control	19.0± 3.7	20.0 ± 4.3			
800 ppm	19.2± 3.4	18.7± 3.9			
2400 ppm	18.4± 2.9	18.8± 3.4			
7200 թթա	15.0± 2.9**	15. 3± 2. 8**			
Significant differenc	ee; ∗: P ≦ 0.05	** : P ≤ 0.01	Test of Dunnett		
HAN260)		* ***********************************			BATS 4

TABLE E 4

WATER CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE: A1 104

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

p Name	Administration	week-day(effective)					
	1-7 (3)	2-7(3)	3-7(3)	4-7(3)	5-7(3)	6-7(3)	7-7 (3)
Control	15.4± 3.4	15.9± 4.2	16.0± 2.7	15.6± 2.7	18.0± 7.6	16.1 ± 4.0	15.9± 4.1
800 ppm	15.7± 4.2	18.0± 7.6	15.9± 3.4	16.7± 4.6	18.0± 6.9	17.3± 5.4	18.0± 5.3
2400 ppm	13.9± 4.0**	14.1± 4.5**	14.5± 4.4**	15.6± 4.1	16.3± 6.5*	16.2± 5.9*	15.5± 4.7
7200 րթա	10.8± 1.0**	10.3± 0.8**	10.7± 2.6**	10.3± 2.3**	10. I± 1. 2**	9.9± 1.0**	10.6± 2.3**
		,					
Significant difference	; *: P ≤ 0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 8

Group Name		week-day(effective)					
	8-7(3)	9–7 (3)	10-7 (3)	11-7(3)	12-7 (3)	13-7(3)	14-7(3)
Control	16.6± 4.8	16.5生 7.1	16. $4\pm$ 4. 4	16.5± 4.6	15.9± 3.8	16.4± 4.5	16.3± 4.8
800 ppm	16.5± 4.9	18.5± 7.4	17.6± 5.8	18.2± 5.1	18.7± 5.5	18.4± 5.3	18.0± 5.0
2400 ppm	15.0 ± 4.1	16. 1± 5. 2	14.6± 3.9*	15.6± 4.9	14.6± 4.3*	16.0± 5.6	15.2± 4.8
7200 թթո	10.0± 3.2**	9.6± 1.3**	9.5± 2.0**	9.4± 1.5**	9.6± 3.0**	9.8± 2.6**	9.7± 3.3**
					· ·		
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
(HAN260)			· · · · ·	***************************************	- Ag Challe Adamy	**************************************	DATO

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

up Name	Administration	week-day(effective)_						
	18-7(3)	22-7(3)	26-7(3)	30-7 (3)	34-7(3)	38-7(3)	42-7(3)	
Control	17.2± 4.8	16. 8主 4. 8	17.0± 4.7	16.5± 4.6	16.7± 4.0	16. 2± 4. 0	15.9± 3.5	
800 ppm	16.7 \pm 4.9	18.6± 5.4	18.5± 5.2	18. 4± 4. 7	17.3± 4.6	17.9± 4.9	18.3± 4.8*	
2400 ppm	15.4 \pm 4.3	16.4± 5.4	16.5± 5.1	15.6± 4.2	15.1± 3.6*	15.4± 4.2	16.0± 4.9	
7200 րթո	10.4± 3.0**	10.3± 3.8**	10.7± 3.0**	10.5± 2.5**	10.5± 2.2**	10.8± 2.7**	11.1± 2.8**	
Significant difference	e; *:P≦0.05 :			Test of Dunnett				

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

Name	Administration	week-day(effective)					
·	46-7 (3)	50-7(3)	54-7(3)	58-7 (3)	62-7(3)	66-7 (3)	70-7(3)
Control	15.7生 3.6	15. 1± 3. 2	15.3± 4.0	14.7± 2.9	14.7± 2.8	14.7± 2.8	14.7± 2.8
800 ppm	16.0± 3.3	16.6± 4.0	15.5± 3.7	15. 2± 3. 6	16. 4± 4. 4	16.6± 4.6	15.5± 3.2
2400 ppm	16.7± 4.7	17.0± 5.5	15.2± 4.6	14.9± 4.5	14.3± 4.0	14.2± 3.5	14.1± 3.4
7200 ррш	10.8± 1.9**	11.8± 3.6**	11.4± 3.1**	11.1± 2.7**	11.3± 2.5**	11.2± 2.3**	12.4± 2.8**

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

WATER CONSUMPTION CHANGES (SUMMARY)

UNIT : g
REPORT TYPE : AI 104

SEX : FEMALE

PAGE: 11

ip Name	Administration 74-7(3)	week-day(effective) 78-7(3)	82-7(3)	86-7(3)	90-7(3)	94-7(3)	98-7(3)
Control	14.4 \pm 3.0	14.6 \pm 3.0	14.3 \pm 2.1	15.0 \pm 2.5	14.9± 2.5	15.5生 3.8	16. $1\pm$ 4. 4
800 ppm	15.5± 4.1	16.3± 4.4	15.6± 4.2	15.8± 5.5	15.3± 3.6	15.6± 3.6	16.4± 3.9
2400 ррт	14.8± 3.5	14.5± 3.3	14.3± 3.3	15.4± 5.8	14.4± 4.3*	14.8± 3.5	15.3± 3.8
7200 թթո	12.4± 2.9**	12.5± 3.4**	12.9± 3.3*	13. 2± 2. 4**	13.8± 2.8*	15.3± 2.6	16.8± 3.7
						· ·	
Significant difference	ce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
N260)							

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS

UNIT : g REPORT TYPE : AI 104

SEX : FEMALE

PAGE: 12

oup Name	Administrati 102-7(3)	ion week-day(effective) 104-7(3)		
Control	16.7± 3.8	16.8± 3.9		
800 ppm	16. 4± 3. 8	16.4± 3.8		
2400 ppm	16.4± 4.9	15.9± 3.6		
7200 թթա	17.1± 3.9	18.4± 3.3		
Significant difference	; *: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
AN260)				BAIS

TABLE F 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Adminis	stration	(weeks)											
	1		2		3		4		5		6		7	
					-			٠						
Control	0土	0	0 -1-	0	0±	0	0 -1-	0	· 0±	0	0±	0	0 -l-	0
800 ppm	84生	4	76±	6	69±	8	66±	14	59±	9	56±	11	55±	7
2400 ppm	235±	10	210±	11	192±	11	172±	14	162±	12	158±	27	150±	17
7200 թթա	667±	243	567±	77	483±	31	432±	24	405±	25	375±	21	365±	24

(HAN300)

BAIS 4

PAGE: 1

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

8 0±	0	9 0 士	0	0±	0	0±	0	0土	0	13 0±	0	0±	0
	0	0土	0	0 ±	0	0±	0	0 ±	0	0±	0	0 ±	0
EE ±													
55±	6	52±	6	48±	8	45±	6	45±	10	43±	7	43±	9
146±	14	147±	15	143±	10	$134\pm$	17	125±	16	119±	8	117±	14
352±	26	353±	28	349±	27	323±	21	304±	24	289±	21	306±	53

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

108±

7

102±

UNIT : mg/kg/day

REPORT TYPE : A1 104

2400 ppm

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration (weeks)_ 18 22 26 30 34 38 42 Control 0土 0 -1- $0\pm$ 0 $0\pm$ 0 0± 0土 0± 0 800 ppm $39 \pm$ 5 37± $37\pm$ 4 $35\pm$ 4 34± 3 $33\pm$ 2 $33 \pm$ 3

7200 руш 264 \pm 22 258 \pm 18 273 \pm 23 267 \pm 22 257 \pm 15 250 \pm 16 256 \pm 21

6

 $97 \pm$

6

 $96\pm$

 $95\pm$

5

 $94\pm$

4

103±

(HAN300)

BAIS 4

PAGE: 3

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

oup Name		Adminis	tration	(weeks)											
		46		50		54		58		62		66	- 11	70	
Control		0±	0	0 -1-	0	0 ±	0	0±	0	0±	0	0 <u>-1-</u>	0	0土	0
800 ppm		33±	2	33±	5	32±	2	31±	2	32±	2	31±	2	31±	3
2400 ppm	:	94±	6	94±	5	93±	6	91±	5	91±	6	89±	5	90±	6
7200 թթա		261±	16	258±	19	254±	29	255±	23	253±	23	260±	27	268生	41

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day

REPORT TYPE: AI 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 5

oup Name	Adminis	tration (weeks)											
·	74		78		82		. 86		90		94		98	
Control	0 1	0	0±	0	0±	0	0±	0	. 0±	0	0±	0	0±	0
800 ppm	31±	3	32±	2	31±	2	32±	3	32±	3	33±	6	34±	5
2400 ppm	91±	5	91±	13	90±	7	90±	8	92±	10	95±	13	101±	18
7200 բբու	272±	48	279±	33	265±	30	260±	41	274±	52	280±	70	291±	108

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

roup Name	Adminis 102	tration	(weeks) 104		-			
Control	0±	0	0±	0				
800 ppm	35±	6	35±	7				
2400 ppm	105±	27 .	104±	17				
7200 բթա	287±	92	288±	66				

(HAN300)

TABLE F 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day

REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : FEMALE												•	P	AGE: 7
Group Name	Administratio	n (weeks)												
	1	2		3		4		5		6		7		
Control	0± 0	0 ±-	0	0±	0	0±·	0	0:1:	0	0土	0	0 ±	0	
800 ppm	109± 29	114±	49	93±	19	94±	27	98±	40	90±	28	91±	29	
2400 ррш	290± 79	264±	83	259±	83	261±	72	263±	107	251±	90	234±	69	
7200 թթա	706± 68	606±	34	583±	133	537±	108	508±	53	480±	41	499±	105	

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 8

roup Name	Adminis	tration	(weeks)		·- · ·									
	8		9		10		11		12		13		14	
Control	0 ±-	0	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0
800 ppm	82±	26	90±	37	84±	28	85±	25	86±	27	83±	24	80±	22
2400 ppm	222±	60	233±	75	206±	55	215±	65	199±	59	215±	76	201±	62
7200 թթա	462±	141	437±	57	422±	84	413±	61	· 413±	124	419±	108	411±	136

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrl;[F344/DuCrj]
UNIT : mg/kg/day

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

oup Name	Adminis	stration	(weeks)											
	18		22		26		30		34		38		42	
**												•		
Control	0 1 -	0	0±	0	0±	0	0 <u>-1-</u>	0	0土	0	0±	0	0土	0
800 ppm	73±	21	78±	23	75±	20	72±	18	66±	17	68±	18	$68\pm$	18
2400 ppm	197±	58	207±	71	200±	63	183±	49	174±	42	175±	48	176±	56
7200 թթա	424±	122	414±	149	420±	123	398±	92	394±	82	399±	95	402±	94

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administrati	on (weeks)											
	. 46	50		54		58		62		66		70	
Control	0± 0	0 -1	: 0	0±	0	0±	0	0±	0	· 0±	0	0±	0
800 ppm	58± 12	59±	15	54±	14	52±	13	55±	16	54±	15	49±	10
2400 ррт	181± 51	181±	59	159±	50	153±	47	142±	40	139±	37	134±	35
7200 թթա	387± 61	419±	129	398±	110	385±	90	386±	91	374±	78	412±	107

(HAN300)

BAIS 4

PAGE: 10

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 11

Group Name	Adminis	stration	(weeks)											
	74		78		82		86		90		94		98	
Control	0±	0	0±	0	0±	0	0±	0	0 -1.	0	0±	0	0 - <u>1-</u>	0
800 ppm	48±	13	50±	14	46±	12	46±	14	44±	10	44±	9	46±	10
2400 ppm	138±	37	133±	33	128±	33	136±	60	130±	59	129±	42	132±	47
7200 թթա	412±	133	408±	125	423±	128	427±	111	436±	121	485±	109	536±	125

(HAN300)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : FEMALE									PAGE: 12
Group Name	Admini: 102	stration	(weeks)						
							····		
Control	0 ±	0	0±	0					
800 ppm	47±	12	47±	11					
2400 ppm	1 42 ±	57	138±	45					
7200 թյու	561±	150	610±	143		I			
									•

(HAN300)

TABLE G 1

HEMATOLOGY: MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1 SEX: MALE

REPORT TYPE : A1

oup Name	NO. of Animals	RED BLOOD CELL 1 O ⁵ /µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f &	MCH pg	MCHC g/dl	PLATELET 1 0³/µl
Control	40	7.81 ± 1.36	13.6± 2.7	38.8± 6.1	50.0± 2.7	17.4± 1.3	34.9± 2.1	1041± 288
800 ppm	45	8. 18 ± 1. 45	14.4± 2.5	40.6± 6.0	50.5± 6.7	17.8± 2.2	35.3± 1.6	1019± 334
2400 ppm	38	8.46± 1.00	14.8± 2.0	41.6± 4.6	49.2± 1.8	17.4± 1.0	35.4± 1.4	962± 264
7200 ppm	40	8.39± 1.00	14.7± 1.9	40.8± 4.4	48.7± 2.0**	17.5± 0.9	35.9 ± 1.4	901± 244

(HCL070)

BAIS 4

PAGE: 1

SEX : MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME: 1

REPORT TYPE : AI

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name NO. of RETICULOCYTE Animals % 40 5.5± 4.8 Control 800 ppm 45 5.0± 5.4 38 2400 ppm 4.0± 2.3 7200 ppm 40 3.2± 1.9** Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HCL070)

BAIS 4

PAGE: 2

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX MALE

REPORT TYPE : A1

PAGE: 3

Control 800 ppm	40	8.84± 6.										BASO		OTHER	
800 ppm		0.017 0.	07 4	49±	10	42±	10	6±	2	1±	1	0±	0	1 = 1:	1
	45	6.74± 1.	85 4	47±	7	45±	7	6±	1	2±	1	0±	0	1±	1
2400 ppm	38	6.91± 1.	38 . 4	46±	8	46±	9	5±	1	2±	1	0±	0	1±	0
7200 ppm	40	6. 29 ± 1.		46±	7	46±	7	5±	1 .	2±	1	0±	0	±1	0**
Significant dif	ifference ;			: P ≦ 0	0. 01			Test	of Dunne	ett					

(HCL070)

TABLE G 2

HEMATOLOGY: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1 SEX : FEMALE

HEMATOLOGY (SUMMARY)

ALL ANIMALS (105W)

roup Name	NO. of Animals	RED BLOOD (1 O ^s /µl	CELL	HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f &		MCII pg		MCHC g/dl		PLATÈLE 1 O³/µ	
Control	37	7.84± 1.3	31	14.9±	2. 5	40.5±	5. 7	52. 2±	4. 3	19.0±	1.2	36.6±	1.7	782 <u>-</u> 1-	252
800 ppm	38	7.80± 1.5	53	14.8±	2. 4	40.1±	5. 8	53.2±	10.0	19.4±	2. 5	36.7±	1. 5	709±	180
2400 ррт	42	7.66± 1.	10	14.4±	2. 0	39.1±	4.8	51.4±	3. 0	18.8±	1.1	36.6±	1. 1	815±	202
7200 ppm	33	7.17± 0.9	94**	13.6±	1.6	37.0±	3.9*	51.9±	2. 7	19.0±	0. 9	36.7±	1. 2	886±	134**

(HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

SEX: FEMALE

REPORT TYPE : A1

PAGE: 5

Group Name	NO. of Animals	RETICULO %	OCYTE		
Control	37	4.7±	7.8		
800 ppm	38	4.8±			
2400 ppm	42	4.0±	3. 7		
7200 ppm	33	4. 1±	2. 0**		
Significant d	ifference;	*: P ≤ 0.		Test of Dunnett	

(HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

up Name	NO. of Animals	WBC 1 0 ³∕1		Di NEUTRO	fferential	. WBC (9 LYMPHO	6)	MONO		EOSINO		BASO		OTHER		
Control	37	4. 42士	3. 21	41 ±	13	51±	13	5±	1	2±	1	0±	0	1±	1	
800 ppm	38	7. 14±		37±	14	48±	17	5±	2	2±	1	0±	1	8±	24	
2400 ppm	42	4.87±	3. 68	40±	13	52±	13	5±	2	2±	1	0±	0	1±	1	
7200 ppm	33	3.84±	3. 18	50±	12*	42±	12*	6±	1	2±	1	0±	0	ί±	0	

(HCL070)

BAIS 4

PAGE: 6

TABLE H 1

BIOCHEMISTRY: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

SEX : MALE

REPORT TYPE : A1

PAGE: 1

p Name	NO. of Animals	TOTAL F g/dl	PROTEIN	ALBUMIN g/dl	I	A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYC mg/dl	CERIDE
Control	40	6.7±	0.5	2.8±	0.3	0.7±	0. 1	0. 18士	0. 10	154±	28	195±	47	148生	121
800 ppm	45	6.6±	0.4	2.9±	0.3	0.8±	0. 1	0.14±	0.03**	160±	21	149±	47**	104±	61
2400 ppm	38	6.7±	0.3	2.9±	0. 2	0.8±	0. 1	0.14±	0.03*	159±	18	127±	27**	79±	39**
7200 ppm	40	6.5±	0.6**	3.0±	0. 3	0.9±	0. 1**	0.15±	0.04	147±	27	123±	37**	65±	53**

(HCL074)

BIOCHEMISTRY (SUMMARY) ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : AI

PAGE: 2

) Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST IU/A	2	ALT IU/l		LDH IU/	2	ALP IU/.	e	G−GTP I U∕ℓ		CK I U/l	
Control	40	,284±	73	106±	74	42 : L	22	181±	54	267土	205	7出	3	120±	73
800 ppm	45	223±	68**	106±	43	48±	20	$219\pm$	68**	170±	45**	3±	[**	108生	31
2400 ррт	38	190±	36**	116±	35**	56±	21*	209±	50	188±	43**	3±	1**	109±	25
7200 ppm	40	186±	60**	137±	88**	61±	26**	240±	205*	190±	89**	3±	3**	135±	215

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 3

up Name	NO. of Animals	UREA NI mg/dl	TROGEN	CREATIN mg/dl	INE	SODIUM m Eq / 2		POTASS:		CHLORIDI m Eq / L		CALCIUM mg/dl	1	INORGAN mg/dl	NIC PHOSPHORU
Control	40	20.3±	8. 2	0.7±	0.2	142±	2	3.5±	0.2	105土	2	10.6土	0.5	4.2±	0.9
800 ppm	45	19.2±	4. 1	0.6±	0. 1	143±	1	3.6±	0, 3	105±	2	10.4±	0.4	4.1±	0.5
2400 ppm	38	18.0±	2. 4	0.6±	0. 1	143±	1	3.6±	0.3	105±	1	10.3±	0.2**	4.1±	0.5
7200 ppm	40	19.9±	9, 9	0.6±	0. 1**	143±	2	3.5±	0. 4	104±	2	10.3±	0.5**	4.1±	1.0

(HCL074)

TABLE H 2

BIOCHEMISTRY: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 4 TOTAL PROTEIN Group Name NO. of ALBUMIN A/G RATIO T-BILIRUBIN GLUCOSE T-CHOLESTEROL TRIGLYCERIDE Animals g/dl g/dl mg/dl mg/dl mg/dl mg∕d*l* 38 6.9± 0.4 Control 3.5 ± 0.3 1.0± 0.2 0.16 ± 0.13 151土 16 135土 49 $106\pm$ 119 800 ppm 38 $6.9 \pm$ 0.4 3.5 ± 0.3 $1.0\pm$ 0.1 18 0.40± 1.27** $146\pm$ 129± 26 $109 \pm$ 107 2400 ppm 42 $6.9 \pm$ 0.6 3.4± 0.3 $1.0 \pm$ 0.2 0.15 ± 0.04 $147 \pm$ 17 25 $119 \pm$ $66\pm$ 39 33 7200 ppm 6.5± 0.6** 3.4± 0.4 1.1± 0.2 0.13 ± 0.02 139± 23 $119\pm$ 45** $58 \pm$ 34* Significant difference; $*:P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

SEX: FEMALE

REPORT TYPE : A1

PAGE: 5

up Name	NO. of Animals	PHOSPHO mg/dl	PHOSPHOLIPID mg/dl		AST IU/l		ALT I U/l		LDII IU/ L		ALP IU/£		G-GTP I U / L		CK I U / L	
Control	38	245±	77	140土	115	56 ±	32	253土	268	136±	121	$2\pm$	1	100 <u>±</u>	36	
800 ppm	38	241±	70	229±	242**	77±	42**	389±	728**	169±	159	3±	2	104±	37	
2400 ppm	42	219±	45	168±	84**	61±	25*	262生	92*	131±	50	2±	1	110±	82	
7200 ppm	33	218±	49*	147±	55	44±	13	239±	80	188±	372	2±	3**	110±	63	

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : AI

PAGE: 6

oup Name	NO. of Animals			CREATININE mg/dl		SODIUM mEq/ l		POTASSIUM m Eq / l		CHLORIDE m Eq / L		CALCIUM mg/dl		INORGANIC PHOSPHORU mg/dl	
Control	38	17.1±	2. 9	0.6生	0. 1	141±	1	3.6±	0.3	104±	2	10.5±	0.3	3.9±	0.7
800 ppm	38	16.9±	2. 1	0.5±	0. 1	141±	2	3.6±	0.4	104±	2	10.5±	0. 4	3.8±	0.7
2400 ppm	42	17.6±	6. 9	0.5±	0. 1	141±	1	3.6±	0.4	104±	2	10.4±	0.3	4.0±	1.2
7200 ppm	33 .	27.0±	15. 9**	0.6±	0. 1	141±	3	3.8±	0.4	104±	2	10.5±	0. 4	4.7±	1. 3**

(HCL074)

TABLE I 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : AI

PAGE: 1

	NO. of Animals	pH 5. 0		6.5	7.0	7.5	8. 0	8.5 CHI	Protei – ±		2+ 3+ 4+ C		1 u co: - ±		2+ 3+	4+ CHI			ody 2+		+	CHI		iruk + 2	in + 3+	CHI
Control	40	0	3	4	9	14	10	0	0 0	0	1 29 10	4	0 0	0	0 0	0	37	3 (0	0	0		39	1	0 0	
800 ppm	45	0	0	3	6	23	12	1	0 0	0	0 34 11	4	5 0	0	0 0	0	43	2 (0 0	0	0		44	1	0 0	
2400 ppm	38	0	0	1	9	16	12	0	0 0	0	0 27 11	3	8 0	0	0 0	0	32	6 (0	0	0		38	0	0 0	
7200 ppm	40	0	3	4	6	15	12	0	0 0	0	1 27 12	4	0 0	0	0 0	0	30	10 (0 0	0	0	*	40	0	0 0	

(HCL101)

BAIS 4

URINALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	40	36 1 0 1 2	10 0 0 0 0		
800 ppm	45	44 0 0 0 1	45 0 0 0 0		
2400 ppm	38	37 0 1 0 0	38 0 0 0 0		
7200 ppm	40	28 1 2 3 6	40 0 0 0 0		•
Significant	difference	; *: P ≤ 0.05 **	$P \leq 0.01$	Test of CHI SQUARE	
(HCL101)					BAIS 4

TABLE I 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of	_llu								Protein	Glucose	Ketone body	Bilirubin
_	Animals	5. 0	6.0	6. 5	7. 0	7.5	8. 0 ⁻	8.5	HI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CIII	- ± + 2+ 3+ 4+ CIII	- + 2+ 3+ CIII
Control	38	0	1	5	6	16	9	1		0 1 1 10 18 8	38 0 0 0 0 0	17 21 0 0 0 0	38 0 0 0
800 ppm	38	0	2	4	8	8	14	2		0 0 3 7 18 10	38 0 0 0 0 0	12 25 1 0 0 0	36 1 0 1
2400 ppm	43	0	2	11	9	11	10	0		0 0 2 8 19 14	43 0 0 0 0 0	10 32 0 1 0 0	43 0 0 0
7200 ppm	33	0	6	9	6	5	4	3 *		0 0 0 0 11 22 **	33 0 0 0 0 0	17 16 0 0 0 0	33 0 0 0
Significant	di ££		· p <	- 0.00	=	44	D <	0, 01		T	of CHI SQUARE		
Significant	arrierence	, •	. r <u>=</u>	• U. U:	,	**	· r ≥	0.01		lest	OT CHI SQUAKE		
T 101)													· · · · · · · · · · · · · · · · · · ·

(HCL101)

BAIS 4

URINALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

SEX - FEMALE	KEFORT	ITE: AI			PAGE: 4
Group Name	NO. of Animals	Occult blood $-\pm+2+3+$ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	38	38 0 0 0 0	38 0 0 0 0		
800 ppm	38	35 0 1 0 2	37 1 0 0 0		
2400 ppm	43	35 1 0 4 3 *	43 0 0 0 0		
7200 ppm	33	5 1 0 0 27 **	33 0 0 0 0		
Significant	difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(HCL101)		<u> </u>			BAIS 4

.....

