アクリル酸=2 - ヒドロキシエチルのラットを用いた経口投与によるがん原性試験(混水試験)報告書

試験番号:0347

TABLES

TABLES

TABLE 1	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 2	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 3	WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 4	WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 5	FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 6	FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 7	INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 8	INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 9	HEMATOLOGY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

TABLES (Continued)

TABLE 10	HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYLACRYLATE (SELECTED)
TABLE 11	BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 12	BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 13	URINALYSIS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 14	URINALYSIS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 15	ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 16	ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 17	NEOPLASTIC LESIONS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 18	NEOPLASTIC LESIONS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 19	NONNEOPLASTIC LESIONS OF MALE AND FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

TABLES (Continued)

TABLE 20 CAUSE OF DEATH OF MALE AND FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

TABLE 21 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrj MALE RATS

TABLE 22 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrj FEMALE RATS

TABLE 1 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

·											
Group	Co	ontrol		320 ppm			800 ppm		:	2000 ppm	
-		:50>		<50>			<49>			<50>	
Week	Survival		Survival	BW	0.4	Survival	BW		Survival	BW	0.4
on Study	No.	g 	No.	g 	%	No.	g 	%	No.	g	%
0	50	123 (50)	50	123 (50)	100	49	123 (49)	100	50	123 (50)	100
1	50	156 (50)	50	153 (50)	98	49	151 (49)	97 **	50	141 (50)	90 **
2	50	185 (50)	50	182 (50)	98	49	179 (49)	97 **	50	167 (50)	90 **
3	50	207 (50)	50	204 (50)	99	49	201 (49)	97 **	50	189 (50)	91 **
4	50	224 (50)	50	222 (50)	99	49	218 (49)	97 **	50	205 (50)	92 **
5	50	239 (50)	50	236 (50)	99	49	232 (49)	97 **	50	220 (50)	92 **
6	50	251 (50)	50	248 (50)	99	49	242 (49)	96 **	50	230 (50)	92 **
7	50	262 (50)	50	258 (50)	98	49	253 (49)	97 **	50	239 (50)	91 **
8	50	270 (50)	50	267 (50)	99	49	261 (49)	97 **	50	246 (50)	91 **
9	50	279 (50)	50	274 (50)	98	49	268 (49)	96 **	50	253 (50)	91 **
10	50	285 (50)	50	280 (50)	98	49	275 (49)	96 **	50	259 (50)	91 **
11	50	291 (50)	50	285 (50)	98	49	280 (49)	96 **	50	264 (50)	91 **
12	50	296 (50)	50	291 (50)	98	49	285 (49)	96 **	50	269 (50)	91 **
13	50	302 (50)	50	295 (50)	98 *	49	290 (49)	96 **	50	273 (50)	90 **
14	50	307 (50)	50	299 (50)	97 *	49	294 (49)	96 **	50	277 (50)	90 **
18	50	322 (50)	50	314 (50)	98 **	49	308 (49)	96 **	50	292 (50)	91 **
22	50	335 (50)	50	326 (50)	97 **	49	321 (49)	96 **	50	305 (50)	91 **
26	50	348 (50)	50	336 (50)	97 **	49	332 (49)	95 **	50	317 (50)	91 **
30	50	355 (50)	50 -	343 (50)	97 **	49	340 (49)	96 **	50	324 (50)	91 **
34	50	364 (50)	50	350 (50)	96 **	49	345 (49)	95 **	50	331 (50)	91 **
38	50	374 (50)	50	357 (50)	95 **	49	353 (49)	94 **	50	338 (50)	90 **
42	50	382 (50)	50	363 (50)	95 **	49	359 (49)	94 **	49	343 (49)	90 **
46	50	388 (50)	50	369 (50)	95 **	49	365 (49)	94 **	49	348 (49)	90 **
50	50	392 (50)	50	373 (50)	95 **	49	369 (49)	94 **	49	351 (49)	90 **
54	50	398 (50)	50	379 (50)	95 **	49	374 (49)	94 **	49	355 (49)	89 **
58	50	403 (50)	50	383 (50)	95 **	49	377 (49)	94 **	49	357 (49)	89 **
62	50	406 (50)	50	387 (50)	95 **	48	381 (48)	94 **	49	356 (49)	88 **
66	50	409 (50)	50	392 (50)	96 **	48	385 (48)	94 **	47	357 (47)	87 **
70	49	406 (49)	49	393 (49)	97 *	47	385 (47)	95 **	46	355 (46)	87 **
74	49	416 (49)	48	400 (48)	96 **	47	387 (47)	93 **	46	355 (46)	85 **
78	49	419 (49)	47	402 (47)	96 *	46	388 (46)	93 **	45	356 (45)	85 **
82	48	428 (48)	47	407 (47)	95 **	46	388 (46)	91 **	45	357 (45)	83 **
86	48	425 (48)	47	405 (47)	95 **	44	385 (44)	91 **	44	348 (44)	82 **
90	47	423 (47)	47	404 (47)	96 **	42	382 (42)	90 **	43	341 (43)	81 **
94	45	419 (45)	47	399 (47)	95 **	41	376 (41)	90 **	41	332 (41)	79 **
98	41	419 (41)	47	393 (47)	94 **	41	367 (41)	88 **	39	325 (39)	78 **
102	40	412 (40)	44	388 (44)	94 **	39	357 (39)	87 **	36	318 (36)	77 **
104	40	408 (40)	44	383 (44)	94 **	37	353 (37)	87 **	35	316 (35)	77 **