TABLE J 1

GROSS FINDINGS: MALE: ALL ANIMALS

STUDY NO. : 0641 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

MALE SEX

Organ	Findings	Group Name NO. of Animals	50	Control (%)	50) (800 ppm (%)	50	2400 ppm (%)	50	7200 ppm (%)
skin/app	nodule		7	(14)	2	: ((4)	2	(4)	3	(6)
	scab		0	(0)	0) ((0)	1	(2)	0	(0)
subcutis	edema		0	(0)	0) ((0)	1	(2)	0	(0)
	mass		13	(26)	. 3	. ((6)	14	(28)	6	(12)
lung	white zone		2	(4)	3	. ((6)	1	(2)	0	(0)
	red zone		0	(0)	0) ((0)	0	(0)	2	(4)
	brown zone		0	(0)	0) ((0)	1	(2)	0	(0)
	nodule		1	(2)	1	. ((2)	0	(0)	2	(4)
lymph node	enlarged		0	(0)	. 1	. ((2)	0	(0)	2	(4)
spleen	enlarged		4	(8)	3	. ((6)	5	(10)	0	(0)
	nodule		1	(2)	0) ((0)	0	(0)	0	(0)
lieart	white zone		0	(0)	1	. ((2)	1	(2)	0	(0)
artery/aort	induration		1	(2)	0) ((0)	0	(0)	0	(0)
oral cavity	nodule		0	(0)	0) ((o)	1	(2)	0	(0)
tongue	nodule		1	(2)	1	. ((2)	0	(0)	0	(0)
stomach	forestomach ulcer		1	(2)	0) ((0)	0	(0)	0	(0)
	forestomach nodule		0	(0)	1	. ((2)	i	(2)	0	(0)
small intes	dilated		0	(0)	0) ((0)	0	(0)	1	(2)

1 (2)

0 (0)

1 (2)

2 (4)

0 (0)

1 (2)

1 (2)

1 (2)

0 (0)

0 (0)

1 (2)

1 (2)

anus

liver

nodule

enlarged

white zone

nodule

0 (0)

0 (0)

0 (0)

1 (2)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE .

rgan	Findings	Group Name NO. of Animals	50	Control (%)	50	800 ppm (%)	50	2400 ppm (%)	50	7200 ppm (%)
iver	cysl		0	(0)	0	(0)	0	(0)	1	(2)
	herniation		3	(6)	4	(8)	6	(12)	3	(6)
ancreas	nodule		1	(2)	0	(0)	0	(0)	. 0	(0)
idney	enlarged		0	(0)	0	(0)	0	(0)	1	(2)
	brown zone		0	(0)	1	(2)	0	(0)	0	(0)
	nodul e		0	(0)	1	(2)	0	(0)	0	(0)
	cyst		0	(0)	1	(2)	0 ر	(0)	0	(0)
	granular		13	(26)	7	(14)	2	(4)	2	(4)
in bladd	nodule		0	(0)	0	(0)	0	(0)	1	(2)
	urine marked retention		0	(0)	0	(0)	1	(2)	0	(0)
	urine:red		0	(0)	0	(0)	0	(0)	1	(2)
tuitary	enlarged		7	(14)	4	(8)	3	(6)	5	(10)
	red zone		3	(6)	0	(0)	4	(* 8)	1	(2)
	nodule		3	(6)	2	(4)	1	(2)	3	(6)
yroid	enlarged		2	(4)	3	(6)	2	(4)	3	(6)
	nodule		1	(2)	1	(2)	0	(0)	0	(0)
renal	enlarged		1	(2)	i	(2)	1	(2)	3	(6)
stis	nodule		27	(54)	21	(42)	20	(40)	9	(18)
nin ves	nodule		1	(2)	0	(0)	0	(0)	0	(0)
ain	red zone		1	(2)	0	(0)	1	(2)	0	(0)
	nodule		0	(0)	0	(0)	0	(0)	1	(2)
e	white		9	(18)	7	(14)	4	(8)	8	(16)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE PAGE: 3

rgan	Findings	Group Name NO. of Animals 5	Control (%)	800 ppm 50 (%)	2400 ppm 50 (%)	50	7200 ppm (%)
eye	red		1 (2)	0 (0)	0 (0)	0	(0)
ymbal gl	nodule		1 (2)	0 (0)	0 (0)	1	(2)
one	red zone		0. (0)	0 (0)	1 (2)	0	(0)
	nodule		0 (0)	1 (2)	0 (0)	0	(0)
leura	nodule	**	0 (0)	0 (0)	0 (0)	1	(2)
eritoneum	nodule		1 (2)	2 (4)	0 (0)	1	(2)
etroperit	mass		0 (0)	0 (0)	0 (0)	1	(2)
odominal c	hemorrhage	1	0 (0)	0 (0)	1 (2)	0	(0)
	ascites		1 (2)	2 (4)	0 (0)	1	(2)
horacic ca	pleural fluid		1 (2)	1 (2)	0 (0)	1	(2)
ther	lip:nodule	1	0 (0)	0 (0)	1 (2)	0	(0)
	ear inodule		1 (2)	1 (2)	0 (0)	1	(2)
	lower jaw:nodule		1 (2)	0 (0)	0 (0)	0	(0)
	nose:nodule		0 (0)	0 (0)	1 (2)	0	(0)

(IIPT080)

TABLE J 2 GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ		Group Name NO. of Animals 10	Control 0 (%)	800 ppm 5 (%)	2400 ppm 12 (%)	7200 ppm 10 (%)
skin/app	nodule		0 (0)	0 (0)	0 (0)	3 (30)
	scab	(0 (0)	0 (0)	1 (8)	0 (0)
subcutis	edema	0	0 (0)	0 (0)	1 (8)	0 (0)
	mass	3	3 (30)	0 (0)	5 (42)	1 (10)
lung	red zone	C	0 (0)	0 (0)	0 (0)	1 (10)
	nodule	C	0 (0)	1 (20)	0 (0)	2 (20)
lymph node	enlarged	C	0 (0)	0 (0)	0 (0)	i (10)
spleen	enlarged	2	2 (20)	2 (40)	5 (42)	0 (0)
	nodule	1	1 (10)	0 (0)	0 (0)	0 (0)
heart	white zone	C	0 (0)	1 (20)	0 (0)	0 (0)
artery/aort	induration	1	1 (10)	0 (0)	0 (0)	0 (0)
stomach	forestomach:ulcer	1	1 (10)	0 (0)	0 (0)	0 (0)
small intes	dilated	O	0 (0)	0 (0)	0 (0)	1 (10)
liver	enlarged	o	0 (0)	1 (20)	0 (0)	0 (0)
	white zone	O	0 (0)	1 (20)	0 (0)	0 (0)
	nodule	O	0 (0)	0 (0)	0 (0)	1 (10)
	cyst	. 0	0 (0)	0 (0)	0 (0)	T (TO)
	herniation	C	0 (0)	0 (0)	0 (0)	1 (10)
pancreas	nodule	1	1 (10)	0 (0)	0 (0)	0 (0) .
kidney	enlarged	C	0 (0)	0 (0)	0 (0)	1 (10)
	nodule	C	0 (0)	1 (20)	0 (0)	0 (0)
	granular	2	2 (20)	0 (0)	1 (8).	0 (0)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

SEX

: MALE

DEAD AND MORIBUND ANIMALS (0-105W)

rgan	Findings	Group Name NO. of Animals 10	Control (%)	800 ppm 5 (%)	2400 ppm 12 (%)	7200 ppm 10 (%)
rin bladd	nodule	0	(0)	0 (0)	0 (0)	1 (10)
	urine:marked retention	0	(0)	0 (0)	1 (8)	0 (0)
	urine: red	0	(0)	0 (0)	0 (0)	1 (10)
ituitary	enlarged	2	(20)	0 (0)	0 (0)	2 (20)
	red zone	1	(10)	0 (0)	0 (0)	0 (0)
hyroid	enlarged	0	(0)	0 (0)	1 (8)	0 (0)
	nodule	1	(10)	1 (,20)	0 (0)	0 (0)
lrenal	enlarged	1	(10)	0 (0)	0 (0)	1 (10)
stis	nodule	0	(0)	0 (0)	2 (17)	1 (10)
ain	red zone	1	(10)	0 (0)	1 (8)	0 (0)
e	white	3	(30)	0 (0)	1 (8)	2 (20)
	red	. 1	(10)	0 (0)	0 (0)	0 (0)
ne	red zone	0	(0)	0 (0)	1 (8)	0 (0)
	nodule	_ 0	(0)	1 (20)	0 (0)	0 (0)
eura	nodule	0	(0)	0 (0)	0 (0)	1 (10)
ritoneum	nodule	. 0	(0)	1 (20)	0 (0)	1 (10)
troperit	mass	0	(0)	0 (0)	0 (0)	1 (10)
dominal c	hemorrhage	0	(0)	0 (0)	1 (8)	0 (0)
	ascites	. 0	(0)	2 (40)	0 (0)	1 (10)
oracic ca	pleural fluid	. 1	(10)	1 (20)	0 (0)	1 (10)
her	lip:nodule	0	(0)	0 (0)	1 (8)	0 (0)
	lower jaw nodule	1	(10)	0 (0)	0 (0)	0 (0)

TABLE J 3

GROSS FINDINGS: MALE: SACRIFICED ANIMALS

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

Organ	Findings	Group Name NO. of Animals	40	Control (%)	ΔE	800 ppm (%)	20	2400 ppm (%)	40	7200 ppm
organ	1 Hothgo	NO. OI MITRAIS	40	(70)	40	(707	. 30	(70)	40	(707)
skin/app	nodule		7	(18)	2	(4)	2	(5)	0	(0)
subcutis	mass		10	(25)	3	(7)	9	(24)	5	(13)
lung	White zone		2	(5)	3	(7)	1	(3)	0	(- 0)
	red zone		0	(0)	0	(0)	0	(0)	1	(3)
	brown zone		0	(0)	0	(0)	1	(3)	0	(0)
	nodule		1	(3)	0	(0)	0	(0)	0	(0)
lymph node	enlarged		0	(0)	1	(2)	0	(0)	1	(3)
spleen	enlarged		2	(5)	1	(2)	0	(0)	0	(0)
heart	white zone		0	(0)	0	(0)	1	(3)	0	(0)
oral cavity	nodule		0	(0)	0	(0)	1	(3)	0	(0)
tongue	nodule		1	(3)	1	(2)	0	(0)	0	(0)
stomach	forestomachinodule		0	(0)	1	(2)	1	(3)	0	(0)
anus	nodule		1	(3)	0	(0)	0	(0)	0	(0)
liver	white zone		i	(3)	0	(0)	1	(3)	0	(0)
	nodule		2	(5)	1	(2)	. 1	(3)	0	(0)
	herniation		3	(8)	4	(9)	6	(16)	2	(5)
kidney	brown zone		0	(0)	1	(2)	0	(0)	0	(0)
	cyst		0	(0)	1	(2)	0	(0)	0	(0)
	granular	1	11	(28)	7	(16)	. 1	(3)	2	(5)
pituitary	enlarged		5	(13)	4	(9)	3	(8)	3	(8)
	red zone		2	(5)	0	(0)	4	(11)	1	(3)
	nodule		3	(8)	2	(4)	1	(3)	3	(8)

STUDY NO. : 0641 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : MALE

rgan	Findings	Group Name NO. of Animals 40	Control (%)	800 ppm 45 (%)	2400 ppm 38 (%)	7200 pp 40 (%)
hyroid	enlarged	2	: (5)	3 (7)	1 (3)	3 (8)
drenal	enlarged		(0)	1 (2)	1 (3)	2 (5)
estis	nodule	. 27	(68)	21 (47)	18 (47)	8 (20)
emin ves	nodule	. 1	. (3)	0 (0)	0 (0)	0 (0)
ain	nodule	0	(0)	0 (0)	0 (0)	1 (3)
е	white	6	i (15)	7 (16)	3 (8)	6 (15)
mbal gl	nodule	1	. (3)	0 (0)	0 (0)	1 (3)
ritoneum	nodule	1	. (3)	1 (2)	0 (0)	0 (0)
dominal c	ascites	1	(3)	0 (0)	0 (0)	0 (0)
her	ear:nodule	. 1	(3)	1 (2)	0 (0)	1 (3)
	nose:nodule	0	(0)	0 (0)	1 (3)	0 (0)

(HPT080)

BAIS 4

TABLE J 4

GROSS FINDINGS: FEMALE: ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX

: FEMALE

rgan	Findings_	Group Name NO. of Animals	50	Control (%)	50	800 ppm (%)	50	2400 ppm (%)	50	7200 ppm (%)
kin/app	nodule		1	(2)	1	(2)	0	(0)	0	(0)
	ulcer		0	(0)	0	(0)	0	(0)	1	(2)
	scab		0	(0)	0	(0)	0	(0)	1	(2)
ıbcutis	edema		0	(0)	0	(0)	0	(0)	1	(2)
	jaundice		2	(4)	1	(2)	0	(0)	1	(2)
	mass		11	(22)	15	(30)	10	(20)	8	(16)
ing	white zone		1	(2)	0	(0)	0	(0)	1	(2)
	nodule		0	(0)	1	(2)	0	(0)	0	(0)
mph node	enlarged		0	(0)	2	(4)	0	(0)	0	(0)
ymus	enlarged		1	(2)	0	(0)	0	(0)	0	(0)
leen	enlarged		5	(10)	9	(18)	4	(8)	5	(10)
eart	white zone		0	(0)	0	(0)	0	(0)	1	(2)
al cavity	nodule		0	(0)	0	(0)	0	(0)	2	(4)
ongue	nodule		1	(2)	0	(0)	1	(2)	0	(0)
tomach	forestomach:ulcer		2	(4)	0	(0)	0	(0)	1	(2)
	glandular stomach erosion		0	(0)	0	(0)	0	(0)	. 1	(2)
iver	white zone		0	(0)	0	(0)	1	(2)	1	(2)
	red zone		1	(2)	. 0	(0)	0	(0)	0	(0)
	nodule		0	(0)	1	(2)	1	(2)	0	(0)
	rough		2	(4)	2	(4)	. 1	(2)	1	(2)
	granular		0	(0)	0	(0)	0	(0)	. 1	(2)
	herniation		6	(12)	7	(14)	7	(14)	8	(16)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

rgan	Findings	Group Name NO. of Animals	Control 50 (%)	800 ppm 50 (%)	2400 ppm 50 (%)	7200 ppm 50 (%)
idney	cyst		0 (0)	1 (2)	1 (2)	0 (0)
	deformed		0 (0)	0 (0)	0 (0)	1 (2)
	granular		1 (2)	1 (2)	0 (0)	0 (0)
	hydronephrosis		0 (0)	0 (0)	0 (0)	1 (2)
	dilated pelvis		0 (0)	0 (0)	0 (0)	1 (2)
rin bladd	urine marked retention		0 (0)	0 (0)	0 (0)	1 (2)
ituitary	enlarged		8 (16)	10 (20)	8 (16)	4 (8)
	red zone		8 (16)	11 (22)	15 (30)	21 (42)
	black zone		0 (0)	1 (2)	0 (0)	0 (0)
	nodule		6 (12)	8 (16)	0 (0)	3 (6)
yroid	enlarged		3 (6)	3 (6)	2 (4)	0 (0)
renal	enlarged		0 (0)	1 (2)	0 (0)	2 (4)
ary	enlarged		0 (0)	0 (0)	. 0 (0)	1 (2)
	cyst		1 (2)	1 (2)	1 (2)	0 (0)
erus	nodule		4 (8)	3 (6)	5 (10)	7 (14)
	adhesion		0 (0)	0 (0)	0 (0)	1 (2)
	fluid		0 (0)	0 (0) ,	0 (0)	1 (2)
	fluid:red		0 (0)	0 (0)	1 (2)	0 (0)
ain	red zone		1 (2)	0 (0)	0 (0)	0 (0)
е	white		5 (10)	5 (10)	3 (6)	3 (6)
mbal gl	nodule		1 (2)	0 (0)	0 (0)	1 (2)
ritoneum	nodule		0 (0)	0 (0)	0 (0)	1 (2)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 6

)rgan	Findings	Group Name NO. of Animals	50	Control (%)	50	800 ppm (%)	50	2400 ppm . (%)	50	7200 ppm (%)
peritoneum	thick		n	(0)	0	(0)	0	(0)	1	(2)
er i conedui	ULION				v	(0)			1	(2)
etroperit	mass		0	(0)	0	(0)	0	(0)	1	(2)
bdominal c	ascites		1	(2)	0	(0)	1	(2)	1	(2)
noracic ca	mass		0	(0)	0	(0)	0	(0)	1	(2)
	pleural fluid		1	(2)	1	(2)	1	(2)	2	(4)
her	eye lid:nodule	:	i	(2)	0	(0)	0	(0)	0	(0)
	ear:nodule		i	(2)	0	(0)	0	(0)	i	(2)
hole body	anemic		1	(2)	1	(2)	0	(0)		(0)

(IIPT080)

BAIS 4

TABLE J 5
GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

rgan	Findings	Group Name NO. of Animals	Control 12 (%)	800 ppm 12 (%)	2400 ppm 8 (%)	7200 ppm 17 (%)
kin/app	ulcer		0 (0)	0 (0)	0 (0)	1 (6)
ubcutis	edema		0 (0)	0 (0)	0 (0)	1 (6)
	jaundice		2 (17)	0 (0)	0 (0)	1 (6)
	mass		5 (42)	6 (50)	2 (25)	1 (6)
nph node	enlarged		0 (0)	2 (17)	0 (0)	0 (0)
ymus	enlarged		1 (8)	0 (0)	0 (0)	0 (0)
leen	enlarged		3 (25)	5 (42)	3 (38)	4 (24)
art	white zone		0 (0)	0 (0)	0 (0)	1 (6)
ngue	nodule		1 (8)	0 (0)	0 (0)	0 (0)
omach	forestomach ulcer		2 (17)	0 (0)	0 (0)	1 (6)
ver	white zone		0 (0)	0 (0)	0 (0)	1 (6)
	nodule		0 (0)	0 (0)	1 (13)	0 (0)
	rough		1 (8)	0 (0)	0 (0)	0 (0)
	granular		0 (0)	0 (0)	0 (0)	1 (6)
	herniation		1 (8)	1 (8)	1 (13)	1 (6)
dney	granular		0 (0)	1 (8)	0 (0)	0 (0)
	hydronephrosis		0 (0)	0 (0)	0 (0)	1 (6)
	dilated pelvis		0 (0)	0 (0)	0 (0)	1 (6)
n bladd	urine:marked retention		0 (0)	0 (0)	0 (0)	1 (6)
uitary	enlarged		7 (58)	6 (50)	2 (25)	2 (12)
	red zone		1 (8)	1 (8)	0 (0)	3 (18)
	nodule		1 (8)	2 (17)	0 (0)	1 (6)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

gan	Findings	Group Name NO. of Animals	12	Control (%)	12 ('	800 ppm %)	8	2400 ppm (%)	17	7200 ppm (%)
yroid	enlarged		1	(8)	1 (8)	. 0	(0)	0	(0)
renal	enlarged			(0)	1 ((0)		(0)
ary	enlarged		0	(0)	0 (0)	0	(0) .		(6)
	cyst		1	(8)	0 (0)	0	(0)	0	(0)
erus	nodule		1	(8)	0 (0)	0	(0)	4	(24)
	adhesion		0	(0)	0 (0)	0	(0)	1	(6)
	fluid		0	(0)	0 (0)	0	(0)	1	(6)
	fluid:red		0	(0)	0 (0)	1	(13)	0	(0)
	white		1	(8)	2 (17)	1	(13)	1	(6)
bal gl	nodule	٠.,	1	(8)	0 (0)	0	(0)	1	(6)
itoneum	nodule		. 0	(0)	0 (0)	0	(0)	1	(6)
	thick		0	(0)	0 (0)	0	(0)	1	(6)
roperit	mass		0	(0)	0 (0)	0	(0)	1	(6)
ominal c	ascites		1	(8)	0 (0)	1	(13)	1	(6)
racic ca	pleural fluid	•	1	(8)	1 (8)	1	(13)	2	(12)
le body	anemic		1	(8)	1 (8)	0	(0)	0	(0)

(HPT080)

BATS 4

TABLE J 6

GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

PAGE:	3

rgan	Findings	Group Name NO. of Animals	38	Control (%)	38	800 ppm (%)	42	2400 ppm (%)	33	7200 ppm (%)
kin/app	nodule		1	(3)	1	(3)	0	(0)	0	(0)
	scab		0	(0)	0	(0)	0	(0)	1	(3)
ubcutis	jaundice		0	(0)	1	(3)	0	(0)	0	(0)
	mass		6	(16)	9	(24)	8	(19)	7	(21)
ung	white zone		1	(3)	0	(0)	0	(0)	1	(3)
	nodule		0	(0)	1	(3)	0	(0)	0	(0)
pleen	enlarged		2	(5)	4	(11)	1	(2)	1	(3)
ral cavity	nodule		0	(0)	0	(0)	0	(0)	2	(6)
ongue	nodule		0	(_ 0)	0	(0)	1	(2)	0	(0)
omach	glandular stomach:erosion		0	(0)	0	(0)	0	(0)	1	(3)
iver	white zone		0	(0)	0	(0)	1	(2)	0	(0)
	red zone		1	(3)	0	(0)	0	(0)	0	(0)
	nodule		0	(0)	1	(3)	0	(0)	0	(0)
	rough		1	(3)	2	(5)	1	(2)	. 1	(3)
	herniation		5	(13)	6	(16)	6	(14)	7	(21)
idney	cyst		0	(0)	1	(3)	1	(2)	0	(0)
	deformed		0	(0)	0	(0)	0	(0)-	1	(3)
	granular		1	(3)	0	(0)	0	(0)	0	(0)
tuitary	enlarged		1	(3)	. 4	(11)	6	(14)	2	(6)
	red zone		. 7	(18)	10	(26)	15	(36)	18	(55)
	black zone		0	(0)	1	(3)	0	(0)	0	(0)
	nodule		- 5	(13)	6	(16)	0	(0)	2	(6)

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : FEMALE

rgan	Findings	Group Name C NO. of Animals 38 (%)	ontrol 800 ppm) 38 (%)	2400 ppm 42 (%)	33	7200 ppn (%)
hyroid	enlarged	2 (5) 2 (5)	2 (5)	0	(0)
drenal	enlarged	0 (0 (0)	0 (0)	2	(6)
/ary	cyst	0 (0) 1 (3)	1 (2)	0	(0)
terus	nodule	3 (8) 3 (8)	5 (12)	3	(9)
ain	red zone	1 (0 (0)	0 (0)	0	(0)
U	white	4 (1	3 (8)	2 (5)	2	(6)
oracic ca	mass	0 (0 (0)	0 (0)	i	(3)
lier	eye lid:nodule	1 (0 (0)	0 (0)	0	(0)
	ear:nodule	1 (0 (0)	0 (0)	1	(3)

(HPT080)

BAIS 4

TABLE K 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : Λ1 SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (105W)

PAGE: 1

ip Name	NO. of Animals	Body Weigh	nt	ADREN	ALS	TESTI	is .	HEAR	Γ	LUNG	5	KIDN	EYS
Control	40	401 ± 45	0.0	076±	0. 019	2.832±	0. 974	1. 239± ·	0. 097	1. 404土	0. 183	2. 864±	0. 579
800 ppm	45	402± 38	0. 1	106±	0. 222	2. 715±	1. 097	1. 238±	0. 097	1. 367±	0. 146	2. 74 0±	0. 312
2400 ppm	38	406± 26	0. (085±	0.096	2.763±	0.839	1. 228±	0.092	1.345±	0. 110	2. 67 5±	0. 172
7200 բրա	40	369± 60*	o* 0. (079±	0. 073	2. 142±	0. 935**	1.152±	0. 107**	1.245±	0. 090≉≭	2.714±	0. 282

(HCL040)

BAIS 4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1

SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	N	LIV	ER	BRA	IN					
Control	40	1. 158± (0. 552	11.774±	1. 703	2. 104±	0. 054					
800 ppm	. 45	0.933± 0	0. 403**	10.539±	1.113**	2. 105±	0. 041					
2400 ppm	38	0.885± 0	0. 282**	10.166±	0.914**	2.108±	0.038					
7200 թբա	40	0.680± 0	0. 113**	9.046±	1. 367**	2. 078±	0. 037*					
Significant	difference;	* : P ≤ 0.05	** :	P ≤ 0.01	··- ·		Test	of Dunnett		· · · · · · · · · · · · · · · · · · ·		
(HCL040)											 	BAIS 4

TABLE K 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 3

Name	NO. of Animals	Body	Weight	ADRE	NALS	OVAR	IES	HEAR	ľ	LUNGS	5	KIDN	EYS
Control	38	263土	31	0.069土	0.007	0. 129±	0.021	0.886±	0. 089	0.976±	0. 172	1.819±	0. 163
800 ppm	38	264±	30	0.070生	0.007	0.142±	0. 097	0.903±	0. 076	1.065±	0. 442	1.864±	0. 165
2400 ppm	42	267±	29	0.072±	0.008	0.163±	0. 231	0.890±	0.068	0.977±	0.078	1.952±	0. 155**
7200 բբա	33	207±	25**	0.076±	0.041	0.119±	0. 022	0.783±	0. 083**	0.881±	0. 056**	2.078±	0. 244**

(HCL040)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	38	0.759± 0.901	6.814± 1.095	1.925± 0.041	
Mqq 008	38	1.236± 2.217	7. 237± 1. 153	1.913± 0.049	t.
2400 ppm	42	0.666± 0.293	7.161± 1.116	1.921± 0.046	
7200 թթա	33	0.478± 0.232**	5.858± 0.676**	1.869± 0.037≉	
Significant	difference;	* : P ≤ 0.05 **	: P ≤ 0.01	Test of Dunnett	 THE PARTY OF THE P
ICL040)					BAIS

TABLE L 1

ORGAN WEIGHT, RELATIVE: MALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name NO. of Body Weight ADRENALS TESTES HEART LUNGS KIDNEYS Animals (g) Control 40 401± 45 0.019 ± 0.006 0.710 ± 0.244 0.312 ± 0.041 0.354 ± 0.061 0.731 ± 0.238 800 ppm 45 402± 38 0.027 ± 0.057 0.673 ± 0.257 0.311 ± 0.044 0.690 ± 0.129 0.345 ± 0.075 2400 ppm 38 406± 26 0.021 ± 0.024 0.684 ± 0.228 0.303 ± 0.022 0.332 ± 0.031 0.660 ± 0.039 7200 թթո 369生 60** 0.022 ± 0.020 0.591 ± 0.261 0.317 ± 0.035 0.344 ± 0.045 0.751 ± 0.125* Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HCL042)

BAIS 4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

up Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	40	0.291± 0.139	2.960 ± 0.501	0.531± 0.058	
800 ppm	45	0.240± 0.156**	2.647± 0.433**	0.529± 0.057	
2400 ppm	38	0.219± 0.072**	2.508± 0.199**	0.521 ± 0.031	
7200 թթո	40	0.188± 0.033**	2.485± 0.400**	0.576± 0.081**	

(HCL042)

BAIS 4

TABLE L 2

ORGAN WEIGHT, RELATIVE: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

p Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS
Control	38	263± 31	0.027± 0.005	0.049± 0.007	0.340± 0.032	0.376生 0.069	0.703生 0.117
800 ppm	38	264± 30	0.027± 0.004	$0.054\pm\ 0.035$	0.345± 0.043	0.411± 0.191	0.714± 0.113
2400 ppm	42	267± 29	0.027± 0.005	0.059 ± 0.074	0.337± 0.039	0.371± 0.053	0.740± 0.100**
7200 թթա	33	207± 25**	0.038± 0.020**	0.057± 0.008**	0.382± 0.046**	0.433± 0.063**	1.028± 0.268**

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	38	0.289± 0.325	2. 608± 0. 376	0.745± 0.109	
800 ppm	38	0.505± 0.978	2.759± 0.468	0.734± 0.092	
2400 ppm	42	0.255± 0.121	2.707± 0.458	0.730± 0.089	
7200 բբա	33	0.235± 0.129	2.854 ± 0.328	0.919± 0.133**	
Significant	difference ;	* : P ≤ 0.05 **:	P ≤ 0.01	Test of Dunnett	
(HCL042)					 B/

TABLE M 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animals on S	tudy	5		ro1		5	008 0	pin			2400 p 50	pm				50	ndd 0	n
gan	Findings	Grade	(%)	(%)	(%)	(%)	<u>1</u> (%)	(%)	(%)	(%)	<u>1</u> (%)	(%)	(%)	(%)		(%)	(%)		3 %)	(%)
ntegumentar	y system/appandage)																			
kin/app	mineralization		0 (0)	<5 0 (0)	0	0 (0)	0 (0)	0	0 (0)	0 (0)	0 (0)	0	0 (0)	0 (0)	(1 2) (0 (0)		0 0) (0 0)
	fibrosis: focal		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0 0)
÷	scab	}	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (4)	0 (0)	0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0
bcutis	cyst		1 (2)	<5 0 (0)	0	0 (0)	0 (0)	0	0 (0)	0 (0)	0 (0)	0	50> 0 (0)	0 (0)	(0	0 (0)		0 0) (0
	inflammation		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	(0	0 (0)		0 0) (0
	abscess		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0
	fibrosis	•	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0	0 (0)		0 0) (0 0)
Respiratory :	system}																			
sal cavit	thrombus		1 (2)	0	0> 0 (0)	0 (0)	1 (2)	1	0 (0)	0 (0)	2 (4)	0	50> 0 (0)	0 (0)	(0	(0 (0)		0 0) (0

< a > a: Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a*100

Significant difference ; * * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1

SEX : MALE ALL ANIMALS (0-105W)

PAGE: 2 Group Name 800 ppm 7200 ppm Control 2400 ppm No. of Animals on Study 50 50 50 50 3 Grade (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ_ Findings_ (Respiratory system) nasal cavit <50> <50> ⟨50⟩ <50> mineralization 28 0 0 25 0 32 0 25 0 0 0 0 0 (56) (0) (0) (0). (50) (2) (0) (0) (64) (0) (0) (0) (50) (0) (0) (0) eosinophilic change:olfactory epithelium 38 0 42 5 37 34 13 0 (76) (14) (0) (0) (84) (10) (0) (0) (68) (26) (0) (0) (74) (18) (0) (0) eosinophilic change:respiratory epithelium 0 17 0 17 (22) (0) (0) (0) (34) (0) (0) (0) (38) (0) (0) (0) (34) (0) (0) (0) inflammation:foreign body 15 0 0 0 15 0 0 0 16 0 0 14 0 0 (30) (0) (0) (0) (30) (0) (0) (0) (32) (0) (0) (0) (28) (0) (0) (0) respiratory metaplasia:olfactory epithelium 12 0 0 0 7 0 0 0 0 10 0 0 0 0 (24) (0) (0) (0) (14) (0) (0) (0) (12) (2) (0) (0) (20) (0) (0) (0) respiratory metaplasia:gland 0 (100) (0) (0) (0) (100) (0) (0) (0) (96) (0) (0) (0) (94) (0) (0) (0) squamous cell metaplasia:respiratory epithelium 6 1 0 0 2 0 0 0 1 0 0 (12) (2) (0) (0) (4)(0)(0)(0) (2)(2)(0)(0) (8)(0)(0)(0) larynx <50> <50> <50> inflammation 0 0 0 0 0 0 0 0 0 1 0 0 0 (4)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion

(c)

c:b/a*100

Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

)rgati	Findings	Group Name No. of Animals on Study Grade	5 <u>1 2</u> %) (%)	Contr 0 3 (%)	01 	<u>(%)</u>	5 (%)	3	<u>4</u> (%)	1 (%)		50 2	00 pp 3 (%)	m <u>4</u> (%)	1(%)	72 50 <u>2</u> %)	200 p ₁ 3 (%)	oni <u>4</u> (%)
espiratory :	system)																	
ing	congestion		<5 2 1 4) (2)	0 (0)	0 (0)	0 (0)	(5) (0)	0> 0 (0) (0 0)	0 (0)	(0 0) (0 0)	2 (4)	<50) 0 0) (0 0)	0 (0)
	inflammatory infiltration	(1 0 2) (0)	0 (0)	0 (0)	2 (4)	0 (0)	0 (0) (0 0)	1 (2)	(2		0 0) (0 0)	1 (2)	0 0) (0	0
	accumulation of foamy cells		2 0 4) (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0) (0 0)	1 (2)			0 0) (0 0)	(2)	0 0) (0	0
	bronchiolar-alveolar cell hyperplasia		4 2 8) (4)	0 (0)	0 (0)	2 (4)	0 (0)	0 (0) (0 0)	1 (2)	((0 0) (0	(2)	0 0) (0	0
	inflammation:foreign body		0 0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 0)	0 (0)			0 0) (0 0)	1 (2)	0 0) (0	0 (0)
lematopoieti	c system)								,									
one marrow	granulation		<5 0 0 0) (0)	0 (0)	0 (0)	1 (2)	(5) (0)	0> 0 (0) (0 0)	1 (2)	(0 0) (0	(0)	<50) 0 0) (0 0) (0
	increased hematopoiesis		9 2 8) (4)	0 (0)	0 (0)	4 (8)	2 (4)	0 (0) (0 0)	4 (8)			0 0) (0	3 (6)	0 0) (0	0

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

c:b/a*100 (c)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

	No.	roup Name Control o. of Animals on Study 50 rade 1 2 3 4	800 թթա 50 1 2 3 4	2400 թթա 50 1 2 3 4	7200 תועט 50 1 2 3 4
Organ	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)
{Hematopoieti	c system)				
bone marrow	decreased hematopoiesis	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
spleen	congestion	(50) 2 0 0 0 (4) (0) (0) (0)	(50) (0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	deposit of hemosiderin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0) (0)
	inflammatory infiltration	0 0 0 0	0 0 0 0 0 (0)	1 0 0 0 0	0 0 0 0 0 (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	extramedullary hematopoiesis	12 5 0 0 (24) (10) (0) (0)	13 1 0 0 (26) (2) (0) (0)	11 2 0 0 (22) (4) (0) (0)	7 1 0 0 (14) (2) (0) (0)
{Circulatory	system)				
heart	thrombus	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 2 0 0 0 (4) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Grade <a>> b (c) Significant d	a : Number of animals examined at the sit b : Number of animals with lesion c : b / a * 100			· · · · · · · · · · · · · · · · · · ·	

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE: A1

: MALE

800 ppm Group Name Control 2400 թթո 7200 ppm No. of Animals on Study 50 50 50 50 3 (%) Findings_ (%) (%) Organ_ {Circulatory system} heart ⟨50⟩ ⟨50⟩ <50> <50> 0 necrosis:focal 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0) (0) (0) (0) mineralization 0 (0)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) myocardial fibrosis 14 15 (30) (2) (0) (0) (28) (0) (0) (0) (38) (2) (0) (0) (30) (2) (0) (0) artery/aort ⟨50⟩ <50> <50> <50> mineralization 0 0 0 0 0 0 (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) {Digestive system} tongue <50> squamous cell hyperplasia 0 0 0 0 0 (0) (0) (0) (0) (2)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) <50> stomach <50> <50> <50> erosion: forestomach 0 0 0 (2)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0)

Grade 1 : Slight 2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b: Number of animals with lesion

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

b

(c)

BAIS4

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

800 թթո 7200 ppm Group Name Control 2400 ppm No. of Animals on Study 50 50 50 50 3 Findings_ (%) (%) (%) (%) (%) (%) (%) (%) Organ_ {Digestive system} stomach <50> <50> <50> <50> ulcer: forestomach 0 0 0 0 0 0 1 0 0 0 (0)(0)(2)(0) (0)(2)(0)(0) (0)(0)(2)(0) (2)(0)(0)(0) hyperplasia: forestomach 0 (2)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) erosion:glandular stomach 0 (10) (4) (0) (0) (2)(0)(0)(0) (10) (0) (0) (0) (4)(0)(0)(0) ulcer: glandular stomach 0 0 0 1 1 0 0 0 0 0 0 (2)(0)(0)(0) (2)(2)(0)(0) (4)(2)(0)(0) (0)(0)(0)(0) hyperplasia:glandular stomach 0 0 0 (2)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) mineralization glandular stomach 0 0 (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2) (0) (0) (0) small intes <50> <50> <50> ulcer 0 0 0 0 0 0 0 (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) erosion 0 0 0 0 0 0 0 0 0 0 0 0 0 (4)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion (c)

c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE: A1

SEX : MALE

800 ppm 7200 ppm Group Name 2400 ррш Control No. of Animals on Study 50 50 50 (%) (%) (%) (%) (%) Organ_ Findings_ {Digestive system} small intes <50> <50> 0 0 0 0 0 0 0 0 0 0 necrosis (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) large intes <50> <50> <50> 0 0 0 0 0 0 0 0 0 0 0 0 0 mineralization (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) liver 3 0 0 0 hermiation 5 0 0 0 0 0 0 (6)(0)(0)(0) (10) (0) (0) (0) (12) (0) (0) (0) (6)(0)(0)(0) necrosis:central 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) necrosis: focal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (2)(0)(0)(0) (0)(0)(0)(0) (4)(0)(0)(0) (0)(0)(0)(0) fatty change:peripheral 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) 0 cyst (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2) (0) (0) (0)

Grade 1 : Slight 2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE PAGE: 8

		Group Name No. of Animals on Study Grade 1	Control 50 2 3 4	800 թթա 50 1 2 3 4	2400 թթա 50 1 2 3 4	7200 թթm 50 1 2 3 4
Organ	Findings	(%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
-						
{Digestive s	system)					
liver	granulation	1 (2)	<50> 0 0 0 (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammatory cell nest	38 (76)	1 0 0 (2) (0) (0)	45 0 0 0 (90) (0) (0) (0)	41 0 0 0 (82) (0) (0) (0)	41 0 0 0 (82) (0) (0) (0)
	extramedullary hematopoiesis	0 (0)	0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	16 (32)	2 0 0 (4) (0) (0)	10 1 0 0 (20) (2) (0) (0)	12 1 0 0 (24) (2) (0) (0)	6 0 0 0 * (12) (0) (0) (0)
	basophilic cell focus	(8)	0 0 0 (0) (0)	7 0 0 0 0 (14) (0) (0) (0)	9 0 0 0 0 (18) (0) (0)	5 0 0 0 (10) (0) (0) (0)
	spongiosis hepatis	2 (4)	0 0 0	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	bile duct hyperplasia	44 (88)	0 0 0 0 (0) (0)	47 0 0 0 (94) (0) (0) (0)	45 0 0 0 (90) (0) (0) (0)	48 0 0 0 0 (96) (0) (0)
	bile ductular proliferation	0 (0)	0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)

1 : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 9

		Group Name No. of Animals on Study	y	5	Сон [.] i0	trol					5) ppi	n.				2 50	400	ppn	ı					720 50	0 рр	in
rgan	Findings	Grade	(%)	(%)	(%)		(%)		<u>1</u> (%)		<u>2</u> (%)	3 (%		(%)		<u>1</u> (%)	(2 %)	(%))	(%)		(%)	_	2 (%)		3 (%)	(%)
Digestive sy	stem)																											
iver	cholangiofibrosis		0	<5 0 (0)	0 (0)		0 0)	(0 0)	(<50 0 0)	0))) (0 0)	(1 2)		<50 0 0) (0 (0)) (0 0)	(0 0)		<5 0 0)		0 0) (0 (0)
	focal fatty change		0 0) (0 (0)	0 (0)		0	(1 2)	(0 0)	0))) (0 0)	(2 4)	(1 2) (0 (0)) (0	(1 2)		0 0)		0 0) (0 (0)
ancreas	atrophy: focal		3 6) (<5 1 (2)	0 (0)		0 0)	(3 6)	(<50 0 0)	0> 0 (0		0 0)	(6 12)		<50 1 2)	0 (0)		0	(5 10)		<5 1 2)		0 0) (0
	islet cell hyperplasia	(1 2) (1 2)	0 (0)		0 0)	(0 0)	(0 0)	0		0 0)	(2 4)	(0 0) (0 (0)) (0 0)	. (2 4)	(0 0)	(0 0) (0
Urinary syst	em)																											
idney	cyst		0 0) (<5 0 0 0)	(0) (0)		0	(2 4)	(<50 0 0)	0> 0 (0))) (0 0)	(0 0)		<50 0 0) (0 (0)		0 0)	(2 4)		<5 0 0)		0 0) (0
	hyaline droplet		0 0) (0 (0)	(0)		0 0)	(0 0)	(0 0)	0)) (0 0)	(0	(0 0) (0	(0 0)	(0 0)		0		1 2) (0

(HPT150)

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE: A1

ANIMAL

SEX : MALE

Group Name Control 800 ppm 2400 ppm 7200 ppm 50 No. of Animals on Study 50 50 50 Grade (%) (%) Findings_ (%) (%) (%) (%) (%) (%) (%) Organ_ (Urinary system) kidney <50> <50> <50> <50> 0 0 0 0 0 0 0 0 0 0 0 0 scar (0)(0)(0)(0) (0)(2)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) chronic nephropathy 21 11 21 15 28 12 24 0 ** (18) (42) (22) (6) (42) (30) (18) (0) (56) (24) (4) (0) (48) (14) (6) (0) papillary necrosis .0 (0)(0)(0)(0) (0)(0)(0)(0) (14) (0) (0) (0) (74) (0) (0) (0) mineralization:papilla 0 0 0 0 0 0 0 0 0 2 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (4)(0)(0)(0) mineralization: pelvis 0 0 0 0 0 0 0 0 (4)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) dilatation:tubular lumen 0 0 1 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) urothelial hyperplasia:pelvis 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 (4)(0)(0)(0) (2)(0)(0)(0) (2)(2)(0)(0) (0) (0) (0) (0)

0

(0)(0)(0)(0)

4 : Severe

0

(0)(0)(0)(0)

(0)(0)(0)(0)

Grade 1 : Slight 2 : Moderate 3 : Marked

inflammation:papilla

< a > a: Number of animals examined at the site

b b: Number of animals with lesion

c:b/a*100 (c)

Significant difference; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

(2)(0)(0)(0)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

PAGE 11

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 50 2 3 4 (%) (%) (%)	800 руш 50 1 2 3 4 (%) (%) (%)	2400 рын 50 1 2 3 4 (%) (%) (%) (%)	7200 ррш 50 1 2 3 4 (%) (%) (%) (%)
Urinary syst	em}					
ırin bladd	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
	transitional cell hyperplasia	(0)	1 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	1 0 0 0 0 (2) (0) (0) (0)
Endocrine sy	rstem)	•				
ituitary	angiectasis	0 (0)	<49> 0 0 0 (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	\(\langle 50 \rangle \) \[1 1 0 0 \\ (2) (2) (0) (0) \]	2 0 0 0 (4) (0) (0) (0)
	cyst	4 (8)	0 0 0 (0) (0)	3 1 0 0 (6) (2) (0) (0)	3 0 0 0 0 (6) (6) (7)	6 0 0 0 (12) (0) (0) (0)
	hyperplasia	12 (24)	9 2 0 (18) (4) (0)	14 8 0 0 (28) (16) (0) (0)	12 9 3 0 (24) (18) (6) (0)	13 4 2 0 (26) (8) (4) (0)
	Rathke pouch	2 (4)	0 0 0 (0)	2 1 0 0 (4) (2) (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (7)
	aberrant craniopharyngeal tissue	0 (0)	0 0 0	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

PAGE: 12

		Group Name No. of Animals on Study	Control 50	800 թթա 50	2400 թթա 50	7200 ррт 50
Organ	Findings	Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Endocrine sy	stem)					
thyroid	ultimobranchial body remanet	0 (0)	<50> 0 0 0 (0) (0) (0)	<pre></pre>	<50> 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	C-cell hyperplasia	8 (16)	0 0 0 0 (0) (0)	6 2 0 0 (12) (4) (0) (0)	3 2 1 0 (6) (4) (2) (0)	5 3 2 0 (10) (6) (4) (0)
	cystic thyroid follicle	1 (2)	0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
parathyroid	hyperplasia	(2)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
adrenal	cyst	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	osseous metaplasia	0 (0)	0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:cortical cell	3 (6)	0 0 0 0 (0) (0)	(4)(0)(0)(0)	1 1 0 0 (2) (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)

Grade 1 : Slight

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

^{2 :} Moderate

^{3 :} Marked

^{4 :} Severe

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

PAGE: 13

		Froup Name Control No. of Animals on Study 50	800 թթա 50	2400 թթո 50	7200 թա 50
rgalı	Findings	Frade 1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	<u>i</u> 2 3 4 (%) (%) (%) (%)
ndocrine s	system)				
renal	hyperplasia:medulla	3 3 0 0 (6) (6) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)	<50> 2 2 0 0 (4) (4) (0) (0)	<50> 1 3 1 0 (2) (6) (2) (0)
	focal fatty change:cortex	1 1 0 0 (2) (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	3 0 0 0	4 1 0 0 (8) (2) (0) (0)
eproductiv	ve system)				
stis	mineralization	<pre></pre>	<50> 2 0 0 0 (4) (0) (0) (0)	(50) 2 0 0 0 (4) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)
	inflammatory infiltration	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	arteritis	3 0 0 0 0 (6) (6) (7)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	interstitial cell hyperplasia	8 0 0 0 0 (16) (16) (16) (17)	5 0 0 0 (10) (0) (0) (0)	9 0 0 0 0 (18) (0) (0) (0)	11 0 0 0 (22) (0) (0) (0)
ostate	inflammation	<50> 6 0 0 0 (12) (0) (0) (0)	<pre></pre>	\(\lambda 50 \rangle \) \[1 0 0 \\ (2) (0) (0) (0) \]	<50> 4 0· 0 0 (8) (0) (0) (0)
rade a > b c)	i : Slight 2 : Moderate 3 a : Number of animals examined at the si b : Number of animals with lesion c : b / a * 100 difference : * : $P \le 0.05$ **: $P \le$				

(HPT150)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE

Organ	Findings	Group Name No. of Animals on Study Grade(%)	Contr 50 2 3 (%) (%)	4_	1 2 %) (%)	800 ppm 50 3 4 (%) (%)	<u>1</u> (%)	2400 50 2 3 (%) (%		<u>1</u> (%)	7200 50 2 3 (%) (%)	4
{Reproductive	system)											
prostate	hyperplasia	7 (14)	<50> 1 0 (2) (0)		6 0	(50> 0 0 (0) (0)	4 (8) (<50> 1 (2) (() 0)) (0)	2 (4) (<50> 0 0 (0) (0)	0 (0)
nammary gl	galactocele	(0)	<50> 0 0 (0) (0)		0 0	0 0 (0) (0)	1 (2) (<50> 0 (0) ((0 (0) (<50> 0 0 (0) (0)	0 (0)
{Nervous syste	em}											
orain	hemorrhage	1 (2)	<50> 0 0 (0) (0)		0 0	(50> 0 0 (0) (0)	0 (0) (<50> 0 (0) ((0 (0) (<50> 0 0 (0) (0)	0 (0)
spinal cord	hemorrhage	1 (2)	<50> 0 0 (0) (0)		0 0	(50)	0 (0) (<50> 0 (0) ((0 (0) (<50> 0 0 (0) (0)	0 (0)
(Special sens	e organs/appendage)											
eye	cataract	8 (16)	<50> 1 0 (2) (0)		6 0	(50> 0 0 (0) (0)	3 (6) (<50> 1 (2) ((4 (8) (<50> 3 0 (6) (0)	0 (0)

(IIPT150)

BAIS4

SEX

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

PAGE: 15

		Group Name No. of Animals on Study Grade <u>1</u>	Control 50 2 3 4	800 թթ 50 1 2 3 4	2400 руш 50 <u>1 2 3 4</u>	7200 ppm 50 1 2 3 4
Organ	Findings	(%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)
{Special sens	se organs/appendage)					
eye	retinal atrophy	10 (20)	<50> 4 6 0 (8) (12) (0)	<pre></pre>	\(\frac{50}{1} \) 1 2 4 0 * (2) (4) (8) (0)	<pre></pre>
	keratitis	2 (4)	3 0 0 (6) (6) (0)	3 1 0 0 (6) (2) (0) (0)	3 2 0 0 (6) (4) (0) (0)	2 3 0 0 (4) (6) (0) (0)
	iritis	2 (4)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0) (0)
	degeneration:optic nerve	1 (2)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Harder gl	degeneration	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	\(\sqrt{50}\) \(\begin{array}{cccccccccccccccccccccccccccccccccccc	(50) 0 0 0 0 (0) (0) (0) (0)
	lymphocytic infiltration	0 (0)	0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	1 (2)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
{Musculoskele	utal system)					
muscle	mineralization .	0 (0)	<50> 0 0 0 (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<pre></pre>

Grade

2 : Moderate

3 : Marked

4 : Severe

1 : Slight < a >

a: Number of animals examined at the site

b: Number of animals with lesion

c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

b

(c)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		oup Name o. of Animals on Study	Сопт 50	rol		80 - 50	00 muy 00		2400 50) բբա		7200 թթ 50	m
Organ	Gr Findings		2 3 (%) (%)	(%)	<u>1</u> (%)		3 4 (%) (%)	(%)	2 3		(%)	2 3 (%) (%)	(%)
{Musculoskele	tal system)												
bone	osteosclerosis	1 (2)	<50> 0 0 (0) (0)		0 (0) (<50> 0 (0) (0 0	0 (0) (<50> 0 (0) () 0)) (0)	(0) (<50> 0 0 0) (0) (0 (0)
Body cavities	s)												
oeritoneum	inflammatory infiltration	0 (0)	<50> 0 0 (0) (0)	0 (0)	0 (0) (<50> 0 (0) (0 0 0 0) (0)	0 (0) (<50> 0 (0) () 0)) (0)	1 (2) (<50> 0 0 0) (0) (0 (0)
ь (с)	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤ 0												

TABLE M 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1 : MALE

PAGE: 1 Group Name Control 800 ppm 2400 թթո 7200 ppm No. of Animals on Study 10 5 12 10 (%) (%) Findings_ (%) (%) (%) (%) (%) (%) Organ_ {Integumentary system/appandage} skin/app <10> < 5> <12> <10> mineralization 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) scab 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (17) (0) (0) (0) (0)(0)(0)(0) <10> < 5> <12> subcutis <10> inflammation 0 0 0 0 0 0 0 0 1 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(8)(0) (0)(0)(0)(0) {Respiratory system} nasal cavit <10> < 5> <12> <10> thrombus 0 0 0 0 0 0 (10) (0) (0) (0) (20) (20) (0) (0) (17) (0) (0) (0) (0)(0)(0)(0) mineralization 0 0 0 0 0 0 0 6 0 0 0 (40) (0) (0) (0) (40) (0) (0) (0) (58) (0) (0) (0) (60) (0) (0) (0) eosinophilic change:olfactory epithelium 7 0 0 (70) (0) (0) (0) (40) (0) (0) (0) (75) (8) (0) (0) (70) (0) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE PAGE: 2

	Group Name No. of Animals		800 թ յու 5	2400 թթտ 12	7200 קוועס 10
rgan	Grade Findings	<u>1 2 3 4</u> (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
despiratory s	system)				
asal cavit	eosinophilic change:respiratory epithelium	1 0 0 0 (10) (0) (0) (0)	<pre></pre>	1 0 0 0 (8) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)
	inflammation:foreign body	4 0 0 0 0 (40) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (17) (0) (0) (0)	1 0 0 0 0 (10) (10) (10)
	respiratory metaplasia:olfactory epithelium	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (10) (10) (10) (10)
	respiratory metaplasia:gland	10 0 0 0 (100) (0) (0)	5 0 0 0 (100) (0) (0)	11 0 0 0 (92) (0) (0) (0)	8 0 0 0 0 (80) (0) (0)
•	squamous cell metaplasia:respiratory epithelium	3 0 0 0 0 (30) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	2 0 0 0 0 (20) (20) (0) (0)
эгунх	inflammation	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 5> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
ing	congestion	<10> 2 1 0 0 (20) (10) (0) (0)	(5) 0 0 0 0 (0) (0) (0) (0)	<12> 0 0 0 0 0 0 0 0 0 0 0	<10> 2 0 0 0 (20) (0) (0) (0)

b: Number of animals with lesion

b (c) c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE: A1 SEX

ANIMAL

: MALE

No. of		Group Name No. of Animals on Study	nimals on Study 10			800 ppm 5			2400 թթո 12				7200 թթա 10							
ga1ı	Findings	Grade 1 (%)	2	3 (%)	(%)	<u>(%)</u>	2 (%)	3 (%)	(%)	(%)		2 (%)	3 (%)	<u>4</u> (%)	(9	1 %)	2 (%)	3		<u>4</u> (%)
espiratory	system)	•																		
ng	inflammatory infiltration	1 (10)	<10: 0 (0) (0	0 (0)	1 (20)	0	5> 0 (0)	0 (0)				0	0 (0)		0 0) (0	10> 0 (0		0 0)
	leukemic cell infiltration	1 (01)	0 (0) (0	0 (0)	1 (20)	0 0)	0 (0)	0 (0)	4 (33)		1		0 (0)		0 0) (0 0)	(0) (0 0)
	metastasis:adrenal tumor	0 (0)	0 (0) (0	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	(0 0) (0 (0)	0 (0)	(() 0) (l 10)	(0) (0 0)
	metastasis:thyroid tumor	0 (0)	0 (0) (0	0 (0)	1 (20) (0	0 (0)	0 (0)	0 (0)	(0	0 (0)	0 (0)	(() 0) (0 0)	(0) (0 0)
	metastasis:peritoneum tumor	0 (0)	0 (0) (0	0	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	(0	0 (0)	0 (0)		1 0) (0 (0)	(0		0 0)
	metastasis:bone tumor	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	1 20)	0 (0)	0 (0)	0 (0)	(0	0 (0)	0 (0)	(())) (0	(0) (0 0)
	metastasis:Zymbal gland tumor	0 (0)	0 (0) (0 (0)	0 (0) (0 (0)	0 (0)	0 (0)	1 (8)	(0	0 (0)	0 (0)			0 0)	0		0 0)
	accumulation of foamy cells	1 (10)	0 (0) (0	0 (0)	0 (0) (0 (0)	0 (0)	0 (0)	0 (0)	(0 (0)	0 (0)	0 (0)	(()) (0	0) (0 0)

Grade 1 : Slight 2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE: A1

SEX : MALE

	Group Name No. of Animals on Study	of Animals on Study 10			800 ppm 5 1 2 3 4			2400 ppm 12				7200 ppm 10								
rgan	Findings	Grade <u>1</u> (%)	(%)	(%)	(%)	<u>(%)</u>	(%)	3 (%		<u>4</u> (%)	(9	(6)	2 (%)	(%)	(%)		<u>1</u> (%)	2 (%)	(%)	(%
Hematopoieti	c system)																			
one marrow	leukemic cell infiltration	1 (10)	<10 0 (0) (0	0 (0)	0 (0)	1	(5> 0 (0)		0 0)		5 2) (<12 0 0)	2> 0 (0)	0 (0)		0 0) (<1 0 0)	0> 0 (0)	(0
	metastasis:peritoneum tumor	0 (0)	0 (0) (0	0 (0)	0 (0)	0 (0)	0 (0)) (0 0)	. ())) (0 0)	0 (0)	0 (0)		1 (0)	0 0)	0 (0)	0
	increased hematopoiesis	3 (30)	0 (0) (0 0)	0 (0)	0 (0)	2 (40)	0 (0)		0 0)		l 3) (0	0 (0)	0 (0)		1 to) (0 0)	0 (0)	(0
	decreased hematopoiesis	. 0	0 (0) (0	0 (0)	0 (0)	(0)	0 (0)) (0 0)))) (0	0 (0)	0 (0)		1 10) (0 0)	0 (0)	(0
mph node	leukemic cell infiltration	0 (0)	(10 0 (0) (0	0 (0)	0 (0)	0	(5> 0 (0)		0 0)		l 3) (<12 0 0)	2> 0 (0)	0 (0)		0 0) (<1 0 0)	0 (0)	0 (0
	metastasis:adrenal tumor	. 0	0 (0) (0 0)	0 (0)	0 (0)	(0)	0 (0)) (0 0)	(())) (0	0 (0)	0 (0)		0 (1 10)	0 (0)	(0
	metastasis peritoneum tumor	0 (0)	0 (0) (0	0 (0)	0 (0)	0 (0)	0 (0		0 0)))) (0	0 (0)	0 (0)		1 10) (0	0 (0)	(0
leen	congestion	1 (10)	<10 0 (0) (0	0 (0)	0 (0)	0	(5> 0 (0)		0 0)))) (<12 0 0)	2> 0 (0)	0		0 0) (0) 0 <1	0> 0 (0)	0

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 5

BAIS4

(HPT150)

		Group Name No. of Animals on Study	Con-	trol		5	800 թ <u>լ</u>	m			2400 12	րրա			7200 թ 10	þBi
)rgan	Findings	Grade 1 (%)	2 3	(%)	<u>1</u> (%)	<u>2</u> (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	(%	3	(%)	1 (%)	2	3 (%)	<u>4</u> (%)
{Hematopoieti	c system)															
spleen	deposit of hemosiderin	(0)	<10> 0 0 (0) (0)		0 (0)	< 5 0 (0) (0	0 (0)	0 (0)	0	<12> 0) (0)		1 (10)	0	0 (0)	0 (0)
	extramedullary hematopoiesis	2 (20)	2 0 (20) (0)		1 (20)	1 (20) (0 (0) (0 (0)	3 (25)	1	0 (0)	0 (0)	(10)	1 (01)	0 (0)	0 (0)
{Circulatory	system)															
heart	thrombus	0 (0)	<10> 0 0 (0) (0)	•	1 (20)	0 (0) (0	0 (0)		0	<12> 0) (0)		0 (0)	0	10> 0 (0)	0 (0)
	mineralization	(0)	1 0		0 (0)	0 (0) (0 (0) ((0)	0 (0)	0		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	myocardial fibrosis	2 (20)	1 0		3 (60)	0 (0) (0 (0) (0 (0)	5 (42)	(0	0 (0)	0 (0)	5 (50)	1 (10)	0 (0)	0 (0)
artery/aort	mineralization	0 (0)	<10> 1 0 (10) (0)		0 (0)	< 5 0 (. 0) (0	0 (0)	0 (0)	0	<12> 0) (0)		1 (10)	0	10> 0 (0)	0 (0)
Grade (a) b (c) Significant d	1: Slight 2: Moderate a: Number of animals examined at b: Number of animals with lesion c: b / a * 100 lifference; *: P ≤ 0.05 **	$3: Marked \qquad 4: Severe$ the site $: P \leq 0.01 \qquad \text{Test of Chi Square}$	3													

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

PAGE: 6

		Group Name No. of Animals on Stu	dv	10	Contr	ol .			800 5	0 թթ	m			1	2400 p	niqo			7 10	7200 µ	ıpm
ga11	Findings	Grade	1 (%)	2 (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	(%)	. ;	3 %)	(%)	-	<u>1</u> (%)	2 (%)	(%)	(%)	<u>1</u> (%	5)	2 (%)	(%)	<u>4</u> (%
																·		,			
igestive sys	stem)					•															
omach	leukemic cell infiltration		0 (<10 0 0)	0	0 (0)	0 (0)	0 (0)		0 0) (0 0)	(1 8) (<1: 0 0)	2> 0 (0)	0 (0)	((<10 0 0) ()> 0 (0)	(0
	ulcer:forestomach	(0 (0 0)	1 (10)	0 (0)	(0)	1 (20)		0 0) (0 (0)	. (0 0) (0 0)	1 (8)	0 (0)	1 (10		0	0	0
	hyperplasia:forestomach	(i 10) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)		0 0) (0 0)	(1 8) (0 0)	0 (0)	0 (0)	((0	0	(0
	erosion glandular stomach	(1 (10)	2 20)	0 (0)	0 (0)	0 (0)	0 (0)) ((0 0) (0 0)	(:	2 17) (0 0)	0 (0)	0 (0)	1 (10		0	0	0
	ulcer:glandular stomach	(1 (10) (0 0)	. 0	0 (0)	0 (0)	1 (20)	· (0 0) (0 0)	(:	2 17) (1 8)	0 (0)	0 (0)	((0	0 (0)	(0
	mineralization:glandular stomach		1 10) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	(0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	1 (10		0	0 (0)	(0
mall intes	erosion	(1 10) (<10 0 0)	0	0 (0)	0 (0)			0 0) (0 0)		0 0) (<1: 0 0)	2> 0 (0)	0 (0)	((<10 0 0) ()> 0 (0)	0
	necrosis	(0 (0	0 (0)	0 (0)	0 (0)	0 (0)		0 0) (0	(0 0) (0 0)	0 (0)	0 (0)	1 (10		0	0	0

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

Group Name aug 1008 2400 ррт 7200 ppm Control No. of Animals on Study 10 5 12 10 (%) (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_

{Digestive sys	etem)				
small intes	leukemic cell infiltration	<10> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	1 0 0 0 (8) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
large intes	mineralization	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<12> 0 0 0 0 0 (0) (0) (0) (0)	\(\lambda \) \(
liver	herniation	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<12> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 1 0 0 0 (10) (0) (0) (0)
	necrosis:central	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (20) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	necrosis:focal	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:peripheral	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)

Grade 1 : Slight

2 : Moderate

3 : Marked

4 : Severe

<a>>

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

b : Number of animals with lesion

Significant difference; * : P \leq 0.05 **: P \leq 0.01 Test of Chi Square

c:b/a*100

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

)rgan	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 (%) (%) (%)	800 μριπ 5 4 (%) (%) (%) (%) (%)	2400 ppm 12 1 2 3 4 (%) (%) (%) (%)	7200 ppm 10 1 2 3 4 (%) (%) (%) (%)
Digestive s	system)				
iver	granulation	<10> 1 0 0 (10) (0) (0) (0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	inflammatory cell nest	6 0 0 (60) (0) (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 (42) (0) (0) (0)	10 0 0 0 0 (100) (0) (0)
	leukemic cell infiltration	1 0 0 (10) (0) (0) (0 1 0 0 0 0) (20) (0) (0) (0)	5 0 0 0 (42) (0) (0) (0)	0 0 0 0 0
	metastasis:bone tumor	0 0 0 (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0
	acidophilic cell focus	0 0 0 (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (10) (10) (10) (10)
	spongiosis hepatis	1 0 0 (10) (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (8) (0) (0)	0 0 0 0 0 (0) (0)
	bile duct hyperplasia	7 0 0 (70) (0) (0) (0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 (58) (0) (0) (0)	9 0 0 0 0 (90) (0) (0)
ancreas	atrophy:focal	<10> 0 0 0 0 0 0 0 0 0 0 0 0	0 . 0 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (17) (0) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)

b

(c)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE SEX

Organ	Findings	Group Name	Control 10 2 3 4 (%) (%) (%)	800 урт 5 1 2 3 4 (%) (%) (%)	2400 ррш 12 <u>1 2 3 4</u> (%) (%) (%) (%)	7200 ррпп 10 1 2 3 4 (%) (%) (%) (%)
{Digestive sy	stem}					
pancreas	leukemic cell infiltration	1 (10) (<10> 0 0 0 (0) (0) (0)	<pre></pre>	1 0 0 0 (8) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
	islet cell hyperplasia	(0) (0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 0 0 0	1 0 0 0 0 (10) (10) (10)
{Urinary syst	em)					
kidney	hyaline droplet	0 (0) (<10> 0 0 0 (0) (0) (0)	<pre></pre>	(12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	leukemic cell infiltration	1 (10) (0 0 0 0 (0) (0)	1 0 0 0 0 (20) (20) (0) (0)	4 0 0 0 (33) (0) (0) (0)	0 0 0 0 0 (0) (0)
	chronic nephropathy	1 (10) (1 1 2 (10) (10) (20)	0 0 0 0 0 (0)	4 1 1 0 (33) (8) (8) (0)	1 0 1 0 (10) (0) (10) (0)
	papillary necrosis	0 (0) (0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	6 0 0 0 *
	mineralization:papilla	0 (0) (0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	i 0 0 0 (8) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)

(HPT150)

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

0rgan	I	Froup Name Control No. of Animals on Study 10 Frade 1 2 3 4 (%) (%) (%) (%)	800 ppm 5 1 2 3 4 (%) (%) (%) (%)	2400 ppm 12 12 3 4 (%) (%) (%) (%)	7200 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Urinary sys	tem}				
kidney	mineralization:pelvis	1 0 0 0 (10) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
•	dilatation:tubular lumen	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 t 0 0 (0) (10) (0) (0)
	urothelial hyperplasia:pelvis	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
urin bladd	inflammation	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	1 0 0 0 (8) (0) (0) (0)	(10) (0) (0) (0)
	leukemic cell infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)
	transitional cell hyperplasia	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)
{Endocrine s	ystem)				
pituitary	hyperplasia	<10> 1 0 0 0 (10) (0) (0) (0)	1 1 0 0 (20) (20) (0) (0)	4 1 0 0 (33) (8) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
Grade <a>> b <a>c c c c c c c c c c c c c c c c c c c	 a : Number of animals examined at the sith b : Number of animals with lesion c : b / a * 100 				<u> </u>

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 11

		No. of Animals on Study 10 Grade 1 2	Control 3 4	800 թ յա 5 _1 2 3 4	2400 ppm 12 1 2 3 4	7200 ppm 10 1 2 3 4
rgan	Findings	(%) (%)	(%) (%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)
indocrine sy:	stem)					
ituitary	Rathke pouch	(10) 0 0 (0) (0) (0 0	<pre></pre>	<12> 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (10) (0) (0) (0)
nyroid	C-cell hyperplasia	0 0 (0) (0) (0 0	(55) 1 0 0 0 (20) (0) (0) (0)	0 1 0 0 (0) (8) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	cystic thyroid follicle	0 0 (0) (0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0) (0
arathyroid	hyperplasia	(10) (10) (0) (0 0	< 5> 0 0 0 0 (0) (0) (0) (0)	<12> 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0
drenal	hyperplasia:cortical cell	(10) (0) (0 0	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	hyperplasia medulla	0 0 (0) (0 0 0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0
	focal fatty change:cortex	0 0 (0) (0 0	1 0 0 0 (20) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0. 0 0 0 0 (0) (0) (0)

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 12

BAIS4

REPORT TYPE : A1
SEX : MALE

Organ	. Findings	Group Name Control No. of Animals on Study 10	800 թթա 5	2 400 րրտ 12	7200 թթա 10			
		Grade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)			
{Keproductiv	ve system)							
testis	mineralization	0 0 0 0 0 (0) (0) (0)	(5> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)			
	inflammatory infiltration	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)			
	arteritis	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0)			
	interstitial cell hyperplasia	4 0 0 0 (40) (0) (0) (0)	1 0 0 0 (20) (0) (0) (0)	4 0 0 0 (33) (0) (0) (0)	0 0 0 0 0 (0) (0)			
prostate	inflammation	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)			
{Nervous sys	stem)							
orain	leukemic cell infiltration	\(\langle 10 \) \(\langle 0 \) \(\langle 10 \) \(\langle 10 \) \(\langle 0 \) \(\langle	(5> 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (17) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)			
Grade <a>> b ca> ca> significant	1: Slight 2: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:				m, ma ku			

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE: A1

: MALE

Group Name Control Mag 008 2400 թթա 7200 ppm No. of Animals on Study 10 5 12 10 (%) Findings_ (%) (%) (%) (%) {Nervous system} spinal cord <10> < 5> <12> <10> henorrhage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) leukemic cell infiltration 0 (10) (0) (0) (0) (0)(0)(0)(0) (8)(8)(0)(0) (0)(0)(0)(0) {Special sense organs/appendage} < 5> eye cataract 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (30) (0) (0) (0) (0)(0)(0)(0) (8)(0)(0)(0) (10) (0) (0) (0) retinal atrophy 0 3 0 0 0 0 0 0 0 1 0 1 0 2 0 (0)(0)(30)(0) (0) (0) (0) (0) (0)(0)(8)(0) (10) (0) (20) (0) keratitis 1 1 0 0 (0)(20)(0)(0) (0) (0) (0) (0) (8)(8)(0)(0) (0)(20)(0)(0) iritis 0 0 0 0 0 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) Harder gl <10> < 5> <12> 0 0 0 lymphocytic infiltration 0 0 0 0 1 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(8)(0)(0) (0) (0) (0) (0)

Grade

2 : Moderate

4 : Severe

< a >

a: Number of animals examined at the site

b (c) b: Number of animals with lesion

c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

: MALE

DEAD AND MORIBUND ANIMALS (0-105W)

7200 ppm Group Name Control 800 ppm 2400 ppm 12 10 No. of Animals on Study 10 5 3 (%) (%) (%) (%) (%) (%) Organ_ Findings_ (%) (%) (%) (Special sense organs/appendage) Harder gl <12> <10> < 5> <10> leukemic cell infiltration 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) {Musculoskeletal system} <10> <12> muscle < 5> <10> mineralization 0 0 0 0 0 0 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) bone <10> < 5> <12> <10> 0 0 0 0 0 0 0 0 0 0 0 0 0 osteosclerosis (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Body cavities} <10> pleura < 5> <12> metastasis:lung tumor 0 0 0 0 0 0 0 0 0 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (10) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

TABLE M 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE SEX

Organ		oup Name	Control		Mqq 008			ym	2400 թթա						7200 ppm				
		of Animals on Study nde 1 (%)	40 2 3 (%) (%)	4 (%)	<u>1</u> (%)	45 2 (%)	3 (%)	<u>4</u> (%)	(%))	38 2 (%)	3 (%)	(%)	<u>1</u> %)	5)	2 (%)	10 3 (%)		4 (%)
Integumentar	ry system/appandage}																		
skin/app	fibrosis:focal	0 (0)	<40> 0 0 (0) (0) (0 0)	0 (0)	<45 0 (0) (0	0 (0)	1 (3)		<38 0 0)	0	0 (0)	0 (0)		0	0 (0)		0 0)
ubcutis	cyst	1 (3)	<40> 0 0 (0) (0) (0 0)	0 (0)	<45 0 (0) (0	0 (0)	0 (0)		<38 0 0)	0	0 (0)	0 (0)		0	.0> 0 (0)		0 0)
	abscess	0 (0)	0 0	0 0)	0 (0)	0 (0) (0 (0)	0 (0)	(3)) (0	0 (0)	0 (0)	(0		0 0)	0 (0)		0 0)
	fibrosis	(3)	0 0 (0) (0 0)	0 (0)	0 (0) (0 (0)	0 (0)	(3)		0	0 (0)	0 (0)	(0)		0 0)	0 (0)		0 0)
Respiratory	system)	•																	
asal cavit	mineralization	24 (60)	<40> 0 0 (0) (0) (0 0)	23 (51)	<45 l (2) (0	0 (0)	25 (66)		<38 0 0) (0	0 (0)	19 (48)		0			0
	eosinophilic change:olfactory epithelium	31 (78)	7 0 (18) (0) (0 (0)	40 (89)	5 (11) (0 (0)	0 (0)	28 (74)) (8 21) (0 (0)	0 (0)	27 (68		13 33)	0 (0)		0 0)
Grade (a) b (c) Significant o	1: Slight 2: Moderate 3: k a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$	Marked 4: Severe	3	-		•										-			

(HPT150)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE PAGE: 2

Organ		p Name of Animals on Study e <u>I</u> (%)	4(2 (%)	Contro) 3 (%)	1 (%)	(<u>1</u> %)	45 2 (%)	800 p 3 (%)	pm 4 (%)	-	<u>1</u> (%)	2 (%	38) (§	4_ %)	<u>1</u> (%)	4 2 (%)	7200 ₁ 0 <u>3</u> (%)	орт <u>4</u> (%)
{Respiratory	system)																			
nasal cavit	eosinophilic change:respiratory epithelium		(40 0 (0)	0	0 (0)		7 8) (<45 0 0) (0 0)	0 (0)		18 (47)	0) ()) ((0 0)	15 (38)	<4 0 (0)	0	0 (0)
	inflammation:foreign body	11 (28)	0 (0)	0 (0)	0	1 (3		0	0 0)	0 (0)		14 (37)	(0) ()) ((13 (33)	0 (0)	0 (0)	0 (0)
	respiratory metaplasia:olfactory epitheliu		0 (0)	0 (0)	0 (0)		7 6) (0	0 (0)	0 (0)		5 (13)	(3) (D) (9 (23)	0 (0)	0 (0)	0 (0)
	respiratory metaplasia gland	40 (100)	0 (0)	0 (0)	0 (0)	4 (10		0	0 0)	0 (0)		37 (97)	(0) () ()) ((0 0)	39 (98)	0 (0)	0 (0)	0 (0)
	squamous cell metaplasia:respiratory epith		1 (3)	0 (0)	0 (0)		2 4) (0	0 ()	0 (0)		(0)	1 (3) () ()) ((0 0)	2 (5)	0 (0)	0 (0)	0 (0)
larynx	infiammation	2 (5)	<40 0 (0)	0	0 (0)		0 0) (<45 0 0) (0 (0)	0 (0)		0 (0)	0) ()) ((0 0)	1 (3)	<4 0 (0)	0	0 (0)
lung	inflammatory infiltration	0 (0)	(40 0 (0)	0	0 (0)		1 2) (<45 0 0) (0 (0)	0 (0)		1 (3)	0		O) (0 0)	1 (3)	<4 0 (0)	0	0 (0)

Grade 1 : Slight 2 : Moderate

3 : Marked

< a >

a: Number of animals examined at the site

4 : Severe

b b: Number of animals with lesion

c:b/a*100

(c)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

		Group Name				Con	itro.	1) թթ	n					2400	ppi	n				200 1	niqq	
.gair	Findings_	No. of Animals on St Grade	(9	i ()	2 (%)	0 <u>3</u> (%		(%)		<u>(%)</u>		2 (%)	5 <u>3</u> (%		(%)		<u>(%)</u>		3 2 (%)	3 (%		(%)	-	<u>(%)</u>	 40 2 (%)	(%)		4 (%)
espiratory :	system)																											
ing	leukemic cell infiltration		(5		<4 0 0)	0> (0		0 0)	(0 0)		<4! 0 0)	0		0 0)	(1 3)	((3: 0 0)	8> 0 (0		0 0)	(0 0)	0	0 (0)		0 0)
	accumulation of foamy cells		(8		0 0)	0		0 0)	(1 2)	(0 0)	0		0 0)	(1 3)	(0 0)	0		0	(i 3)	0 0) (0 (0)		0 0)
	bronchiolar-alveolar cell hyperplasia		(10		2 5)	0		0 0)	(2 4)	(0 0)	0)))) (0 0)	(1 3)	(0 0)	0		0	(1 3)	0 0) (0 (0)		0 0)
	inflammation:foreign body		((0 0)	0		0 0)	(0 0)		0 0)	0)		0 0)	(0 0)	(0	0		0 0)		1 3)	0 0) (0 (0)		0 0)
Hematopoietic	: system)																											
one matrow	granulation		((<4 0 0)	0		0 0)	(1 2)		<48 0 0)	0		0 0)	(1 3)	(<3: 0 0)	8> 0 (0		0 0)	(0 0)	<10 0 0) (0 (0)		0 0)
	leukemic cell infiltration		(5		0 0)	0		0 0)	(0 0)		0 0)	0		0 0)	(1 3)	(0 0)	0		0	(0 0)	0 0) (0 (0)		0
	increased hematopoiesis		(15		2 5)	(0		0	(4 9)		0 0)	0		0 0)	(0 0)	(0 0)	0		0 *	(2 5)	0 0) (0 (0)		0 0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE SEX PAGE: 4

		Group Name		4.	Contr	υl					ազգ C	1				2400	րիա				7200	ppm
		No. of Animals on Stu Grade	1	2	3	4_		1	2	45 3		4_		1	2	3	4_		1	2	10 3	4
rgan	Findings		(%)	(%)	(%)	(%)		(%)	(%)	(%	K)	(%)		(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%
•																						
{Hematopoietic	system)																					
lymph node				<4						45>					⟨3						10>	
	leukemic cell infiltration	(0 (0) (0	-	0 (0)	(0 0)	(0)	(0		0 0)	(1 3) (0 (0)	0 (0)	0 (0)	(0 (0 0)	0 (0)	.0
																				·		
	metastasis adrenal tumor		0	0	0	0		0	1	0		0		0	0	0	0		0	0	0	0
		(0) ((0)	(0)	(0)	. (0)	(2)	(0	0) (0)	(0) (. 0)	(0)	(0)	(0) (0)	(0)	(0
spleen				<4	n>				()	45>					<3	R>				()	10>	
оргоси	congestion	·	1	0	0	0	,	0	0	0) .		,	0	0	0	0	,	0	0	0	0
		(3) (. 0)	(0)	(0)	(0)	(0)	(0)) (0)	(0) (. 0)	(0)	(0)	(0) (0)	(0)	(0
	inflammatory infiltration		0	0	0	0		0	0	0	1	0		ı	0	0	0		0	0	0	0
			0) (((0)				((0)	((0)	-
	fibrosis:focal	(0 (0) (0)	0 (0)	0 (0)	(0)	0 (0)	(0		0)	(0 (0	0 (0)	0 (0)	(1 3) (0	0 (0)	(0
			-/ \	-/	` -/	,	`	•,	,	` •	-, \	-,	`		,	,	` =,	`	٠, ‹	•,	,	` `
	extramedullary hematopoiesis		10	3	0	0		12	0	0		0		8	I	0	0		6	0	0	0
		(25) ((8)	(0)	(0)	(27)	(0)	(0) (0)	(21) (3)	(0)	(0)	(-)	15) (0)	(0)	(0
Circulatory sy	vstem)																					
heart				< 41	0>				<4	45>					<3	8>				<4	10>	
	thrombus	(0 (0)	(n)	0	(1	0 (0)	(0		0)	(0) (0)	(0)	0 (0)	(0 (0	0 (0)	(0
		,	. •/ •	. 0/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0)	`	4)	(0)	(0	,, (07	,	0) (. 0)	(0)	(0)	(0) (0)	(0)	(0

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE SEX

PAGE: 5

		Group Name Contro			100 mgg 001	7200 բբա
rgan	Findings	No. of Animals on Study 40 Grade 1 2 3 (%) (%) (%)	45 (%) 1 2 3 (%) (%) (%)	38 4 (%) (%) (%)	3 4 (%) (%) <u>1</u>	40 2 3 4) (%) (%) (%)
Circulato	ry system)					
neart	necrosis: focal	0 0 0 0 (0) (0) (0)	(45> 0 0 0 0 (0) (0) (0) (0)	(0) (3) (0) (0 0 0	<40> 0 0 0 0 (0) (0) (0)
	myocardial fibrosis	. 13 0 0 (33) (0) (0)	0 11 0 0 (0) (24) (0) (0)	0 14 1 (37) (3) (0 0 10 0 25	0 0 0
Digestive	system)					
congue	squamous cell hyperplasia	0 0 0 0 (0) (0) (0)	(45) 0 1 0 0 (0) (2) (0) (0)	0 0 0 (0) (0) (0) (0 0 0 0	<40> 0 0 0) (0) (0) (0)
tomach	metastasis:peritoneum tumor	0 0 0 0 (0) (0) ((45) 0 0 1 0 (0) (0) (2) (0)		0 0 0	<40> 0 0 0 0 0 0 0 0 0
	erosion:forestomach	1 0 0 (3) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 (0) (0) (0 0 0 0	0 0 0
	erosion:glandular stomach	4 0 0 (10) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 3 0 (8) (0) (0 0 1 0 (3)	0 0 0 0
Grade (a) b (c) Significan	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P ≤					

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animals on Study	Control 40	- 800 թթm . 45	2400 թթու 38	7200 սրա 40
rgalı	Findings	Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	$\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$ $\frac{4}{(\%)}$	1 2 3 4 (%) (%) (%) (%)
Digestive sy:		`			-	
	s tem;					
tomach	ulcer:glandular stomach	0 (0)	<40> 0 0 0 (0) (0) (0)	(45) 1 0 0 0 (2) (0) (0) (0)	<38> 0 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0
	hyperplasia:glandular stomach	1 (3)	0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0
mall intes	ulcer	(0)	<40> 1 0 0 (3) (0) (0)	<45> 0 0 0 0 (0) (0) (0) (0)	. (38>	<40> 0 0 0 0 0 0 0 0 0 0 0 0
	erosion	1 (3)	0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0
iver	herniation	3 (8)	<40> 0 0 0 (0) (0) (0)	<45> 5 0 0 0 (11) (0) (0) (0)	(16) (0) (0) (0) 6	2 0 0 0 (5) (0) (0) (0)
	fatty change:peripheral	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0
	inflammatory cell nest	32 (80)	1 0 0 (3) (0) (0)	44 0 0 0 * (98) (0) (0) (0)	36 0 0 0 (95) (0) (0) (0)	31 0 0 0 (78) (0) (0) (0)

1 : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE PAGE: 7

		Group Name No. of Animals on Study	Control 40	800 թթm 45	2400 ապա 38	7200 թթա 40
Organ	Findings	Grade 1 (%)	2 3 4	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Digestive sy	stem}					
liver	leukemic cell infiltration	3 (8)	<40> 0 0 0 0 (0) (0) (0)	<45> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<40> 0 0 0 0 (0) (0) (0) (0)
	metastasis peritoneum tumor	1 (3)	0 0 0.	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	0 (0)	0 0 0	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	16 (40)	2 0 0	10 1 0 0 (22) (2) (0) (0)	11 1 0 0 (29) (3) (0) (0)	5 0 0 0 ***
	basophilic cell focus	4 (10)	0 0 0	7 0 0 0 0 (16) (0) (0)	9 0 0 0 0 (24) (0) (0) (0)	5 0 0 0 (13) (0) (0) (0)
	spongiosis hepatis	1 (3)	0 0 0	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	bile duct hyperplasia	37 (93)	0 0 0	44 0 0 0 (98) (0) (0) (0)	38 0 0 0 0 (100) (0) (0)	39 0 0 0 (98) (0) (0) (0)
	bile ductular proliferation	0 (0)	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (0) (3) (0) (0)

Grade 1 : Slight

2 : Moderate

3 : Marked

1 : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE

Group Name Control 800 ppm 2400 ppm 7200 ppm 40 No. of Animals on Study 45 38 40 Grade (%) Findings_ (%) (%) Organ_ (Digestive system) liver <40> <45> <38> <40> cholangiofibrosis 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (3)(0)(0)(0) focal fatty change (0)(0)(0)(0) (2)(0)(0)(0) (5)(3)(0)(0) (3)(0)(0)(0) pancreas <40> <45> <38> <40> atrophy:focal 0 0 0 0 1 0 0 0 0 5 (8)(3)(0)(0) (7)(0)(0)(0) (11) (3) (0) (0) (13) (0) (0) (0) leukemic cell infiltration 0 (0)(0)(0)(0) (0)(0)(0)(0) (3)(0)(0)(0) (0)(0)(0)(0) metastasis: peritoneum tumor (3)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) islet cell hyperplasia (3)(3)(0)(0) (0)(0)(0)(0) (5)(0)(0)(0) (3)(0)(0)(0) (Urinary system) kidney 0 0 0 0 cyst 0 0 0 0 0 0 (0)(0)(0)(0) (4)(0)(0)(0) (0)(0)(0)(0) (5)(0)(0)(0)

Grade < a > 1 : Slight

2 : Moderate

3 : Marked

4 : Severe

b

a : Number of animals examined at the site b: Number of animals with lesion

(c)

c:b/a*100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE PAGE: 9

		Group Name No. of Animals on Study	40	Contr	ol .			800 45	րթա			38	2400 p	pm				7200 40	0 ppr	aı .
rgan	Findings	Grade 1 (%)	2 (%)	(%)	(%)	<u> </u> (%)	2 (%)	(%)	(%)	<u>1</u> (%	6)	2 (%)	(%)	(%)	(%	<u>L</u> %)	(%)		3 %)	(%)
Urinary sys	tem)																			
kidney	scar	0 (0)	<40 0 (0) (0	0 (0)	0 (0)	1	45> 0 (0)	0 (0)		l 3) (<38 0 0)	3> 0 (0)	0 (0)		0 0) (0 0 0)		0 0) (0
	metastasis:peritoneum tumor	. 1	0 (0) (0 0)	0 (0)	0 (0).	0 (0)	0 (0)		((0 0)	0 (0)	0 (0)	(() 0) (0		0 0) (0 0)
	chronic nephropathy		20 (50) (10 25)	1 (8)	21 (47)	15 (33)	9 (20)		24 (63		11 29)	1 (3)	0 ** (0)	25 (58		7 18)		2 5) (0 ** 0)
	papillary necrosis	(0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	7 (18		0	0 (0)	0 *	31 (78		0	((0 0) (0 ** 0)
	mineralization:papilla	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(())) (0	0 (0)	0 (0)	(3	1 3) (0 0)	(1	0 0) (0 0)
	mineralization:pelvis	(3)	0 (0) (0	0 (0)	1 (2)	0 (0)	(0)	0 (0)	(3	l 3) (0	0 (0)	0 (0)	(() 0) (0 0)		0 0) (0 0)
	urothelial hyperplasia:pelvis	(3)	0 (0) (0 0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	1 (3	3) (1 3)	0 (0)	0 (0)	(() 0) (0		0 0) (0 0)
	inflammation:papilla	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0	0 (0)	0 (0)	((0	0 (0)	0 (0)		1 3) (0 0)		0 0) (0 0)

Grade 1 : Slight

2 : Moderate

3 : Marked 4 : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE SEX

PAGE: 10

		Group Name No. of Animals on Study	Cor 40	ntro1		800 թ 45	pm		2 38	400 թթ	tn	7200 թ թա
rgan	Findings	Grade	2	3 4 %) (%)	(%)	2 3 %) (%)	<u>4</u> (%)	<u>1</u> (%)	2 (%)	3 (%)	<u>4</u> (%)	1 2 3 4 (%) (%) (%) (%)
Urinary syst	em)											
nrin bladd	transitional cell hyperplasia	0 (0)	<40> 1 (3) (0 0 0) (0)	0 (0) (<45> 0 0 0) (0)	0 (0)	0 (0)	<38 0 (0) (0	0 0)	\(\langle 40 \rangle \) \[1 0 0 0 (3) (0) \qquad (0) (0) (0) \q
Endocrine sy	stem}											
pituitary	angiectasis	0 (0)	<39> 0 (0) (0 0 0) (0)	0 (0) (<45> 0 0 0) (0)	0 (0)	1 (3)	<38 1 (3) (0	0 0)	<10> 2 0 0 0 (5) (0) (0) (0
	cyst	4 (10)	0 (0 0 0) (0)	3 (7) (1 0 2) (0)	0 (0)	3 (8)	0 (0) (0 (0 0)	6 0 0 0 0 (15) (0) (0) (0)
	hyperplasia	11 (28)	9 ;	2 0 5) (0)	13 (29) (1	7 0 6) (0)	0 (0)	8 (21)	8 (21) (3 (8) (0	12 4 2 0 (30) (10) (5) (0
	Rathke pouch	2 (5)	0 (0 0 0) (0)	2 (4) (i 0 2) (0)	0 (0)	0 (0)	0 (0) (0 (0 0)	2 0 0 0 0 (5) (0) (0)
•	aberrant craniopharyngeal tissue	(0)	0 (0 0 0) (0)	1 (2) (0 0	0 (0)	1 (3)	0 (0) (0 (0 0)	0 0 0 0 0
hyroid	leukemic cell infiltration	0 (0)	<40> 0 ((0) ()	0 0 0) (0)	0 (0) (<45> 0 0 0) (0)	0 (0)	1 (3)	<38 0 (0) (0	0	<40> 0 0 0 0 (0) (0) (0) (0

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

		Group Name		Contro	1			800	րրա				mqq O					7200 1	ppm
ga1ı	Findings	No. of Animals on Study Grade 1 (%)	40 2 (%)	3 (%)	(%)	(%)	(%)	45 3 (%)	<u>4</u> (%)	<u>1</u> (%)			3 (%)	<u>4</u> (%)	. ((%)	2 (%)	0 3 (%)	(9
indocrine sy	ystem)																		
nyroid	ultimobranchial body remanet	0 (0)	(40) 0 (0) (0	0 (0)	0 (0)	0	45> 0 (0)	0 (0)	1 (3)		<38> 0 0) (0 0)		0 0) (<40 0 0) (0	((
N.	C-cell hyperplasia	8 (20)	0 (0) (0 0) (0	5 (11)	2 (4)	0 (0)	0 (0)	3 (8)	(1 3) (0 0)		5 3) (3 8) (2 (5)	((
	cystic thyroid follicle	(3)	0 (0) (0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)		0 0) (0 0)	(3) (0	0 (0)	((
drenal	cyst	0 (0)	<400 0 (0) (0	0	1 (2)	0	45> 0 (0)		0 (0)		<38> 0 0) (0 0)		0 0) (<40 0 0) (0	((
	osseous metaplasia	0 (0)	0 (0) (0	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0 (0 0)		0 0) (0	0 (0)	((
	leukemic cell infiltration	0 (0)	0 (0) (0	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(1 3) (0 0)	(0 0) (0 0)	0 (0)	((
	hyperplasia:cortical cell	2 (5)	0 (0) (0	0 (0)	2 (4)	0 (0)	0 (0)	0 (0)	(3)	(1 3) (0		2 5) (1 3) (0 (0)	((
	hyperplasia:medulla	3 (8)	3 (8) (0	0 (0)	2 (4)	i (2)	0 (0)	0 (0)	2 (5)	(2 5) (0 0)		1 3) (1	1 (3)	((

b

b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

Organ	Ŋ	Froup Name Control No. of Animals on Study 40 Arade 1 2 3 4 (%) (%) (%) (%)	800 ppm 45 1 2 3 4 (%) (%) (%) (%)	2400 ppm 38 1 2 3 4 (%) (%) (%) (%)	7200 ppm 40 1 2 3 4 (%) (%) (%) (%)
{Endocrine s	system)			the second secon	· · · · · · · · · · · · · · · · · · ·
ndrenal	focal fatty change:cortex	<40> 1 1 0 0 (3) (3) (0) (0)	<45> 1 0 0 0 (2) (0) (0) (0)	<38> 3 0 0 0 (8) (0) (0) (0)	<40> 4 1 0 0 (10) (3) (0) (0)
(Reproductiv	re system)				•
estis	mineralization	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	38> 1 0 0 0 (3) (0) (0) (0)	<10> 0 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)
	arteritis	2 0 0 0 0 (5) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	interstitial cell hyperplasia	4 0 0 0 (10) (0) (0) (0)	4 0 0 0 0 (9) (0) (0)	5 0 0 0 (13) (0) (0) (0)	11 0 0 0 (28) (0) (0) (0)
emin ves	metastasis:peritoneum tumor	(40) i 0 0 0 (3) (0) (0) (0)	<45> 0 0 0 0 0 0 0 0 0 0 0 0 0	38> 0 0 0 0 0 0 0 0 0 0	<40> 0 0 0 0 (0) (0) (0) (0)
rade a > b c) ignificant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a * 100	Marked 4: Severe se			

(HPT150)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

		roup Name Control	800 ppm	2400 թթա	7200 բ րա
rgan		ade 1 2 3 (%) (%) (%)	45 (%) (%) (%) (%) (%)	38 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
Keproductive	e system)				
rostate	inflammation	40> 4 0 0 (10) (0) (0) (0 2 0 0 0 0) (4) (0) (0) (0)	38> 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)
	hyperplasia	7 1 0 (18) (3) (0) (0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 I 0 0 (11) (3) (0) (0)	2 0 0 0 0 (5) (0) (0) (0)
ammary gl	galactocele	0 0 0 (0) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	38> 1 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
Nervous syst	em)				
rain	hemorrhage	(40) 1 0 0 (3) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	38> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	leukemic cell infiltration	0 0 0 0 (0) (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	metastasis:pituitary tumor	0 0 0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
rade a > b c)	1: Slight 2: Moderate 3: a : Number of animals examined at the site b : Number of animals with lesion c: b / a * 100 lifference; $*: P \le 0.05$ **: $P \le 0$				

(HPT150)

BAIS4

STUDY NO. : 0641 ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE

PAGE: 14

0rgan	Findings	Group Name No. of Animals on Study Grade		800 ppm 45 1 2 3 4 (%) (%) (%) (%)	2400 ppm 38 1 2 3 4 (%) (%) (%) (%)	7200 ppm 40 1 2 3 4 (%) (%) (%) (%)
(Special sense	e organs/appendage}					
eye	cataract	5 1	<40> 0 0) (0) (0)	<45> 6 0 0 0 (13) (0) (0) (0)	<38> 2 1 0 0 (5) (3) (0) (0)	<40> 3 3 0 0 (8) (8) (0) (0)
	retinal atrophy	10 4 (25) (10)	3 0	4 4 6 0 (9) (9) (13) (0)	1 2 3 0 * (3) (5) (8) (0)	9 4 6 0 (23) (10) (15) (0)
	keratitis	2 1	0 0	3 1 0 0 (.7) (2) (0) (0)	2 1 0 0 (5) (3) (0) (0)	2 1 0 0 (5) (3) (0) (0)
	iritis	1 0	0 0	0 0 0 0	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)
	degeneration:optic nerve	1 0	0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
Harder gl	degeneration	. 0 0	<40> 0 0) (0) (0)	<45> 0 0 0 0 0 0 0 0 0	<38> 1 0 0 0 (3) (0) (0) (0)	<40> 0 0 0 0 (0) (.0) (0) (0)
	hyperplasia	1 0	0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
{Body cavities	s}					
peritoneum	inflammatory infiltration	0 0	<40> 0 0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	440> 1 0 0 0 (3) (0) (0) (0)

1 : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a > a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

TABLE M 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: FEMALE

PAGE: 17

Organ		Out Name Contro of Animals on Study 50 ade 1 2 3 (%) (%) (%) (%)	1 800 ppm 50 4 (%) (%) (%) (%) (%)	2400 ppm 50 1 2 3 4 (%) (%) (%) (%)	7200 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Integumentar	y system/appandage}				
skin/app	ulcer	(50) 0 0 0 (0) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	<pre></pre>	\$50> 1 0 0 0 (2) (0) (0) (0)
	scab	0 0 0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
{Respiratory	system)				
nasal cavit	thrombus	2 0 0 (4) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)
	mineralization	24 0 0 (48) (0) (0) (0 24 0 0 0 0) (48) (0) (0) (0)	18 0 0 0 (36) (0) (0) (0)	19 0 0 0 (38) (0) (0) (0)
	eosinophilic change olfactory epithelium	18 30 2 (36) (60) (4) (0 10 39 1 0 0) (20) (78) (2) (0)	10 34 6 0 (20) (68) (12) (0)	11 31 6 0 (22) (62) (12) (0)
	eosinophilic change:respiratory epitheliu	um 36 0 0 (72) (0) (0) (0 39 0 0 0 0) (78) (0) (0) (0)	37 1 0 0 (74),(2)(0)(0)	26 0 0 0 (52) (0) (0) (0)
	inflammation:foreign body	6 0 0 (12) (0) (0) (0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

: FEMALE

PAGE: 18

	•	Group Name No. of Animals on Study	Control 50	800 թ րու 50	2400 թ րա 50	7200 քբ ա 50
rgan	Findings	Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	i 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)
despiratory	system)					
asal cavit	respiratory metaplasia:olfactory epit		<50> 0 0 0 0) (0) (0)	<pre></pre>	2 0 0 0 (4) (0) (0) (0)	(50) 6 0 0 0 (12) (0) (0) (0)
	respiratory metaplasia:gland	49 (98) (0 0 0 0	50 0 0 0 (100) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)
	squamous cell metaplasia:respiratory		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
ing	congestion	(8) (<50> 0 0 0 0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	1 (2) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (.0) (.0) (.0)	0 0 0 0 0 (0) (0)
	accumulation of foamy cells	1 (2) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	bronchiolar-alveolar cell hyperplasia		2 0 0 4) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 0 0 0 0 (2) (3) (4) (5)
dematopoieti	c system)					•
one marrow	granulation	1 (2) (<50> 0 0 0 0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	3 1 1 0 (6) (2) (2) (0)	(50) 1 0 0 0 (2) (0) (0) (0)

(a) a : Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a*100

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

PAGE: 19

		Group Name No. of Animals on Study	Control 50	800 ասկ 50	2400 թթա 50	7200 թթա 50
rgan	Findings	Grade <u>1 2</u> (%) (%)	3 4	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
Hematopoiet	ic system)					
one marrow	increased hematopoiesis	6 0	(50> 0 0 0 (0) (0)	3 0 0 0 (6) (0) (0) (0)	50> 5 0 0 0 (10) (0) (0) (0)	<50> 7 0 0 0 (14) (0) (0) (0)
	decreased hematopoiesis	1 0 (2) (0)	0 .0	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
spleen	congestion	0 0	(50) 0 0 0 (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>
	deposit of hemosiderin	1 0	0 0	i 0 0 0 (2) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 (4) (0) (0)
	extramedullary hematopoiesis	17 3 (34) (6)	2 0	14	16 2 1 0 (32) (4) (2) (0)	16 5 1 0 (32) (10) (2) (0)
Circulatory	system)					
eart	thrombus	0 0	(50) 0 0 0 (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0	<pre></pre>
Grade (a> b (c) Significant	l: Slight 2: Moderate a: Number of animals examined at tl b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:	$3:$ Marked $4:$ Severe site $P \leq 0.01$ Test of Chi Square				

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE

PAGE: 20

Organ	Group No. c Grade Findings	f Animals on Study 50	800 υμπ 50 <u>1 2 3 4</u> (%) (%) (%)	2400 ppm 50 1 2 3 4 (%) (%) (%) (%)	7200 ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Circulatory	system}				·
heart	myocardial fibrosis	50> 5 0 0 0 (10) (0) (0) (0)	\$ 0 0 0 (16) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	7 0 0 0 (14) (0) (0) (0)
{Digestive s	ystem)				
oral cavity	inflammatory infiltration	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
ongue	ulcer	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)
	squamous cell hyperplasia	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
stomaclı	erosion:forestomach	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)
Grade (a) b (c)	1: Slight 2: Moderate 3: Mar a: Number of animals examined at the site b: Number of animals with lesion c: b/a*100	ked 4: Severe			

(IIPT150)

: 0641

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

X : FEMALE

PAGE: 21

		Group Name No. of Animals on Study	o. of Animals on Study 50				800 ppm 50					2400 ppm 50								7: 50	200 <u>ı</u>	opm	
Organ	Findings	Grade <u>1</u> (%)	2	2 3 4		(%)		2 (%)	(%)	<u>4</u> (%)		<u>1</u> (%)	(%)		3 %)	(%)		<u>1</u> (%)	(%	}	3 (%)		<u>4</u> (%)
{Digestive sy	stem}																						
stomach	ulcer:forestomach	1 (2)	<50> 1 (2) (1	0 (0)	0 (0) (<50 1 2)	0	0 (0)	(1 2) (2 (4)	50>	0 0) (0 0)	(0 0)		<50: ; l) (0 0 0)		0 0)
	hyperplasia:forestomach	0 (0)	0 (0) (0	0 (0)	1 (2) (1 2)	0 (0)	0 (0)	(3 6) (0 (0)	(0 0) (0 0)	. (2 4)	(4)) (0 0)	(0 0)
	erosion:glandular stomach	(8)	1 (2) (0	0 (0)	2 (4) (0	0 (0)	0 (0)	(2 4) (0 (0)	(0 0) (0 0)	(2 4)	(())) (0	(0 0)
	ulcer:glandular stomach	(2)	2 (4) (0 0) (0 (0)) (1 2)	0 (0)	0 (0)	(0	0 (0)		0 0) ((0 0)		; !) (0 0)		0 0)
	hyperplasia:glandular stomach	0 (0)	0 (0) (0	0 (0)	0 (0) (0	0 (0)	0 (0)	(0	1 2)	(0 0) (0 0)	(1 2)	(())) (0 0)	(0 0)
small intes	hyperplasia		<50> 0 (0) (0	0 (0)) (<50 0 0)	0	0 (0)	(0				0 0)	(1 2)		<50)))) (> 0 0)		0 0)
large intes	invagination	0 (0)	<50> 1 (2) (0	0 (0)	. 0) (<50 0 0)	0	0 (0)	(0	0 (0)		0 0) (0 0)	(0 0)	((<50)))) (0 0)		0 0)

Grade 1 : Slight

2 : Moderate

3 : Marked

4 : Severe

⟨a⟩ a: Number of

a : Number of animals examined at the site

b: Number of animals with lesion

b b: Number of an (c) c: b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: FEMALE

PAGE: 22

		Group Name No. of Animals on Study	Control 50				800 50	ppm				50 50	2400 p	opai				72 50	200 pg	pm	
rgan	Findings	Grade <u>1</u> (%)	2 (%)	(%)	(%)	(%)	(%)	(%)) (9	<u> </u> })	<u>1</u> (%)		2 (%)	(%)	(%)	-	<u>1</u> (%)	(%)	<u> </u>	3 (%)	(%)
)igestive	system)																				
iver	herniation	9 (18)	<5 0 (0)	0	0 (0)	7 (14)	0	50> 0 (0)) ((7 (14)	(<50 0 0) (0	0 (0)	(:	8 16)	0	<50>)) (0	0 (0)
	peliosis-like lesion	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			(0)	(0	0 (0)	0 (0)	(0 0)	0 (0)		0 0)	0 (0)
	necrosis:central	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(2)) (()))	(0)	(0	1 (2)	0 (0)	(0 0)	(0)		0 0)	0 (0)
	necrosis:focal	0 (0)	0 (0)	.0	0 (0)	3 (6)	0 (0)	(0)) (()	3 (6)		0	0	0 (0)	(2 4)	(0) (0 0)	0 (0)
	fatty change:central	0 (0)	0 (0)	1 (2)	0 (0)	(0)	0 (0)	(0)) (())	(0)	(0	0 (0)	0 (0)	(0	1 (2) (0 0)	0 (0)
	fatty change peripheral	1 (2)	1 (2)	0 (0)	0 (0)	0 (0)	. 0	(0)) (()))	(2)	(1 2) (0	0 (0)	. (0 0)	(0)) (0	0 (0)
	granulation	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)) (())	(0)	(0 0) (0 (0)	0 (0)	. (0	0 (0)		0 0)	0 (0)
	inflammatory cell nest	28 (56)	4 (8)	0 (0)	0 (0)	31 (62)	1 (2)	0 (0)			27 (54)	(4 8) (0	0 (0)		27 54)	2 (4)		0 0)	0 (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

(c)

b: Number of animals with lesion c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE

		Group Name	Control	800 ppm	2400 թթա	7200 ppm
Organ	Findings	No. of Animals on Study Grade	50 2 3 4 (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)
(Digestive s	system)					
_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(50)		(50)	(50)
liver	acidophilic cell focus	5 (10)	<50> 0 0 0 (0) (0) (0)	6 1 0 0 (12) (2) (0) (0)	50> 5 1 0 0 (10) (2) (0) (0)	(50) 0 2 0 0 * (0) (4) (0) (0)
	basophilic cell focus	25 (50)	0 0 0 0 (0)	26 0 0 0 (52) (0) (0) (0)	25 1 0 0 (50) (2) (0) (0)	18 0 0 0 0 (36) (0) (0)
	bile duct hyperplasia	28 (56)	0 0 0 0 (0) (0)	24 0 0 0 (48) (0) (0) (0)	19 0 0 0 (38) (0) (0) (0)	22 0 0 0 (44) (0) (0) (0)
	bile ductular proliferation	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
pancreas	atrophy:focal	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)
	islet cell hyperplasia	0 (0)	0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
{Urinary sys	stem)					
kidney	cyst	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<pre></pre>	<50> 2 0 0 0 (4) (0) (0) (0)
Grade <a> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$					

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

: FEMALE

PAGE: 24

		Group Name	Control 50	800 ppm	2400 րրա	7200 քրա
rgan	Findings	No. of Animals on Study Grade	1 2 3 4	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)
rinary sy						
	stear					
idney	hyaline droplet	1 (2	<50> 1 0 0 0 2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	
	scar	0 (0)	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)
	chronic nephropathy	17 (34)	7 4 1 0 1) (8) (2) (0)	19 4 1 0 (38) (8) (2) (0)	19 0 0 0 0 (38) (0) (0) (0)	7 3 1 0 (14) (6) (2) (0)
	hydronephrosis	0 (0)	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 1 0 0 (4) (2) (0) (0)
	papillary necrosis	0 (0)	0 0 0 0	0 0 0 0 0 (0) (0) (0)	17 0 0 0 *** (34) (0) (0) (0)	13 18 14 0 * (26) (36) (28) (0)
	mineralization:papilla	0 (0)	0 0 0 0	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:pelvis	1 (2	1 0 0 0	0 0 0 0 .	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0) (0)
	mineralization:cortex	0 (0)	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)

Grade

1 : Slight 2 : Moderate

3 : Marked

4 : Severe

< a >

a : Number of animals examined at the site

b

(c)

b : Number of animals with lesion c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

ANIMAL

: FEMALE

ALL ANIMALS (0-105W)

800 թթա Group Name Control 2400 ррв 7200 DDm No. of Animals on Study 50 50 50 50 3 Findings_ (%) (%) (%) (%) (%) (%) Organ_ {Urinary system} kidney <50> <50> <50> <50> urothelial hyperplasia:pelvis 0 0 0 0 0 0 0 3 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (40) (6) (0) (0) inflammation:papilla (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(-0) (2)(0)(0)(0) urin bladd <50> <50> dilatation 0 0 0 0 0 0 0 0 0 0 (2)(0)(0)(0) (0) (0) (0) (0) (0)(0)(0)(0) (2)(0)(0)(0) {Endocrine system} pituitary <50> <50> ⟨50⟩ <50> angiectasis 8 (12) (6) (0) (0) (8)(8)(0)(0) (14) (8) (0) (0) (6) (16) (0) (0) cyst 11 13 (34) (2) (0) (0) (22) (0) (0) (0) (18) (2) (0) (0) (26) (4) (0) (0) deposit of hemosiderin (2)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site

b

(c)

(HPT150)

b: Number of animals with lesion

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE: A1 SEX

ANIMAL

: FEMALE

PAGE : 26

0	Findings		Control 50 2 3 4 (%) (%)	800 μμπ 50 1 2 3 4 (%) (%) (%) (%)	2400 ppm 50 1 2 3 4 (%) (%) (%) (%)	7200 ppm 50 1 2 3 4 (%) (%) (%) (%)
Organ	rindings	(%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)
{Endocrine sy	vstem)					
pituitary	hyperplasia		<50> 5 0 0 10) (0) (0)	<pre></pre>	<50> 4 i 0 0 (8) (2) (0) (0)	<50> 1 2 0 0 (2) (4) (0) (0)
	Rathke pouch	0 (0) (0 0 0 0	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 (2) (3) (3) (4)
thyroid	C-cell hyperplasia	6 (12) (<50> 1 0 0 2) (0) (0)	7 2 0 0 (14) (4) (0) (0)	50> 5 0 0 0 (10) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)
adrenal	angiectasis		<50> 0 0 0 0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)
	cyst		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	hyperplasia:cortical cell		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 1 0 0 (4) (2) (0) (0)
	hyperplasia:medulla		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)

1 : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

(HPT150)

ALL ANIMALS (0-105W)

		Group Name		Contro	1				800 1	ppm				2400 1	mq				7200 50	րթո	
rgan	Findings	No. of Animals on Study Grade(%)	50 2 (%)	3 (%)	(%)		1 (%)	5(2 (%)	3 (%)	<u>4</u> (%)		<u>1</u> (%)	2 (%)	3 (%)	(%)	-	<u>1</u> (%)	2 (%)	3 (%)	(<u>4</u> (%)
Indocrine sy	stem}						٠,														
irenal	focal fatty change:cortex	6 (12)	<500 2 (4) (0	0 (0)	(3 6) (<50 1 2)	0	0 (0)	(3 6) (<5 1 2)	0> 0 (0)	0 (0)	(3 6) (1	(0) (0)		0 0)
eproductive	system)																				
rary	cyst	(2)	<500 0 (0) (0	0 (0)	(3 6) (<50 0 0)	0	0 (0)	(1 2) (<5 0 0)	0> (0)	0 (0)	(0 0) (0	60> 0 (0)		0 0)
erus	cystic endometrial hyperplasia	2 (4)	<503 0 (0) (0	0 (0)	. (3 6) (<50 0 0)	0	0 (0)	(3 6) (<5 0 0)	0 (0)	0 (0)	(4 8) (0	0 (0)		0 0)
nmary gl	cyst	0 (0)	<503 0 (0) (0	0 (0)	(1 2) (<5(0 0)	0	0 (0)	(0 0) (<5 0 0)	0> 0 (0)	0 (0)	(0 0) (0	(0)		0 0)
pecial sens	e organs/appendage)																				
'e	cataract	4 (8)	<500 1 (2) (0	0 (0)	. (3 6) (<50 2 4)	0	0 (0)	(2 4) (<5 1 2)	0> 0 (0)	0 (0)	(0 0) (3	(0)		0 0)
ade a > b c)	1: Slight 2: Moderate 3 a: Number of animals examined at the s: b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤														Once a						

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study		Control 50				800 50	ppm				50 50	400 թ	m				720 50	nqq O	1
Organ	Findings	Grade <u>1</u> (%)	(%)	3 (%)	(%)	1 (%)	(%)	3 (%		(%)	(<u>1</u> %)	2 (%)	(%)	(%)		<u>i</u> (%)	(%)		3 %)	(%)
Special sense	e organs/appendage)																				
ye	retinal atrophy	15 (30)	<503 6 (12) (4	0 (0)	15 (30)	3	(50> 5 (10		0 0)		6 2) (<50 4 8)	2 (4)	0		16 32)	10 (20)		3 6) (0 0)
	keratitis	5 · (10)	0 (0) (0 0)	0 (0)	2 (4)	0 (0)	0 (0)) (0 0)	(1 2) (0	0 (0)	0 (0)	(0 0)	0 (0)	(:	1 2) (0 × 0)
	iritis	1 (2)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)			0 0)))) (0	0 (0)	0 (0)	(0 0)	0 (0)	(0 0) (0 0)
order gl	hyperplasia	0 (0)	<503 0 (0) (0	0 (0)	0 (0)	0			0 0)		1 2) (<50 0 0)	0 (0)	0 (0)	(0 0)	0 (0))) (0 0)
fusculoskelet	tal system)	4.3																			
uscle	mineralization	1 (2)	(50) 0 (0) (0	0 (0)	0 (0)	0	(50> 0 (0		0 0)))) (<50 0 0)	0 (0)	0 (0)	(0 0)	0	50> () ()	0 0)
one	osteosclerosis	. 5 (10)	<500 0 (0) (0	0 (0)	2 (4)	0			0 0)		2 4) (<50 2 4)	0 (0)	0 (0)	(2 4)	(0 (0)		o) (0 0)

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

BAIS4

TABLE M 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

Organ	Group Nam No. of An Grade Findings	Control imals on Study 12 12 1 4 (%) (%) (%) (%)	800 ppm 12 1 2 3 4 (%) (%) (%) (%)	2400 ppin 8 1 2 3 4 (%) (%) (%) (%)	7200 ppm 17 12 3 4 (%) (%) (%) (%)
{Integumentar	ry system/appandage)				
skin/app	scab	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	1 0 0 0 (6) (0) (0) (0)
{Respiratory	system)				
nasal cavit	thrombus	<12> 2 0 0 0 (17) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	3 0 0 0 (38) (0) (0) (0)	3 0 0 0 (18) (0) (0) (0)
	mineralization	6 0 0 0 (50) (0) (0) (0)	3 0 0 0 (25) (0) (0) (0)	4 0 0 0 0 (50) (0) (0)	6 0 0 0 0 (35) (0) (0) (0)
	leukemic cell infiltration	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0)
	eosinophilic change:olfactory epithelium	8 3 1 0 (67) (25) (8) (0)	3 9 0 0 * (25) (75) (0) (0)	4 4 0 0 (50) (50) (0) (0)	7 9 0 0 (41) (53) (0) (0)
	eosinophilic change:respiratory epithelium	4 0 0 0 0 (33) (0) (0) (0)	8 0 0 0 0 (67) (0) (0) (0)	3 1 0 0 (38) (13) (0) (0)	7 0 0 0 (41) (0) (0) (0)
	inflammation:foreign body	1 0 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (8) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Grade <a>> b (c) Significant of	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0.01$	4 : Severe			

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 16

		Group Name No. of Animals on Study	12	Contro	ol			80 12	00 թթ	m				2400 8	ppm				7 17	7200 : 7	ppm	
Organ	Findings	Grade 1 (%)	2 (%)	3 (%)	(%)	<u>1</u> (%)	<u>2</u> (%		3 (%)	<u>4</u> (%)	(<u>1</u> %)	2 (%)	(%)		<u>4</u> (%)	<u>1</u> (%) 	2 (%)	(%)		<u>4</u> (%)
{Respiratory	system)																					
nasal cavit	respiratory metaplasia:olfactory epi		<123 0 (0) (0	0	0 (0)	0	<12>) (0 0) (0 (0)	(0 0) (0	8> 0 (0)) (0 0)	1 (6) (<17 0 0) (0		0 0)
	respiratory metaplasia:gland	11 (92)	0 (0) (0 0)	0 (0)	12 (100)	0) (0 0) (0 (0)	(8	7 8) (0 0)	(0)) (0 0)	16 (94		0	0 (0)	(0 0)
	squamous cell metaplasia:respiratory		0 (0) (0 0)	0 (0)	1 (8)	0) (0 0) (0 (0)	(-	0 0) (0 0)	0 (0)) (0 0)	i (6) (0	0 (0)	(0 0)
crachea	leukemic cell infiltration	0 (0)	<123 0 (0) (0	0 (0)	1 (8)	0	<12>	0 0) (0 (0)	(:	0 0) (0	8> 0 (0)		0 0)	0		<17 0 0) (0		0 0)
lung	congestion	4 (33)	<123 0 (0) (0	0 (0)	1 (8)	0	<12>) (0 0) (0 (0)		0 0) (0	8> 0 (0)		0 0)	0 (0		0 0 0) (0		0 * 0)
	leukemic cell infiltration	0 (0)	0 (0) (0 0)	0 (0)	3 (25)	(0) (0	0 (0)	(2	2 5) (0 0)	(0)) (0 0)	2 (12		0 0) (0 (0)	(0 0)
	metastasis:uterus tumor	0 (0)	0 (0) (0 0)	0	0 (0)	0) (0 0) (0	(0 0) (0 0)	0 (0)		0 0)	2 (12) (0	0 (0)		0

Grade 1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

a : Number of animals examined at the site

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

b: Number of animals with lesion

c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

: FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

drgan	Findings	Group Name No. of Animals on Study Grade(%)	Control 12 2 3 4 (%) (%) (%)	800 μμπ 12 1 2 3 4 (%) (%) (%) (%)	2400 μμπ 8 1 2 3 4 (%) (%) (%) (%)	7200 ррш 17 <u>1 2 3 4</u> (%) (%) (%) (%)
Kespiratory	system)					
ung	metastasis:thyroid tumor	(0)	<12> 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	\(\ 8 \> \) 1	<17> 0 0 0 0 0 0 0 0 0 0 0 0
	metastasis:Zymbal gland tumor	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	(6) (0) (0) (0)
Hematopoieti	c system)					
one marrow	granulation	0 (0)	<12> 0 0 0 (0) (0). (0)	<pre></pre>	<pre></pre>	1 0 0 0 (6) (0) (0) (0)
	leukemic cell infiltration	1 (8)	0 0 0 0 (0) (0)	3 0 0 0 (25) (0) (0) (0)	2 0 0 0 0 (25) (0) (0) (0)	5 0 0 0 (29) (0) (0) (0)
	increased hematopoiesis	3 (25)	0 0 0 0 (0) (0)	2 0 0 0 0 (17) (0) (0) (0)	1 0 0 0 0 (13) (0) (0) (0)	4 0 0 0 (24) (0) (0) (0)
	decreased hematopoiesis	1 (8)	0 0 0 (0) (0)	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
mph node	leukemic cell infiltration	0 (0)	<12> 0 0 0 (0) (0) (0)	<12> 2	<pre></pre>	<17> 0 0 0 0 0 0 0 0 0 0 0

< a > b

(c)

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

2400 ppm 7200 ppm Group Name 800 ppm Control No. of Animals on Study 12 12 17 8 3 (%) Findings_ (%) (%) (%) (%) (%) (%) (%) (%) Organ_ {Hematopoietic system} lymph node <12> <12> < 8>. <17> metastasis:thyroid tumor 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (13) (0) (0) (0) (0)(0)(0)(0) <12> <12> spleen < 8> <17> 0 0 0 0 0 0 0 0 0 0 deposit of hemosiderin 0 0 (0) (0) (0) (0) (8)(0)(0)(0) (13) (0) (0) (0) (12) (0) (0) (0) extramedullary hematopoiesis 2 1 1 0 1 0 2 0 0 1 1 0 2 2 1 0 (17) (8) (8) (0) (8) (0) (17) (0) (0)(13)(13)(0) (12) (12) (6) (0) {Circulatory system} heart <12> <12> < 8> <17> 0 0 0 0 0 0 0 0 1 0 0 thrombus (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(6)(0)(0) leukemic cell infiltration (0)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) myocardial fibrosis 0 0 0 0 0 0 3 0 0 0 4 0 0 0 4

(33) (0) (0) (0)

(38) (0) (0) (0)

Grade

l : Slight

2 : Moderate

3 : Marked

4 : Severe

(33) (0) (0) (0)

< a >

a: Number of animals examined at the site

b

(c)

b: Number of animals with lesion

c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

(24) (0) (0) (0)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Stud	ıdv		Control 12			800 թթ m 12					2400 թթա 8							7200 թթա 17					
gan	Findings	Grade	1	2 (%)	(%)	(%)		(%)		2 (%)	3 (%)		<u>4_</u> %)	<u>.</u>	<u>1</u> (%)	(%)	(%		(%)		(%)	(%	2	3 (%)	<u>4</u> (%)
igestive s	ystem)																								
ngue	ulcer	(0 (<12 0 0)	0	0 (0)	(0 (0)		<12 0 0) (0 0)		0	, < 0 (0)	C		0 0)	(1 6)	C		0	(0)
	squamous cell hyperplasia	. (1 (8	0	0 (0)	0 (0)	(0 (0)	(0	0 (0)	(0 0)		0 0) (0 (0)	((0	(0)	((0 0)	(0)
omach	leukemic cell infiltration	(0 (<12 0 0)	0	0 (0)		1 (8)		<12 0 0) (0 0)		0	0 (0)			0 0)	(0 0)	C	<17> 0 0) (0	0 (0)
	erosion:forestomach	(1 8)	0 (0)	0 (0)	(0		0	0 (0)		0 0)		0	0 ()	(0		0 0)	(0 0)	0 (0		0 0)	(0)
	ulcer:forestomach	. (1 (8)			0 (0)	(0 (0)	(1	0 (0)		0 0)		1 13) (2 (25)	(0		0 0)	(0	2 (12	} 2) (0 0)	(0)
	hyperplasia:forestomach	(0 (0	0 (0)	0 (0)	(0 (0)	(1 8)	0 (0)	(0 0)	()	1 [3]	0 0)	(() (0 0)	(1 6)	2 (12	2 2) (0 0)	(0)
	erosion glandular stomach	(1 8)	0 (0)	0 (0)	(1 (8)		0	0 (0)	(0 0)		1 (3)	0 ()	((0 0)	. (0 0)	0)		0	0 (0)
	ulcer:glandular stomach	(1 8) (2 17)	0 (0)	0 (0)	(0 (0)		8) (0 (0)		0 0)		0	0 (0)	(0		0 0)	(0 0)	2 (12		0 0)	0 (0)

b b : Number of animals with lesion

c:b/a * 100

(c) Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 20

		Group Name No. of Animals on Study	Control 12		800 թ թա 12				2400 թթա 8						7200 թթա 17					
rgan	Findings	Grade <u>1</u> (%)		3 (%)	<u>4</u> (%)	<u>1</u> (%)	(%)	3	(%)	<u>1</u> (%)	(9	3	3 (i) (<u>4</u> %)		(%)	2 (%)	(%))	4 (%)
Digestive sy	stem)																			
tomach	hyperplasia:glandular stomach	0 (0)		2> 0 (0)	0 (0)	0 (0)	0	12> 0 (0)	0 (0)	0 (0)	(13	< 8> . ())) (0 0)		0	0	.7> 0 (0)		0 0)
mall intes	hyperplasia	0 (0)	<1 0) (0)	0	0 (0)	0 (0)	0	12> 0 (0)	0 (0)	0 (0)	((< 8>) ())) (0 0)		1 6). (<1 0 (0)	.7> 0 (0)		0 0)
	leukemic cell infiltration	0 (0)	0 (0)	0 (0)	(0)	1 (8)	0 (0)	0 (0)	0 (0)	0 (0)	(() ())) (0 0)	(1 6) (0 (0)	(0)		0
arge intes	leukemic cell infiltration	0 (0)	<1 0) (0)	0	0 (0)	1 (8)	0		0 (0)	0		< 8>) (0 0)		1 6) (0	.7> 0 (0)		0 0)
	invagination	. (0)	1 (8)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(() (())) (0 0)	(0 0) (0 (0)	0 (0)) (0
ver	herniation	(8)	<1 0) (0)	. 0	0 (0)	1 (8)	0	12> 0 (0)	0 (0)	1 (13)	((< 8>) () (0 0)		i 6) (<1 0 (0)	.7> 0 (0)		0
	necrosis:central	0 (0)	0 (0)	1 (8)	0 (0)	0 (0)	0 (0)	1 (8)	0 (0)	(0)	(() [13		0 0)		0 (0	0 (0)		0 0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

b

a : Number of animals examined at the site

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

SEX

: FEMALE

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL REPORT TYPE : A1

DEAD AND MORIBUND ANIMALS (0-105W)

Group Name Control 800 ppm 2400 թթտ 7200 թթա No. of Animals on Study 12 12 8 17 Grade (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ_ Findings_ (%) (%) (%) (%) . (Digestive system) liver <12> <12> < 8> <17> 0 0 0 necrosis: focal 0 0 0 0 (0)(0)(0)(0) (8)(0)(0)(0) (13) (0) (0) (0) (0)(0)(0)(0) fatty change:central (0)(0)(8)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(6)(0)(0) fatty change:peripheral 0 0 0 0 0 (8)(8)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) granulation 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(8)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) inflammatory cell nest 0 0 4 0 4 0 (8)(0)(0)(0) (33) (0) (0) (0) (13) (0) (0) (0) (24) (0) (0) (0) leukemic cell infiltration 0 1 0 0 2 3 0 0 0 (0) (8) (0) (0) (17) (8) (0) (0) (13) (13) (0) (0) (18) (6) (0) (0) metastasis:uterus tumor (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (12) (0) (0) (0) acidophilic cell focus 0 2 0 0 0 (0)(0)(0)(0) (17) (8) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0)

Grade 1 : Slight 2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

		Group Name Control No. of Animals on Study 12 Grade 1 2 3 4	800 թթա 12 1 2 3 4	2400 թրա 8 1 2 3 4	7200 וואנט 17 1 2 3 4
)rgan	Findings	Grade <u>1 2 3 4</u> (%) (%) (%) (%)		(%) (%) (%) (%)	(%) (%) (%) (%)
Digestive :	system)				
iver	basophilic cell focus	2 0 0 0 0 (17) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	<pre></pre>	3 0 0 0 (18) (0) (0) (0)
	bile duct hyperplasia	5 0 0 0 0 (42) (0) (0) (0)	3 0 0 0 (25) (0) (0) (0)	0 0 0 0 0 (0) (0)	4 0 0 0 0 (24) (0) (0) (0)
ancreas	leukemic cell infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 0 (0)	<pre></pre>
	metastasis:uterus tumor	0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 (12) (0) (0) (0)
Urinary sys	stem}				
idney	leukemic cell infiltration	\(\lambda 12 \rangle \) \(1 0 0 0 \) \(\lambda 8 \rangle (0) (0) (0) 0 \qq	3 0 0 0 (25) (0) (0) (0)	<pre></pre>	<17> 2 0 0 0 (12) (0) (0) (0)
	chronic nephropathy	2 2 1 0 (17) (17) (8) (0)	2 1 1 0 (17) (8) (8) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 *

b

b: Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX

: FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name No. of Animals on Study Grade 1	1	Contr 2 3	ol 4	1	9	12	0 թթո 3	n 4		1		2400 j 8	րրո 4		1	9	7200 17) թթա	n 4
rgan	Findings	(%)	(%)	(%)	(%)	(%)	(%		%)	(%)	-	(%)	(%)	(%)	(%)		(%)	(%)			(%)
rinary syst	en)	3.311.																			
dney	hydronephrosis	0 (0)	(0)	0	0 (0)	0 (0)	0		0 0) (0 0)	(0 0) (0	8> 0 (0)	0 (0)	(2 12)	1	(17>		0 0)
	papillary necrosis	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			0 0) (0 0)	(:	2 25) (0	0 (0)	0 (0)	(7 41)	5 (29)	4 (24	i i) (0 ** 0)
	mineralization:pelvis	1 (8)	0 (0)	0 (0)	0 (0)	0 (0)	(0		0 0) (0 0)		0 0) (0 (0)	(0)	0 (0)	(0 0)	0 (0)	((0 0)
	mineralization:cortex	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0		0 0) (0 0)	(0 0) (0	0 (0)	0 (0)	(1 6)	0 (0)	((0 0)
	urothelial hyperplasia:pelvis	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0		0 0) (0 0)	(0 0) (0 (0)	0 (0)	0 (0)	(5 29)	0 (0)	((0 0)
	inflammation:papilla	(0)	0 (0)	0 (0)	0 (0)	0 (0)	(0		0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(1 6)	0 (0)	((0 0)
in bladd	dilatation	1 (8)	<1: 0 (0)	0	0 (0)	0 (0)	0		0 0) (0 0)	. (0 0) (0	8> 0 (0)	0 (0)	(1 6)	0	(17> (17)		0
	leukemic cell infiltration	0 (0)	0 (0)	0	0 (0)	1 (8)	0 (0		0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(1	0 (0)	((0 0)

Significant difference; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : FEMALE DEAD AND MORIBUND ANIMALS (0-105W)

lrgan	Findings	Group Name No. of Animals on Study Grade	1 2 3 4	800 ppm 12 1 2 3 4 (%) (%) (%)	2400 muqu 8 8 1 2 3 4 (%) (%) (%)	7200 ppni 17 1 2 3 4 (%) (%) (%) (%)
indocrine s	ystem}					
ituitary	angiectasis		<12> 0 1 0 0 00) (8) (0) (0)	2 1 0 0 (17) (8) (0) (0)	\(\ 8 \> \) 1	17> 1 4 0 0 (6) (24) (0) (0)
	cyst		1 0 0 0 0 8) (0) (0) (0)	1 0 0 0 0 (8) (8)	0 0 0 0 0 (0) (0)	2 1 0 0 (12) (6) (0) (0)
	leukemic cell infiltration		0 0 0 0 0	1 0 0 0 0 (8) (8)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	Rathke pouch		0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)
yroid	C-cell hyperplasia	. (0	<12> 0 0 0 0 0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
nc islet	leukemic cell infiltration		<12> 0 0 0 0 0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
renal	angiectasis		<12> 0 0 0 0 0) (0) (0) (0)	1 1 0 0 (8) (8) (0) (0)	<pre></pre>	<17> 0 0 0 0 0 0 0 0 0

· < a >

a: Number of animals examined at the site

b

(c) c : b / a * 100

b: Number of animals with lesion

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study	12	Contro	υ1			800 12	ppm				2400 թ 8	pin				720 17	ազ 00	m
rgalı		Grade 1 (%)	(%)	3 (%)	<u>4</u> (%)	1 (%)	2 (%)	(%)		(<u>1</u> %)	2 (%)	(%)	(%)	- A Synak and Police	<u>1</u> (%)	2 (%)		3 (%)	(%)
Endocrine sy	ystem)																			
drenal	cyst	0 (0)	<12 0 (0)	0	0 (0)	0 (0)	0 (0)	12> 0 (0)	0 (0)		o o) (0 0)	8> 0 (0)	0 (0)	(1 6)	0.		0 0) (0
	leukemic cell infiltration	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(o o) (0 0)	0 (0)	0 (0)	(1 6) (0 (0)	· (0 0) (0
	hyperplasia:cortical cell	1 (8)	0 (0)	0 (0)	0 (0)	(8)	0 (0)	0 (0)	0 (0)	() ()	0 0)	0 (0)	0 (0)	(0	0 (0)		0 0) (0
	hyperplasia:medulla	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0)	0 (0)	()) (0 0)	0 (0)	0 (0)		1 6)	0 (0)		0 0) (0
	focal fatty change:cortex	2 (17)	0 (0)	0 (0)	0 (0)	0 · (0)	(0)	(0)	0 (0)	() ()	0 0)	0 (0)	0 (0)	(0	0 (0)		0 0) (0
Reproductive	e system)																			
vary	cyst	1 (8)	<12 0 (0)	0	0 (0)	0 (0)	0	12> 0 (0)	0 (0)		o o) (0 0)		0 (0)	(0	0		0	0
	leukemic cell infiltration	0 (0)	0 (0)	0 (0)	0 (0)	l (8)	0 (0)	0 (0)	0 (0))) (0 0)	0 (0)	0 (0)	(0	0 (0)		0 0) (0
Grade (a > b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b/a * 100	: Marked 4 : Severe																		

AN1MAL

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE: A1 : FEMALE

800 ppm Group Name Control 2400 ррп 7200 ppm No. of Animals on Study 12 12 8 17 (%) (%) (%) (%) (%) (%) (%) (%) Findings_ {Reproductive system} <12> <12> < 8> ovary <17> 0 0 0 metastasis:uterus tumor 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (12) (0) (0) (0) <12> <12> < 8> uterus leukemic cell infiltration 0 0 0 0 0 0 0 0 0 0 1 0 0 (0)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) (0)(6)(0)(0) cystic endometrial hyperplasia 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) (6)(0)(0)(0) vagina <12> <12> < 8> leukemic cell infiltration 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (6)(0)(0)(0) {Nervous system} brain <12> <12> < 8> leukemic cell infiltration 0 0 0 0 0 0 0 (0)(0)(0)(0) (17) (0) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0)

Grade 1 : Slight 2 : Moderate

3 : Marked

4 : Severe

(8)(0)(0)(0)

(8)(0)(0)(0)

(0)(0)(0)(0)

< a > a: Number of animals examined at the site

metastasis:pituitary tumor

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(IIPT150)

BAIS4

(0)(0)(0)(0)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1
SEX : FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

						PAGE
		Group Name No. of Animals on Stud	Control ly 12	800 ppm 12	2400 թթա 8	7200 թ բ տ 17
rgan	Findings	Grade	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4
Nervous syst	tem}					
pinal cord	leukemic cell infiltration		0 0 0 0 0) (0) (0) (0)	2 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0
(Special sens	se organs/appendage)					
eyo	cataract	. (1 0 0 0 8) (0) (0) (0)	\(\lambda (12 \rangle \) \(1 1 0 0 \) \((8) (8) (0) (0) \)	< 8> 1 0 0 0 (13) (0) (0) (0)	<17> 0 1 0 0 (0) (6) (0) (0
	retinal atrophy	(2 2 0 0 17) (17) (0) (0)	1 0 2 0 (8) (0) (17) (0)	0 0 0 0 0 (0) (0)	0 0 1 0
	keratitis	. (2 0 0 0 0 17) (0) (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0
	iritis	. (1 0 0 0 0 8) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
{Musculoskele	etal system)					
muscle	mineralization	. (1 0 0 0 8) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Grade < a > b (c)	1: Slight 2: Moderate a: Number of animals examined at b: Number of animals with lesior c: b / a * 100 difference; *: P ≤ 0.05 ***	ı		and the state of t	· · · · · · · · · · · · · · · · · · ·	

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

ANIMAL

		Group Name No. of Animals on Study		Control 12				12	800 ₁	թթո					2400 8	ngg (11				72 17	տ 00:	muc		
rgan	Findings	Grade	<u>1</u> (%)	(%)	(%)	(%)	<u> </u>)	(%)	(%)		<u>4</u> %)	(<u>(</u> %)	2 (%)	(%		(%)		(%)	(%		3 (%)	(<u>4</u> (%
lusculoskelet	al system)																								
one	osteosclerosis		0 0) (<12 0 0)	0	0 (0)	0 (0) (<12 0 0)	2> 0 (0)	(0 0)		I 3) (0	8> (0))) (0 0)	(1 6)	0		0 0)	(0
ody cavities	;}																								
eritoneum	leukemic cell infiltration		0 0) (<12 0 0)	0	0 (0)	0) (<12 1 8)	0 (0)	(1	0 0)	())) (8> (0))) (0	(1 6)	1	<17>	0		(
	metastasis:uterus tumor		0 0) (0	0	0 (0)	0 (0) (0	0	((0 0)	())) (0 0)	. 0))) (0 0)	(1 6)	0 (0)		0	(

< a > a: Number of animals examined at the site

b: Number of animals with lesion

(c) c: b / a * 100

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

TABLE M 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE

PAGE: 15

,	Group Name No. of Animals o Grade	n Study	38	Contr 3		1	3	800 88	 4	1		42	2400 pj	om 4	1		33	200 µ	-
rgan	Findings		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%))	(%)	(%)	(%)	(%)) ((%)	(%)	(%
Integumentary	system/appandage)																		
kin/app	ulcer	(0)	<38 0 (0)	0	0 (0)	0 (0)	0	38> 0 (0)	0 0)	0 (0)		<42 0 0)	0 (0)	0 (0)	1 (3)		<33 0 0) (0	0 (0)
Respiratory s	system)																		
nsal cavit	mineralization	18 (47)	<38 0 (0)	0	0 (0)	21 (55)	0	88> 0 (0)	0	14 (33)		<42 0 0)	0 (0)	0 (0)	13 (39)		<33 0 0) (0	0 (0)
	eosinophilic change:olfactory epithelium	10 (26)	27 (71)	1 (3)	0 (0)	7 (18)	30 (79)	(3)	0 0)	6 (14)		30 71) (6 (14)	0 (0)	4 (12		22 57) (6 18)	(0
	eosinophilic change:respiratory epithelium	32 (84)	0	0 (0)	0 (0)	31 (82)	0 (0)	(0)	0 0)	34 (81)		0	0 (0)	0 (0)	19 (58)		0 0) (0 0)	0
	inflammation:foreign body	5 (13)	0 (0)	0 (0)	0 (0)	4 (11)	0 (0)	0 (0)	0 0)	2 (5)		0	0 (0)	0 (0)	(3)		0 0) (0 0)	(0
	respiratory metaplasia:olfactory epithelium	(3)	0	0 (0)	0 (0)	2 (5)	0 (0)	0 (0)	0 0)	2 (5)		0	0 (0)	0 (0)	5 (15)		0 0) (0 0)	(0
	respiratory metaplasia:gland	(100)	0	0	0 (0)	38 (100)	0 (0)	0 (0)	0 0)	42 (100)		0	0	0	33 (100)		0 0) (0 0)	0 (0

< a >

a: Number of animals examined at the site

b .

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

		Group Name No. of Animals on Study	Control 38	וועע 800 38	2400 թթա 42	7200 ppm 33
Organ		Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Respiratory s	system}					
nasal cavit	squamous cell metaplasia:respiratory e		<38> 0 0 0 (0) (0) (0)	38> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 0 0 0 0 0 0 0) (0) (0) (0)	33> 1 0 0 0 (3) (0) (0) (0)
lung	inflammatory infiltration	1 (3)	. <38> 0 0 0 (0) (0) (0)	<38> 2 0 0 0 (5) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	(33) 0 0 0 0 (0) (0) (0) (0)
	leukemic cell infiltration	0 (0)	1 0 0 (3) (0) (0)	2 1 0 0 (5) (3) (0) (0)	0 0 0 0 0	0 0 0 0 0
	metastasis:skin/appendage tumor	0 (0)	0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0
	accumulation of foamy cells	1 (3)	0 0 0 (0) (0)	1 0 0 0 0 (0) (3) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
	bronchiolar-alveolar cell hyperplasia	0 (0)	2 0 0 (5) (0) (0)	1 1 0 0 (3) (3) (0) (0)	0 1 0 0	1 0 0 0 0 (3) (0) (0) (0)
 	system)					
bone marrow	granulation	(3)	<38> 0 0 0 (0) (0) (0)	3 0 0 0 (8) (0) (0) (0)	3 1 1 0 (7) (2) (2) (0)	33> . 0 0 0 0 (0) (0) (0) (0)
<pre>< a > b</pre>	a : Number of animals examined at the si b : Number of animals with lesion c : b / a * 100 $$					

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

		roup Name	Control	800 muy 008	2400 թթա	7200 թթո
Organ			38 2 3 4 %) (%) (%)	38 <u>1</u> 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	33 1 2 3 4 (%) (%) (%) (%)
{Hematopoie	ic system)					
bone marrow	leukemic cell infiltration		<38> 0 0 0 0) (0) (0)	3 0 0 0 (8) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<33> 0 1 0 0 (0) (3) (0) (0)
	increased hematopoiesis		0 0 0	1 0 0 0 0 (3) (3) (0) (0)	4 0 0 0 0 (10) (10) (10)	3 0 0 0 0 (9) (0) (0)
	decreased hematopoiesis		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0
spleen	congestion		<38> 0 0 0 0) (0) (0)	<pre></pre>	\(\lambda 42 \rangle \) \(1 0 0 (0) (0) (0) (0) \)	<pre></pre>
	deposit of hemosiderin		0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis		2 1 0 5) (3) (0)	13 1 0 0 (34) (3) (0) (0)	16 1 0 0 (38) (2) (0) (0)	14 3 0 0 (42) (9) (0) (0)
{Circulatory	r system)				,	
heart	myocardial fibrosis		<38> 0 0 0 0) (0) (0)	<38> 4 0 0 0 (11) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	333> 3 0 0 0 (9) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤					

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL REPORT TYPE : A1

: FEMALE

PAGE: 18

	Group Name No. of Animals on Study	Control	800 ppm 38	2400 ppm 42	7200 թթա 33
Findings	Grade 1 (%)	2 3 4_	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
stem)					
inflammatory infiltration	0 (0)	<38> 0 0 0 0 (0) (0) (0)	<pre></pre>	<42> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33> 1 0 0 0 (3) (0) (0) (0)
squamous cell hyperplasia	0 (0)		0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0
hyperplasia:forestomach	0 (0)		(38) 1 0 0 0 (3) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	(33) 1 0 0 0 (3) (0) (0) (0)
erosion:glandular stomach	1 (3)	0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
hyperplasia:glandular stomach	0 (0)		0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	i 0 0 0 0 (3) (3) (0) (0) (0)
herniation	8 (21)	<38> 0 0 0 (0) (0) (0)	(38) 6 0 0 0 (16) (0) (0) (0)	6 0 0 0 (14) (0) (0) (0)	7 0 0 0 (21) (0) (0) (0)
peliosis like lesion	(3)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration squamous cell hyperplasia hyperplasia:forestomach erosion:glandular stomach hyperplasia:glandular stomach	No. of Animals on Study Grade 1 (%) ttem) inflammatory infiltration 0 (0) squamous cell hyperplasia 0 (0) hyperplasia:forestomach 0 (0) erosion:glandular stomach 1 (3) hyperplasia:glandular stomach 0 (0) herniation 8 herniation 8 peliosis like lesion 1	No. of Animals on Study 38 Grade 1 2 3 4 (%)	No. of Animals on Study	No. of Animals on Study 38 42 1 2 3 4 4 1 2 3 4 4 1 2 4 1 2 4 1 2 4 1 2 1

l : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a > a: Number of animals examined at the site

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

b

BAIS4

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

: FEMALE

PAGE: 19

Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 38 2 3 4 (%) (%) (%)	800 ppm 38 1 2 3 4 (%) (%) (%) (%)	2400 ppm 42 1 2 3 4 (%) (%) (%) (%)	7200 ppm 33 1 2 3 4 (%) (%) (%) (%)
{Digestive s	ystem)					
liver	necrosis:focal	0 (0) (<38> 0 0 0 (0) (0) (0)	<38> 2 0 0 0 (5) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	2 0 0 0 (6) (0) (0) (0)
	fatty change:peripheral	0 (0) (0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory cell nest	27 (71)	4 0 0 (11) (0) (0)	27	26 4 0 0 (62) (10) (0) (0)	23 2 0 0 (70) (6) (0) (0)
	leukemic cell infiltration	0 (0) (0 0 0 0 (0) (0)	4 0 0 0 (11) (0) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	5 (13) (0 0 0 (0) (0)	4 0 0 0 0 (11) (0) (0)	5 1 0 0 (12) (2) (0) (0)	0 2 0 0*
	basophilic cell focus	23 (61) (0 0 0 (0) (0)	25 0 0 0 (66) (0) (0) (0)	24 1 0 0 (57) (2) (0) (0)	15 0 0 0 (45) (0) (0) (0)
	bile duct hyperplasia	23 (61) (0 0 0 0 (0) (0)	21 0 0 0 (55) (0) (0) (0)	19 0 0 0 (45) (0) (0) (0)	18 0 0 0 (55) (0) (0) (0)
	bile ductular proliferation	0 (0) (0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a > a: Number of animals examined at the site

b: Number of animals with lesion b

c:b/a * 100 (c)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL REPORT TYPE : A1

SEX : FEMALE

PAGE: 20

		Group Name No. of Animals on Study	The state of the s				38	800 ı	opin -			4	2400 2	ppin				72 33	ի 00	pm	
rgan	Findings	Grade <u>1</u> (%)	(%)	(%)	(%)	<u></u>	5)	2 (%)	(%)	(%)	(<u>1</u> (%)	2 (%)	3 (%)	(%)		<u>(%)</u>	<u>2</u> (%	,)	3 (%)	(%)
)igestive sy	stem)																		٠		
ancreas	atrophy:focal	i (3)	(38 0 (0)	0	0 (0)	1 (3	;) (<38 0 0) (0	0 (0)		2 5) (<4 0 0)	0	0 (0)	(2 6)	0		0 0)	0 (0)
	leukemic cell infiltration	(3)	0 (0)	0 (0)	0.	(() (0	0 (0)	0 (0)	(0	0 0)	0 (0)	0 (0)	(0	0		0	0 (0)
	islet cell hyperplasia	0 (0)	0 (0) (0 (0)	0 (0)	(() (0	0 (0)	0 (0)	(1 2) (0	0 (0)	0 (0)	(0 0)	0		0	0 (0)
Jrinary syst	em)																				
dney	cyst	0 (0)	<38 0 (0) (0	0 (0)	((<38 1 3) (0	0 (0)		0 0) ((4 1 2)	0	0 (0)	(2 6)	0		0 0)	0 (0)
	hyaline droplet	(3)	0 (0) (0	0 (0)	. () (0	0 0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0)	(0		0	0 (0)
	scar	0 (0)	0 (0) (0 (0)	0 (0)	0)))) (0	0 (0)	0 (0)		0 0) (0 0)	0 (0)	0 (0)	(1 3)	1 (3		0	0 (0)
	chronic nephropathy	15 (39)	2 (5)	0 (0)	0 (0)	17 (45	6) (3	0 (0)	0 (0)		.8 13) (0	0 (0)	0 (0)	(:	7 21)	3 (9		1 3)	0 (0)

< a >

a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

(c) Significant difference; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: FEMALE

PAGE: 21

		Group Name Control No. of Animals on Study 38	800 ppm 38	2400 թթա 42	7200 ppm 33
Organ	Findings	Grade <u>1 2 3</u> (%) (%) (%)	4 1 2 3 4 %) (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
(Urinary sys	tem)				
kidney	papillary necrosis	<38> 0 0 0 (0) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	42> 15 0 0 0 ++ (36) (0) (0) (0)	33> 6 13 10 0 *** (18) (39) (30) (0)
	mineralization:papilla	0 0 0 0 (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	urothelial hyperplasia:pelvis	0 0 0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0) (0)	15 · 3 0 0 *** (45) (9) (0) (0)
{Endocrine s	ystem}				
pituitary	angiectasis	(38) 6 2 0 (16) (5) (0) ((38) 0 2 3 0 0 0) (5) (8) (0) (0)	6 4 0 0 (14) (10) (0) (0)	333> 2 4 0 0 (6) (12) (0) (0)
	cyst	16 1 0 (42) (3) (0) (0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 1 0 0 (21) (2) (0) (0)	11 1 0 0 (33) (3) (0) (0)
	deposit of hemosiderin	1 0 0 (3) (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	5 5 0 (13) (13) (0) (0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 1 0 0 (10) (2) (0) (0)	1 2 0 0 (3) (6) (0) (0)

< a >

b

a: Number of animals examined at the site

b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.0i$ Test of Chi Square

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL REPORT TYPE : A1

: FEMALE

PAGE: 22

		Group Name No. of Animals on Study Grade	Control 38 2 3 4	800 թթա 38 1 2 3 4	2400 אועע 42 1 2 3 4	7200 руні 33 1 2 3 4
Organ	Findings	(%)		(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
{Endocrine sy	rstem}					
pituitary	Rathke pouch	0 (0)	<38> 0 0 0 (0) (0) (0)	(38) 1 0 0 0 (3) (0) (0) (0)	2 0 0 0 0 (5) (0) (0) (0)	(33) 0 0 0 0 (0) (0) (0) (0)
thyroid	C-cell hyperplasia	6 (16)	<38> 1 0 0 (3) (0) (0)	38> 6 2 0 0 (16) (5) (0) (0)	\$\\ 42\>\\ 5 \ 0 \ 0 \ 0 \\ (12) \ (0) \ (0) \ (0) \ (0) \\ \end{array}	3 0 0 0 (9) (0) (0) (0)
adrenal	angiectasis	2 (5)	<38> 0 0 0 (0) (0) (0)	<38> 1 0 0 0 (3) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	<33> 4 0 0 0 (12) (0) (0) (0)
	cyst		0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)
	hyperplasia:cortical cell	4 (11)	0 0 0 0 (0) (0)	3 0 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 1 0 0 (6) (3) (0) (0)
	hyperplasia:medulla	0 (0)	0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 1 0 0
	focal fatty change:cortex	4 (11)	2 0 0 (5) (0) (0)	3 L 0 0 (8) (3) (0) (0)	3 1 0 0 (7) (2) (0) (0)	3 1 0 0 (9) (3) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: FEMALE

Organ	N	roup Name Control to of Animals on Study 38 rade 1 2 3 4 (%) (%) (%) (%)	800 ppm 38 1 2 3 4 (%) (%) (%) (%)	2400 ppm 42 1 2 3 4 (%) (%) (%) (%)	7200 ppm 33 1 2 3 4 (%) (%) (%) (%)
{Reproductiv	ve system)				
ovary	cyst	<pre></pre>	3 0 0 0 (8) (0) (0) (0)	42> 1 0 0 0 (2) (0) (0) (0)	33> 0 0 0 0 (0) (0) (0) (0)
uterus	cystic endometrial hyperplasia	<pre></pre>	3 0 0 0 (8) (0) (0) (0)	3 0 0 0 (7) (0) (0) (0)	3 0 0 0 (9) (0) (0) (0)
mammary gl	cyst	38> 0 0 0 0 (0) (0) (0) (0)	38> 1 0 0 0 (3) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)
Nervous sys	stem)				
brain	leukemic cell infiltration	<38> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(38> 1 0 0 0 (3) (0) (0) (0)	\(\langle 42 \rangle \) \(0 0 0 0 \) \(0 (0 0 (0) (0	33> 0 0 0 0 (0) (0) (0) (0)
	metastasis:pituitary tumor	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
{Special ser	nse organs/appendage)				
eye	cataract	3 i 0 0 (8) (3) (0) (0)	38> 2 1 0 0 (5) (3) (0) (0)	42> 1 1 0 0 (2) (2) (0) (0)	(33) 0 2 0 0 (0) (6) (0) (0)
Grade <a>> b (c) Significant	1 : Slight 2 : Moderate 3 : a : Number of animals examined at the sit b : Number of animals with lesion c : b / a * 100 difference ; * : $P \le 0.05$ ** : $P \le$				

STUDY NO. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE

PAGE: 24

		p Name Control of Animals on Study 38	800 ապգ 38	2400 ppm	7200 բբա
Organ	Findings		1 2 3 4 (%) (%) (%) (%)	42 1 2 3 4 (%) (%) (%) (%)	33 1 2 3 4 (%) (%) (%) (%)
Special sense	e organs/appendage)				
ye	retinal atrophy	38> 13 4 4 0 (34) (11) (11) (0)	(38) 14 3 3 0 (37) (8) (8) (0)	(42> 1 6 4 2 0 (14) (10) (5) (0)	(33) 16 10 2 0 * (48) (30) (6) (0)
	keratitis	3 0 0 0 0 (8) (0) (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
darder gl	hyperplasia	(38> 0 0 0 0 (0) (0) (0) (0)	38> 0 0 0 0 (0) (0) (0) (0)	(42) 1 0 0 0 (2) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)
Musculoskelet	tal system)				
one	osteosclerosis	<38> 5 0 0 0 (13) (0) (0) (0)	\(\langle 38 \rangle \) 2	\(\lambda 42 \rangle \) \(1 2 0 0 \) \((2) (5) (0) (0) \)	\(\lambda 33 \) \(1 0 0 0 \) \((3) (0) (0) (0) (0) \)
Body cavities	s}				
leura	metastasis:bone tumor	<38> 0 0 0 0 0 0 0 0 0 0 0	38> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 0 0 0 0 0 0 0 0	(33) 0 1 0 0 (0) (3) (0) (0)
а > b с)	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 ifference; *: $P \le 0.05$ **: $P \le 0.05$				

(HPT150)

TABLE N 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0541
ANIMAL : RAT F344/DuCr1Cr1, [F344/DuCr]
REPORT TYPE : A1
SEX : MALE

me-related Weeks	Items	Group Name	Control	800 ppm	2400 ppm	7200 ppm	g
	•						
0 - 52	NO. OF EXAMINED ANIMALS		1	1	0	. 0	
	NO. OF ANIMALS WITH TUMORS		0	0	0	0	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	0	0	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	Ö	0	. 0	
	NO. OF TOTAL TUMORS		0	0	0	0	
53 - 78	NO. OF EXAMINED ANIMALS		2	2	0	2	
	NO. OF ANIMALS WITH TUMORS		2	2	0	2	
	NO. OF ANIMALS WITH SINGLE TUMORS		2	2	Ŏ	2	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	0	
	NO. OF BENIGN TUMORS		0	0 .	0	1	
	NO. OF MALIGNANT TUMORS		2	2	0	1	
	NO. OF TOTAL TUMORS		2	2	0	2	
79 - 104	NO. OF EXAMINED ANIMALS		7	2	12	8	
	NO. OF ANIMALS WITH TUMORS		7	2	12	6	
	NO. OF ANIMALS WITH SINGLE TUMORS		4	0	7	2	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		3	2	5	4	
	NO. OF BENIGN TUMORS		11	1	11	6	
	NO. OF MALIGNANT TUMORS		1	3	8	6	
	NO. OF TOTAL TUMORS		12	4	19	12	
105 - 105	NO. OF EXAMINED ANIMALS		40	45	38	40	
	NO. OF ANIMALS WITH TUMORS		40	43	36	39	
	NO. OF ANIMALS WITH SINGLE TUMORS		7	22	16	24	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		33	21	20	15	
	NO. OF BENIGN TUMORS		86	68	57	49	
	NO. OF MALIGNANT TUMORS		12	12	7	9	
	NO. OF TOTAL TUMORS		98	80	64	58	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE

PAGE: 2

'ime-related Weeks	Items	Group Name	Control	800 ppm	2400 ррт	7200 ppm
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50
	NO. OF ANIMALS WITH TUMORS		49	47	48	47
	NO. OF ANIMALS WITH SINGLE TUMORS		13	24	23	. 28
	NO. OF ANIMALS WITH MULTIPLE TUMORS		36	23	25	19
	NO. OF BENIGN TUMORS		97	69	68	56
	NO. OF MALIGNANT TUMORS		15	17	15	16
	NO. OF TOTAL TUMORS		112	86	83	72

(HPT070)

BATS4

TABLE N 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0641
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

SEX : FEMALE .

Time-related Weeks	Items	Group Name	Control	800 ppm	2400 ppm	7200 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	0	0	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		0 0 0	0 0 0	0 0 0	1 1 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 0 0	0 0 0	0 0 0	0 1 1	
53 - 78	NO. OF EXAMINED ANIMALS		0	2	0	5	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		0 0	2 1 1	0 0 0	3 2 1	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 0 0	2 1 3	0 0 0	2 2 4	
79 - 104	NO. OF EXAMINED ANIMALS		12	. 10	8	11	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		12 3 9	10 2 8	8 4 4	10 9 1	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		18 6 24	15 3 18	8 4 12	3 8 11	
105 - 105	NO. OF EXAMINED ANIMALS		38	38	42	33	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		26 19 7	23 15 8	31 19 12	21 12 9	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		28 5 33	26 9 35	45 6 51	29 5 34	

(IIPT070)

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE

PAGE: 4

Time-related Weeks	Items	Group Name	Control	800 ppm	2400 ррт	7200 ppm	·
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		38	35	39	35	
	NO. OF ANIMALS WITH SINGLE TUMORS		22	18	23	24	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		16	17	16	11	
	NO. OF BENIGN TUMORS		46	43	53	34	
	NO. OF MALIGNANT TUMORS		11	13	10	16	
	NO. OF TOTAL TUMORS		57	56	63	50	
(ttpmeme)							

(HPT070)

BATS4

TABLE O 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

Group Name Control 800 ppm 2400 ppm 7200 ppm Findings_ 50 No. of animals on Study 50 {Integumentary system/appandage} skin/app <50> <50> <50> <50> squamous cell papilloma 4 (8%) 0 (0%) 1 (2%) 0 (0%) schwannoma 0 (0%) 0 (0%) 0 (0%) keratoacanthoma 6 (12%) 2 (4%) 2 (4%) 1 (2%) sebaceous adenoma 1 (2%) 0 (0%) 0 (0%) 0 (0%) squamous cell carcinoma 1 (2%) 0 (0%) 0 (0%) 0 (0%) trichoepithelioma:malignant 1 (2%) 0 (0%) 0 (0%) 1 (2%) subcutis <50> <50> <50> <50> fibroma 6 (12%) 1 (2%) 6 (12%) 4 (8%) lipoma 0 (0%) 0 (0%) 2 (4%) 0 (0%) schwannoma 0 (0%) 1 (2%) 0 (0%) 0 (0%) leiomyosarcoma 1 (2%) 0 (0%) 0 (0%) 0 (0%) schwannoma:malignant 0 (0%) 1 (2%) 0 (0%) 0 (0%) {Respiratory system} nasal cavit ⟨50⟩ <50> <50> ⟨50⟩ squamous cell papilloma 0 (0%) 0 (0%) 0 (0%) 1 (2%) < a > a: Number of animals examined at the site b (c) b: Number of animals with neoplasm c:b/a*100

⁽HPT085)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE

Organ		oup Name Co o. of animals on Study 50	ontrol)	800 ppm 50	2400 ppm 50	7200 ppm 50
{Respiratory s	system)					
lung	bronchiolar-alveolar adenoma	<50 2 (<50>	<50> (2%) 0	<50> (0%)
	bronchiolar-alveolar carcinoma	1 (2%) 1	(2%) 0	(0%) 1	(2%)
{Hematopoietic	system)					
one marrow	hemangioma	<50 0 (<50> (2%) 0	<50> (0%) 0	<50> (0%)
lymph node	malignant lymphoma	<50 0 (<50> (0%) 0	<50> (0%) 1	<50> (2%)
spleen	mononuclear cell leukemia	<50 4 (<50> (4%) 7	<50> (14%) 0	<50> (0%)
{Digestive sys	etem)					
oral cavity	squamous cell papilloma	<50 1 (<50> (0%) 2	<50> (4%) 0	<50> (0%)
tongue	squamous cell papilloma	<50 1 (<50> (0%) 0	<50> (0%) 0	<50> (0%)
stomach	squamous cell papilloma	<50 0 (<50> (0%) 1		<50> (0%)
liver	hepatocellular adenoma	<50 1 (<50> (2%) 0	<50> (0%) 1	<50> (2%)
	hepatocellular carcinoma	1 (2%) 1	(2%)	(2%) 1	(2%)
pancreas	hemangioma	<50 1 (<50> (0%) 0	<50> (0%) 0	<50> (0%)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

Organ	Findings	Group Name No. of animals on Study	Control 50	800 ppm 50	2400 ppm 50	7200 ppm 50
{Digestive sys	stem)					
pancreas	islet cell adenoma		<50> (6%)	<50> 5 (10%)	<50> 2 (4%)	<50> 4 (8%)
	islet cell adenocarcinoma	. 1	(2%)	3 (6%)	1 (2%)	3 (6%)
(Urinary syste	əm)					
kidney	renal cell carcinoma	0	<50> (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
urin bladd	transitional cell papilloma	2	<50> (4%)	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)
{Endocrine sys	stem)					
pituitary	adenoma	13	<49> (27%)	<50> 7 (14%)	<50> 6 (12%)	<50> 8 (16%)
	adenocarcinoma	1	(2%)	1 (2%)	2 (4%)	3 (6%)
tlıyroid	C-cell adenoma	12	<50> (24%)	<50> 12 (24%)	<50> 8 (16%)	<50> .7 (11%)
).	follicular adenoma	1	(2%)	0 (0%)	1 (2%)	0 (0%)
	C-cell carcinoma	0	(0%)	1 (2%)	1 (2%)	1 (2%)
	follicular adenocarcinoma	0	(0%)	1 (2%)	0 (0%)	2 (4%)
adrenal	pheochromocytoma	4	<50> (8%)	<50> 4 (8%)	<50> 3 (6%)	<50> 5 (10%)
- (a) b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a :	: 100	· 	•		

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE

)rgan	Findings	Group Name No. of animals on Study		Control 50		800 ppm 50		2400 ppm 50		7200 ppm - 50
{Endocrine syst	.em)	·								
ndrenal	pheochromocytoma malignant		1	<50> (2%)	1	<50> (2%)	0	<50> (0%)	. 1	<50> (2%)
Reproductive s	system)									
estis	interstitial cell tumor		35	<50> (70%)	31	<50> (62%)	31	<50> (62%)	20	<50> (40%)
ammary gl	adenoma		0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
	fibroadenoma		1	(2%)	1	(2%)	0	(0%)	0	(0%)
orep/cli gl	adenoma		1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
Nervous system	n)									
rain	glioma		0	<50> (0%)	1	<50> (2%)	0	<50> (0%)	1	<50> (2%)
	ependymoma		1	(2%)	0	(0%)	0	(0%)	0	(0%)
Special sense	organs/appendage)									
Zymbal gl	Zmbal gland tumor:benign		2	<50> (4%)	0	<50> (0%)	0	<50> (0%)	2	<50> (4%)
	Zymbal gland tumor malignant		0	(0%)	0	(0%)	1	(2%)	. 0	(0%)
(Musculoskeleta	al system)									
one	osteosarcoma		0	<50> (0%)	1	<50> (2%)	1	<50> (2%)	0	<50> (0%)

ANIMAL : RAT F344/DuCr1Crlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

Organ	Findings	Group Name No. of animals on Study	Control 50	800 ppm 50	2400 ppm 50	7200 ppm 50
Body cavitie	s)					
pleura	mesothelioma		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
peritoneum	leiomyoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	leiomyosarcoma		0 (0%)	1 (2%)	0 (0%)	0 (0%)
	mesothelioma		1 (2%)	1 (2%)	0 (0%)	0 (0%)
	histiocytic sarcoma		1 (2%)	0 (0%)	0 (0%)	1 (2%)
-						
<a>><a> b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a *	100				
(HPT085)						

TABLE O 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings.	Group Name No. of animals on Study		Control 50		800 ppm 50		2400 ppm 50		7200 ppm 50	
Integumentar	ry system/appandage)										
kin/app	schwannoma			(50>· (4%)	. 0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	
	basal cell carcinoma	1	0 ((0%)	1	(2%)	0	(0%)	0	(0%)	
ubcutis	lipoma			(50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	
	schwannoma		1 ((2%)	0	(0%)	0	(0%)	0	(0%)	
	hemangiosarcoma		0 ((0%)	1	(2%)	0	(0%)	0	(0%)	
Hematopoieti	ic system)										
one marrow	histiocytic sarcoma			(50> (0%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	
ymph node	malignant lymphoma			(50> (0%)	0	<50> (0%)	0	<50> (0%)	2	<50> (4%)	
ıymus	thymoum:nmalignant	1		(50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	
pleen	mononuclear cell leukemia			(50> (8%)	7	<50> (14%)	5	<50> (10%)	5	<50> (10%)	
Digestive sy	ystem)										
ongue	squamous cell papilloma			(50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)	
iver	hepatocellular adenoma			(50> (4%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)	
〈a〉 〉 (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c:b/8										

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

: FEMALE PAGE: 7

Organ	Findings	Group Name No. of animals on Study		Control 50		800 ppm 50		2400 ppm 50		7200 ppm 50
		A STATE A STATE OF THE PROPERTY OF THE STATE							-	
(Digestive s	ystem)									
pancreas	islet cell adenocarcinoma		<5 0 (50> 0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
{Endocrine s	ystem)									
pituitary	adenoma	. 19		50> 2 4%)	17	<50> (34%)	16	<50> (32%)	14	<50> (28%)
	adenocarcinoma	:	2 (4%)	2	(4%)	1	(2%)	0	(0%)
thyroid	C-cell adenoma		<5 6 (io> 12%)	8	<50> (16%)	11	<50> (22%)	4	<50> (8%)
	follicular adenoma	1	0 (0%)	0	(0%)	1	(2%)	0	(0%)
	C-cell carcinoma	1	0 (0%)	0	(0%)	1	(2%)	0	(0%)
	follicular adenocarcinoma	1	0 (0%)	0	(0%)	1	(2%)	0	(0%)
drenal	pheochromocytoma		<5 1 (50> 2%)	1	<50> (2%)	1	<50> (2%)	3	<50> (6%)
	pheochromocytoma:malignant		0 (0%)	0	(0%)	0	(0%)	1	(2%)
(Reproductive	e system)									
ıterüs	adetiona		<5 1 (50> 2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
	endometrial stromal polyp		7 (14%)	5	(10%)	9	(18%)	5	(10%)
					-					
(a) b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c	: b / a * 100							÷	

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : FEMALE

cinoma coma tic sarcoma ial stromal sarcoma cell papilloma		0 0 1 0	<50> (2%) (0%) (0%) (2%) <50> (0%) <50> (4%)	0 0 1	<50> (0%) (0%) (2%) (50> (4%)	0 0	<50> (0%) (0%) (0%) (0%) (50> (2%)	1 1 0	<50> (2%) (2%) (2%) (2%) (2%) <50> (0%)
coma tic sarcoma ial stromal sarcoma cell papilloma		0 0 1 0	(2%) (0%) (0%) (2%) <50> (0%) <50> (4%)	0 0 1	(0%) (0%) (0%) (2%) (50) (0%)	0 0	(0%) (0%) (0%) (0%) <50> (2%)	1 1 0	(2%) (2%) (2%) (2%) (50> (0%)
tic sarcoma ial stromal sarcoma cell papilloma		0 1 0	(0%) (2%) <50> (0%) <50> (4%)	0	(0%) (2%) <50> (0%)	0	(0%) (0%) <50> (2%) <50>	1 0	(2%) (2%) <50> (0%)
ial stromal sarcoma cell papilloma		0	(2%) <50> (0%) <50> (4%)	0	(2%) <50> (0%) <50>	0	(0%) <50> (2%) <50>	0	(2%) <50> (0%) <50>
cell papilloma		0	<50> (0%) <50> (4%)	0	<50> (0%) <50>	ı	<50> (2%) <50>	0	<50> (0%)
noma		2	(0%) <50> (4%)		(0%) <50>		(2%) <50>		(0%) <50>
			(4%)	2		1		1	
		7						•	(2%)
		,	(14%)	7	(14%)	10	(20%)	4	(8%)
cinoma		2	(4%)	1	(2%)	1	(2%)	1	(2%)
		3	<50> (6%)	3	<50> (6%)	1	<50> (2%)	2	<50> (4%)
pendage)									
and tumor:benign		1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
land tumor:malignant		0	(0%)	0	(0%)	0	(0%)	1	(2%)
COMA		0		0	<50> (0%)	0	<50> (0%)	1	<50> (2%)
14	'COMA	and tumor:benign gland tumor:malignant coma	ppendage} land tumor:benign 1 gland tumor:malignant 0 rcoma 0	Company Comp	Company Comp	Company Comp	Company Comp		Company Comp

TABLE P 1

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0641 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

: MALE

PAGE: 1

Group Name	Control	mqq 008	2400 թթա	7200 pgu	
	SITE : skin/appendage				
Promote and the	TUMOR : squamous cell papilloma	1			
fumor rate Overall rates(a)	4/50(8.0)	0/50(0.0)	1/50(2.0)	0/50(0.0)	
Adjusted rates(b)	10.00	0.0	2.63	0.0	
Terminal rates(c)	4/40(10.0)	0/45(0.0)	1/38(2.6)	0/40(0.0)	
Statistical analysis	4, 4. (4.)	-, , , , , , , ,	-, - + + + + + + + + + + + + + + + + + +	v, 2v v vv,	
Peto test				4	
Standard method(d)	P =				
Prevalence method(d)	P = 0.9725				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0856				
Fisher Exact test(e)		P = 0.0587	P = 0.1811	P = 0.0587	
	SITE : skin/appendage TUMOR : keratoacanthoma				
Tumor rate	TOMOR . Refatoacatthona				
Overall rates(a)	6/50(12.0)	2/50(4.0)	2/50(4.0)	1/50(2.0)	
Adjusted rates(b)	15. 00	4. 44	2.63	2.50	
Terminal rates(c)	6/40(15.0)	2/45(4.4)	1/38(2.6)	1/40(2.5)	
Statistical analysis			, , , , , ,	-, -: , -: ,	
Peto test					
Standard method(d)	P = 0.3775				
Prevalence method(d)	P = 0.9621				
Combined analysis(d)	P = 0.9554				
Cochran-Armitage test(e)	P = 0.0957				
Fisher Exact test(e)		P = 0.1343	P = 0.1343	P = 0.0559	
	CITE				
	SITE : subcutis TUMOR : fibroma				
'umor rate	TOMOR . IIDIONA				
Overall rates(a)	6/50(12.0)	1/50(2.0)	6/50(12.0)	4/50(8.0)	
Adjusted rates(b)	12. 20	2. 22	10.53	10.00	
Terminal rates(c)	4/40(10.0)	1/45(2.2)	4/38(10.5)	4/40(10.0)	
Statistical analysis		·/	7,777	2, 22, 22, 27	
Peto test					
Standard method(d)	P = 0.6908				
Prevalence method(d)	P = 0.3527			•	
Combined analysis(d)	P = 0.4684				•
Cochran-Armitage test(e)	P = 0.9855				
Fisher Exact test(e)		P = 0.0559	P = 0.6202	P = 0.3703	

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

EX : MALE

Group Name Control 800 ppm 2400 ppm 7200 ppm SITE : lung TUMOR : bronchiolar-alveolar adenoma, bronchiolar-alveolar carcinoma Tumor rate Overall rates (a) 3/50(6.0) 3/50(6.0) 1/50(2.0) 1/50(2.0) Adjusted rates(b) 7.50 6.67 2.63 0.0 Terminal rates(c) 3/40(7.5) 3/45(6.7) 1/38(2.6) 0/40(0.0) Statistical analysis Peto test Standard method(d) P = 0.1415Prevalence method(d) P = 0.9781Combined analysis(d) P = 0.8614Cochran-Armitage test(e) P = 0.2555Fisher Exact test(e) P = 0.6611P = 0.3087P = 0.3087SITE : spleen TUMOR : mononuclear cell leukemia Tumor rate 4/50(8,0) Overall rates (a) 2/50(4.0) 7/50(14.0) 0/50(0.0) Adjusted rates(b) 7.50 2.22 5.26 0.0 3/40(7.5) Terminal rates(c) 1/45(2.2) 2/38(5.3) 0/40(0.0) Statistical analysis Peto test Standard method(d) P = 0.7552Prevalence method(d) P = 0.9371Combined analysis(d) P = 0.9428Cochran-Armitage test(e) P = 0.1137Fisher Exact test(e) P = 0.3389P = 0.2623P = 0.0587SITE : pancreas TUMOR : islet cell adenoma Tumor rate 3/50(6.0) Overall rates(a) 5/50 (10,0) 2/50(4.0) 4/50(8.0) Adjusted rates(b) 7.50 11. 11 4.76 10.00 Terminal rates(c) 3/40(7.5) 5/45(11.1) 0/38(0,0) 4/40(10.0) Statistical analysis Peto test Standard method(d) P = ----Prevalence method(d) P = 0.4460P = -----Combined analysis(d) P = 0.9052Cochran-Armitage test(e) Fisher Exact test(e) P = 0.3575P = 0.5000P = 0.5000

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
SEX : MALE

JUN PRINCIP		-		11105			
Group Name	Control	800 ակվ	2400 թթա	1200 וועע			
	SITE : pancreas						
	TUMOR : islet cell adenocarcin	iona					
Tumor rate	1/50/ 0.0	0/50/ (5.0)	1/50/ () ()	0/50((0)			
Overall rates (a)	1/50 (2. 0) 2. 50	3/50 (6. 0)	1/50(2.0)	3/50(6.0)			
Adjusted rates(b) Terminal rates(c)	1/40(2.5)	6. 67 3/45 (6. 7)	2. 63 1/38 (2. 6)	7.50 3/40(7.5)			
tatistical analysis	1/40(2.3)	3/43(0.1)	1/30(2.0)	3/40(7.5)			
Peto test							
Standard method(d)	P =						
Prevalence method(d)	P = 0.2165						
Combined analysis(d)	P =						
Cochran-Armitage test(e)	P = 0.4694						
Fisher Exact test(e)		P = 0.3087	P = 0.7525	P = 0.3087			
	SITE : pancreas						
	TUMOR : islet cell adenoma, islet cell adenocarcinoma						
umor rate	Tomon . Islet cell adenoma, isl	ret tell adenocaltinoma					
Overall rates(a)	4/50(8.0)	8/50 (16. 0)	3/50(6.0)	7/50(14.0)			
Adjusted rates(b)	10.00	17. 78	7. 14	17.50			
Terminal rates(c)	4/40(10.0)	8/45(17.8)	1/38(2.6)	7/40(17.5)			
tatistical analysis							
Peto test							
Standard method(d)	P =						
Prevalence method(d)	P = 0.2846						
Combined analysis(d)	P =						
Cochran-Armitage test(e)	P = 0.5822						
Fisher Exact test(e)		P = 0.1783	P = 0.5000	P = 0.2623			
	SITE : pituitary gland						
	TUMOR : adenoma	•					
umor rate							
Overall rates(a)	13/49(26.5)	7/50 (14. 0)	6/50(12.0)	8/50(16.0)			
Adjusted rates(b)	27. 50	15. 56	15. 00	17. 50			
Terminal rates(c)	10/39(25.6)	7/45(15.6)	5/38(13.2)	7/40(17.5)			
tatistical analysis							
Peto test	D 0 F007						
Standard method(d)	P = 0.5007						
Prevalence method(d) Combined analysis(d)	P = 0.7361 P = 0.7375						
Cochran-Armitage test(e)	P = 0.7375 P = 0.4484						
Fisher Exact test(e)	r - 0.4404	P = 0.0961	P = 0.0564	P = 0.1502			
Tioner Exact rest(6)		r - 0.0901	r = 0.0004	Y = 0.150Z			

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

EX : MALE

Group Name Control 800 ppm 2400 ppm 7200 թթո SITE : pituitary gland TUMOR : adenocarcinoma Tumor rate Overall rates(a) 1/49(2.0) 1/50(2.0) 2/50(4.0) 3/50(6.0) Adjusted rates(b) 2.56 2, 22 5.265.00 Terminal rates(c) 1/39(2.6) 1/45(2.2) 2/38(5.3) 2/40(5.0) Statistical analysis Peto test P = 0.1345Standard method(d) Prevalence method(d) P = 0.2426Combined analysis(d) P = 0.1111Cochran-Armitage test(e) P = 0.2198Fisher Exact test(e) P = 0.7576P = 0.5077P = 0.3163SITE : pituitary gland TUMOR : adenoma, adenocarcinoma Tumor rate Overall rates(a) 14/49 (28.6) 8/50(16.0) 8/50 (16.0) 11/50(22.0) Adjusted rates(b) 30.00 17. 78 20.00 22.50 Terminal rates(c) 11/39(28.2) 8/45 (17.8) 7/38(18.4) 9/40(22.5) Statistical analysis Peto test Standard method(d) P = 0.2342Prevalence method(d) P = 0.6103Combined analysis(d) P = 0.5031Cochran-Armitage test(e) P = 0.8835Fisher Exact test(e) P = 0.1032P = 0.1032P = 0.3013SITE : thyroid TUMOR : C-cell adenoma Tumor rate Overall rates(a) 12/50(24.0) 12/50(24.0) 8/50 (16.0) 7/50(14.0) Adjusted rates(b) 25.00 26.67 21.05 16.67 Terminal rates(c) 10/40(25.0) 12/45 (26.7) 8/38(21.1) 6/40(15.0) Statistical analysis Peto test Standard method(d) P = 1.0000 ? Prevalence method(d) P = 0.8906Combined analysis(d) P = 0.9165Cochran-Armitage test(e) P = 0.1560

P = 0.2270

P = 0.5924

(HPT360A)

Fisher Exact test(e)

P = 0.1540

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

SEX : MALE

Group Name Control 800 ppm 2400 ppm 7200 ppm SITE : thyroid TUMOR : C-cell adenoma, C-cell carcinoma Tumor rate Overall rates (a) 12/50(24.0) 13/50 (26,0) 9/50(18.0) 8/50(16.0) Adjusted rates(b) 25.00 28.8921.05 19.05 Terminal rates(c) 10/40(25.0) 13/45 (28.9) 8/38(21.1) 7/40(17.5) Statistical analysis Peto test Standard method(d) P = 0.6947Prevalence method(d) P = 0.8459Combined analysis(d) P = 0.8773Cochran-Armitage test(e) P = 0.2231Fisher Exact test(e) P = 0.5000P = 0.3121P = 0.2270SITE : adrenal gland TUMOR : pheochromocytoma Tumor rate Overall rates(a) 4/50(8.0) 4/50(8.0) 3/50(6.0) 5/50(10.0) Adjusted rates(b) 7.50 8.89 7.14 12.20 3/40(7.5) Terminal rates(c) 2/38(5.3) 4/45(8.9) 4/40(10.0) Statistical analysis Peto test Standard method(d) P = 1.0000 ? Prevalence method(d) P = 0.2410Combined analysis (d) P = 0.3277Cochran-Armitage test(e) P = 0.6542Fisher Exact test(e) P = 0.6425P = 0.5000P = 0.5000SITE : adrenal gland TUMOR : pheochromocytoma, pheochromocytoma: malignant Tumor rate Overall rates(a) 5/50(10.0) 5/50(10.0) 3/50(6.0) 6/50(12.0)

7.14

2/38(5.3)

P = 0.3575

11, 11

5/45(11.1)

P = 0.6297

(HPT360A)

Adjusted rates(b)

Terminal rates(c)

Statistical analysis
Peto test
Standard method(d)

Prevalence method(d)

Combined analysis(d)

Fisher Exact test(e)

Cochran-Armitage test(e)

10.00

4/40(10.0)

P = 0.3001

P = 0.3898

P = 0.3358

P = 0.6659

12.20

4/40(10.0)

P = 0.5000

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

: MALE

Group Name	Control	800 װעָע	2400 ապա	7200 руш	
	SITE : testis TUMOR : interstitial cell tumor				
Tumor rate	TOMOR . Interstitial cell tumor				
Overall rates(a)	35/50(70.0)	31/50 (62.0)	31/50(62.0)	90/50/ 40 0)	
				20/50 (40.0)	
Adjusted rates(b)	85. 00	67. 39	71.79	50.00	
Terminal rates(c)	34/40 (85.0)	30/45 (66.7)	27/38(71.1)	20/40(50.0)	
Statistical analysis					
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.9994				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0017**				
Fisher Exact test(e)		P = 0.2634	P = 0.2634	P = 0.0023**	

(HPT360A)

BAIS4

PAGE:

- (a): Number of tumor-bearing animals/number of animals examined at the site.
- (b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
- (c): Observed tumor incidence at terminal kill.
- (d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

- (e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
- ? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.
- ----: There is no data which should be statistical analysis.

Significant difference ; $*: P \le 0.05$ **: $P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

TABLE P 2

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0641
ANIMAL : RAT F344/DuCrlCrl, [F344/DuCr,]
SEX : FEMALE

Group Name	Control	800 ppm	2400 սրա	7200 ppm
	SITE : spleen			
	TUMOR : mononuclear cell leukemia			
Tumor rate				
Overall rates(a)	4/50(8.0)	7/50 (14. 0)	5/50(10.0)	5/50(10.0)
Adjusted rates(b)	5. 26	10. 53	7. 14	3. 03
Terminal rates(c)	2/38(5.3)	4/38(10.5)	3/42(7.1)	1/33(3.0)
Statistical analysis				
Peto test	D . 0 1545			
Standard method(d) Prevalence method(d)	P = 0.1545 P = 0.7892			
Combined analysis(d)	P = 0.4100			
Cochran-Armitage test(e)	P = 0.4100 P = 0.9342			
Fisher Exact test(e)	1 - 0. 3042	P = 0.2623	P = 0.5000	P = 0.5000
	SITE : pituitary gland	A400.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		
	TUMOR : adenoma			
Tumor rate				
Overall rates(a)	12/50(24.0)	17/50 (34. 0)	16/50(32.0)	14/50(28.0)
Adjusted rates(b)	14. 63	29. 27	33. 33	30. 30
Terminal rates(c)	5/38(13.2)	11/38(28.9)	14/42(33.3)	10/33(30.3)
Statistical analysis				·
Peto test				
Standard method(d)	P = 0.9062			
Prevalence method(d)-	P = 0.1222			
Combined analysis(d)	P = 0.3917			
Cochran-Armitage test(e)	P = 0.9734			
Fisher Exact test(e)		P = 0. 1891	P = 0. 2522	P = 0. 4100
	SITE : pituitary gland			
Tumor rate	TUMOR : adenoma, adenocarcinoma			
Overall rates(a)	14/50(28.0)	19/50(38.0)	17/50(34.0)	14/50/ 20 0)
Adjusted rates(b)	14/50(26. 0)	31.71	35.71	14/50(28. 0) 30. 30
Terminal rates(c)	6/38(15. 8)	12/38(31.6)	35. 71 15/42(35. 7)	10/33(30. 3)
Statistical analysis	0,001 10.0)	12,00(31.0)	10/42(00.7)	10/33(30.3)
Peto test				
Standard method(d)	P = 0.9510			
Prevalence method(d)	P = 0.2005			
Combined analysis(d)	P = 0.5784		•	
Cochran-Armitage test(e)	P = 0.6023			
Fisher Exact test(e)		P = 0.1976	P = 0.3329	P = 0.5880

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name	Control	800 ազգ	2400 թա	7200 myu
	SITE : thyroid			
	TUMOR : C-cell adenoma			
Tumor rate		- ((
Overall rates(a)	6/50 (12. 0)	8/50 (16. 0)	11/50(22. 0)	4/50 (8.0)
Adjusted rates(b)	13. 16	17. 39	22. 45	12. 12
Terminal rates(c)	5/38(13.2)	5/38(13.2)	9/42(21.4)	4/33(12.1)
Statistical analysis Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.7582			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.3210			
Fisher Exact test(e)	. 0/0220	P = 0.3871	P = 0.1434	P = 0.3703
	SITE : thyroid			
	TUMOR : C-cell adenoma, C-cell c	arcinoma		
Tumor rate				
Overall rates(a)	6/50(12.0)	8/50 (16. 0)	12/50(24.0)	4/50(8.0)
Adjusted rates(b)	13. 16	17. 39	22. 92	12. 12
Terminal rates(c)	5/38(13.2)	5/38 (13.2)	9/42(21.4)	4/33(12.1)
Statistical analysis Peto test				,
Standard method(d)	P = 0.3509			
Prevalence method(d)	P = 0.7579			
Combined analysis(d)	P = 0.7545			
Cochran-Armitage test(e)	P = 0.3209			
Fisher Exact test(e)		P = 0.3871	P = 0.0961	P = 0.3703
	SITE : adrenal gland			
	TUMOR : pheochromocytoma			
fumor rate				
Overall rates(a)	1/50(2.0)	1/50(2.0)	1/50(2.0)	3/50(6.0)
Adjusted rates(b)	2. 33	2. 04	2. 38	7. 69
Terminal rates(c)	0/38(0.0)	0/38(0.0)	1/42 (2.4)	2/33(6.1)
tatistical analysis				
Peto test	P =			
Standard method(d) Prevalence method(d)	P = P = 0.0800			
Combined analysis(d)	P = 0.0800 P =			
Cochran-Armitage test(e)	P = 0. 1721			
Fisher Exact test(e)	1 - 0.1121	P = 0.7525	P = 0.7525	P = 0.3087
1 1 3 Her Exact test(e)		r = 0.1020	Y = 0.7525	Y = 0.3087

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0641
ANIMAL : RAT F344/DuCrlCrl, [F344/DuCr]
SEX : FEMALE

Group Name	Control	800 ppm	2400 րրա	7200 ppm	
	SITE : adrenal gland				
umor rate	TUMOR : pheochromocytoma, pheoc	hromocytoma:malignant	•		
Overall rates(a)	1/50(2.0)	1/50(2.0)	1/50(2.0)	4/50(8.0)	
Adjusted rates(b)	2. 33	2.04	2.38	10. 26	
Terminal rates(c)	0/38(0.0)	0/38(0.0)	1/42(2.4)	3/33(9.1)	
tatistical analysis	., ,	3, 22 (21.3)	-, \ \ -,	5, 55 (5.2)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.0284*				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0573				
Fisher Exact test(e)		P = 0.7525	P = 0.7525	P = 0.1811	
	SITE : uterus TUMOR : endometrial stromal po	lvn			
fumor rate		77			
Overall rates(a)	7/50(14.0)	5/50 (10.0)	9/50(18.0)	5/50(10.0)	
Adjusted rates(b)	14. 29	10. 53	19. 05	15. 15	
Terminal rates(c)	5/38(13.2)	4/38 (10.5)	8/42(19.0)	5/33 (15.2)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.3536				
Prevalence method(d)	P = 0.5626				
Combined analysis(d) Cochran-Armitage test(e)	P = 0.5630				
Fisher Exact test(e)	P = 0.6515	P = 0.3798	D 0.0000	D 0.0700	
risher Exact test(e)		r - 0.3198	P = 0.3929	P = 0.3798	
	SITE : mammary gland				
	TUMOR : fibroadenoma				
fumor rate					
Overall rates(a)	7/50(14.0)	7/50 (14. 0)	10/50(20.0)	4/50(8.0)	
Adjusted rates(b)	14.00	13, 04	20. 93	12. 12	
Terminal rates(c)	3/38(7.9)	4/38(10.5)	8/42(19.0)	4/33(12.1)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.5859				
Prevalence method(d)	P = 0.7653				
Combined analysis(d)	P = 0.7933				
Cochran-Armitage test(e)	P = 0.2934			·	
Fisher Exact test(e)		P = 0.6129	P = 0.2977	P = 0.2623	

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

: FEMALE

PAGE: 10

Group Name	Control	muu 008	2400 թթա	7200 ppm	
	SITE : mammary gland .				101111111111111111111111111111111111111
	TUMOR : adenoma, fibroadenoma	a, adenocarcinoma			
Tumor rate					
Overall rates(a)	11/50(22.0)	10/50(20.0)	11/50(22.0)	6/50(12.0)	
Adjusted rates(b)	22. 00	20. 00	20. 93	15. 15	
Terminal rates(c)	6/38(15.8)	6/38(15.8)	8/42(19.0)	5/33(15.2)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.2528				
Prevalence method(d)	P = 0.9141				
Combined analysis(d)	P = 0.8625		•		
Cochran-Armitage test(e)	P = 0.1712				
Fisher Exact test(e)		P = 0.5000	P = 0.5952	P = 0.1434	
	SITE : preputial/clitoral g	gland			
Tumor rate					
Overall rates(a)	3/50 (6.0)	3/50 (6.0)	1/50(2.0)	2/50(4.0)	
Adjusted rates(b)	5. 26	4. 88	2.38	6.06	
Terminal rates(c)	2/38(5.3)	1/38 (2. 6)	1/42(2.4)	2/33(6.1)	•
Statistical analysis		•	•		
Peto test		•			
Standard method(d)	P = 0.8633				
Prevalence method(d)	P = 0.3970				
Combined analysis(d)	P = 0.6076				
Cochran-Armitage test(e)	P = 0.6080				
Fisher Exact test(e)		P = 0.6611	P = 0.3087	P = 0.5000	
HPT360A)					BA
					DA

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

- (c): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
- ?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

TABLE Q 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

		Group Name Control No. of Animals on Study 50	800 ppm 50	2400 ppm 50	7200 ppm 50
Organ	Findings			00	00
{Respiratory	system)				
lung	leukemic cell infiltration	<50> 3	<50> 1	<50> 6	<50> 0
	metastasis:adrenal tumor	0	0	0	1
	metastasis:thyroid tumor	0	1	0	0 ·
	metastasis:peritoneum tumor	0	0	0	1
	metastasis:bone tumor	0	: 1	0	0
	metastasis:Zymbal gland tumor	0	0	1	0
{Hematopoieti	c system)				
bone marrow		<50>	⟨50⟩	<50>	<50>
	leukemic cell infiltration	3	1	6	0
	metastasis:peritoneum tumor	. 0	0	0	1
lymph node	leukemic cell infiltration	<50> 0	<50> 0	<50> 2	<50> 0
	metastasis:adrenal tumor	0	1	0	ľ
	metastasis peritoneum tumor	. 0	0	0	1
	·	·			-
{Digestive sy	stem)				
stomach	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
	metastasis:peritoneum tumor	0	1	0	0
(a)	a: Number of animals examined at the si b: Number of animals with lesion	te			

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

rgan	Findings	Group Name No. of Animals on Study	Control 50	800 ppm 50	2400 ppm 50	7200 ppm 50
	V					
Digestive sys	tem)			٠		
nall intes	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
ver	leukémic cell infiltration		<50> 4	<50> 1	<50> 5	<50> 0
	metastasis peritoneum tumor		1	0	0	0
	metastasis:bone tumor		0	1	0	0
ncreas	leukemic cell infiltration		<50> 1	<50> 0	<50> 2	<50> 0
	metastasis:peritoneum tumor		1	0	0	0
rinary syste	pun}					
dney	loukemic cell infiltration		<50> 1	<50> I	<50> 4	<50> 0
	metastasis:peritoneum tumor		1	0	0	0
in bladd	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
ndocrine sys	tem)					
yroid	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
rena1	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
Reproductive	system)					
emin ves	metastasis:peritoneum tumor		<50>	<50> 0	<50> 0	<50> 0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

PAGE: 3

		Group Name No. of Animals on Study	Control 50	800 ppm 50	2 4 00 ppm 50	7200 ppm 50
Organ	Findings	·		·		
{Nervous syste	em)					
brain			<50>	<50>	<50>	<50>
	leukemic cell infiltration		. 1	1	2	0
	metastasis:pituitary tumor		0	0	. 0	1
spinal cord			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	0	2	0
{Special sense	organs/appendage)					
Harder gl			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	0	1	0
{Body cavities	·}					
pleura			<50>	<50>	<50>	<50>
	metastasis:lung tumor		0	0	0	1
(a > b	a: Number of animals examined at the si b: Number of animals with lesion	ie .	·			····
(JPT150)						•

TABLE Q 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W) $\,$

REPORT TYPE : A1

: FEMALE

(Respiratory syst					
nasal cavit					
. 1					
rachea	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
!	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
ung	leukemic cell infiltration	<50> 1	<50> 6	<50> 2	<50> 2
r	metastasis:uterus tumor	0	0	0	2
ı	metastasis:thyroid tumor	0	0	1	0
r	metastasis:Zymbal gland tumor	0	0	0	1
1	metastasis:skin/appendage tumor	0	1	. 0	0
Hematopoietic sy	ystem)				
one marrow	leukemic cell infiltration	<50> 2	<50> 6	<50> 2	<50> 6
ymph node	leukemic cell infiltration	<50> 0	<50> 3	<50> 0	<50> 0
r	metastasis:thyroid tumor	0	0 .	1	0
Circulatory syst	tem)				
leart]	leukomic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
(Digestive system	m)				
stomach	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1, [F344/DuCr,]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W) $\,$

rgan	Findings	Group Name No. of Animals on Study	Control 50	800 ppm 50	2400 ppm 50	7200 ppm 50

Digestive sy	ystem)					
mall intes	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 1
rge intes	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 1
ver.	leukemic cell infiltration		<50> 1	<50> 7	<50> 4	<50> 4
	metastasis:uterus tumor		0	• <u> </u>	0	2
ncreas	leukemic cell infiltration		<50> 1	<50> 0	<50> 0	<50> 1
	metastasis uterus tumor		0	0	0	2
inary syst	tem)					
ney	leukomic cell infiltration		<50> 1	<50> 3	<50> 2	<50> 2
n bladd	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 1
ndocrine sy	ystem)					
tuitary	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
ıc islet	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
renal	leukemic cell infiltration		<50> 0	<50> 0	<50> 0	<50>
a >	a : Number of animals examined at b : Number of animals with lesion					

STUDY NO. : 0641 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

		Group Name Control No. of Animals on Study 50	800 ppm 50	2400 ppm 50	7200 ppm 50
gatı	Findings				
eproductive	system)				
ary		<50>	<50>	<50>	<50>
	leukemic cell infiltration	0	. 1	0	0
	metastasis:uterus tumor	. 0	. 0	0	2
terus		<50>	<50>	<50>	<50>
	leukemic cell infiltration	0	1	0	1
agina '		<50>	<50>	<50>	<50>
	leukemic cell infiltration	0	0	0	1
Vervous syste	em)				
rain		<50>	<50>	<50>	<50>
	leukemic cell infiltration	0	3	0	0
	metastasis:pituitary tumor	2	2	1	0
pinal cord		<50≻	<50>	<50>	<50>
	leukemic cell infiltration	0	2	0	0
Body cavities	s}				
leura		<50>	<50>	<50>	<50>
	metastasis:bone tumor	0	0	0	1 .
eritoneum		<50 >	<50>	<50>	<50>
	leukemic cell infiltration	0	1	0	2
	metastasis:uterus tumor	0	0	0	i
a >	a: Number of animals examined at the si b: Number of animals with lesion	e .	V		de Anna A

TABLE R

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrlj FEMALE RATS

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrlCrlj FEMALE RATS

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Adrenal	2446			
Pheochromocytoma 1)		81	3.3	0 - 16
Pheochromocytoma:malignant 2)		22	0.9	0 - 6
1)+2)		103	4.2	0 - 18

49 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0043,\,0059,\,0061,\,0063,\,0065,\,0067,\,0095,\,0104,\,0115,\,0130,\,0141,\,0158,\,0162,\,0189,\\0205,\,0210,\,0224,\,0242,\,0246,\,0267,\,0269,\,0278,\,0284,\,0288,\,0296,\,0318,\,0328,\,0342,\\0347,\,0365,\,0371,\,0399,\,0401,\,0417,\,0421,\,0437,\,0448,\,0457,\,0461,\,0497,\,0535,\,0560,\\0579,\,0610,\,0612,\,0667,\,0675,\,0686,\,0691$

TABLE S 1

CAUSE OF DEATH: MALE

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
SEX : MALE

COUSE OF DEATH (SUMMARY) (0-105W)

PAGE: 1 .

Group Name	Control	Mqq 008	2400 ррт	7200 ppm	
Number of Dead and Moribund Animal	10	5	12	10	
no microscop confirm	1	1	0	1	
integumentary sy les	0	0	1	0	
renal lesion	0	0	0	1	
chronic nephropathy	1	0	0	0	
cumor d:leukemia	1	1	5	0	
umor d:skin/app	1	0	i	0	
umor disubcutis	1	0	2	0	
umor d:lung	0	0	0	1	
umor d:urin bladd	0	0	0	$\hat{\mathbf{I}}$	
umor d:pituitary	2	0	0	2	
umor d:thyroid	1	1	ı	1	
umor d:adrenal	1	0	0	î ·	
umor dibrain	1	. 0	0	0	
umor d:Zymbal gl	0	0	1	1	
umor d:bone	0	1	1	\cdot 0	
umor d:peritoneum	0	1	0	1	

(BI0120)

BAIS4

TABLE S 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0641
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
SEX : FEMALE

COUSE OF DEATH (SUMMARY)

(0-105W)

Group Name	Control	800 ppm	2400 ppm	7200 ppm	
Number of Dead and Moribund Animal	12	12	8	17	*****
o microscop confirm	0	1	1	2	
enal lesion	0	0	0	2	
umor d:leukemia	2	3	2	6	
umor d:thymus	1	0	0	0	
umor dipituitary	7	6	2	2	
umor d:thyroid	0	0	1	0	
umor d:uterus	1	0	1	3	
umor dimammary gl	0	1	· 1	1	
umor d:prep/cli gl	1	1	0	0	
umor d:Zymbal gl	0	0	0	1	

(BI0120)

BAIS4