< > : No.of effective animals, (): No.of measured animals %:% of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 2 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Co	Control		320 ppm	320 ppm			800 ppm			
•	<	:50>		<50>			<50>			<50>	
Week	Survival	BW	Survival	BW		Survival	BW		Survival	BW	
on Study	No.	g	No.	g	%	No.	g	%	No.	g	%
0	50	96 (50)	50	96 (50)	100	50	96 (50)	100	50	96 (50)	100
1	50	115 (50)	50	113 (50)	98	50	112 (50)	97 **	50	108 (50)	94 **
2	50	126 (50)	50	124 (50)	98	50	123 (50)	98 *	50	119 (50)	94 *
3	50	134 (50)	50	132 (50)	99	50	132 (50)	99	50	127 (50)	95 *
4	50	140 (50)	50	138 (50)	99	50	138 (50)	99	50	132 (50)	94 *
5	50	147 (50)	50	146 (50)	99	50	144 (50)	98	50	137 (50)	93 *
6	50	151 (50)	50	149 (50)	99	50	149 (50)	99	50	141 (50)	93 *
7	50	154 (50)	50	153 (50)	99	50	152 (50)	99	50	143 (50)	93 *
8	50	157 (50)	50	156 (50)	99	50	155 (50)	99	50	146 (50)	93 *
9	50	160 (50)	50	160 (50)	100	50	158 (50)	99	50	$149 (50^{\circ})$	93 *
10	50	163 (50)	50	163 (50)	100	50	161 (50)	99	50	150 (50)	92 *
11	50	166 (50)	50	165 (50)	99	50	164 (50)	99	50	154 (50)	93 *
12	50	168 (50)	50	168 (50)	100	50	167 (50)	99	50	155 (50)	92 *
13	50	170 (50)	50	171 (50)	101	50	169 (50)	99	50	158 (50)	93 *
14	50	171 (50)	50	173 (50)	101	50	171 (50)	100	50	159 (50)	93 *
18	50	179 (50)	50	180 (50)	101	50	177 (50)	99	50	165 (50)	92 *
22	50	185 (50)	50	187 (50)	101	50	184 (50)	99	50	171 (50)	92 *
26	50	189 (50)	50	191 (50)	101	50	188 (50)	99	50	175 (50)	93 *
30	50	194 (50)	50	197 (50)	102	50	193 (50)	99	50	179 (50)	92 *
34	50	198 (50)	50	200 (50)	101	50	195 (50)	98	50	181 (50)	91 *
38	50	200 (50)	50	204 (50)	102	50	197 (50)	99	50	183 (50)	92 *
42	50	205 (50)	50	208 (50)	101	50	201 (50)	98	50	186 (50)	91 *
46	50	210 (50)	50	212 (50)	101	50	205 (50)	98	50	188 (50)	90 *
50	49	213 (49)	50	215 (50)	101	49	208 (49)	98	50	191 (50)	90 *
54	49	217 (49)	50	219 (50)	101	49	212 (49)	98	50	193 (50)	89 *
58	49	220 (49)	50	223 (50)	101	49	215 (49)	98	50	194 (50)	88 *
62	49	224 (49)	49	228 (49)	102	48	219 (48)	98	50	195 (50)	87 *
66	49	230 (49)	49	233 (49)	101	48	223 (48)	97	50	198 (50)	86 *
70	48	234 (48)	49	234 (49)	100	48	225 (48)	96	50	199 (50)	85 *
74	47	241 (47)	48	241 (48)	100	48	229 (48)	95	50	199 (50)	83 *
78	47	247 (47)	48	247 (48)	100	48	233 (48)	94 *	50	202 (50)	82 *
82	46	253 (46)	48	254 (48)	100	47	240 (47)	95 *	49	206 (49)	81 *
86	44	257 (44)	48	255 (48)	99	47	242 (47)	94 *	47	210 (47)	82 *
90	42	262 (42)	47	257 (47)	98	47	242 (47)	92 **	46	211 (46)	81 *
94	42	262 (42)	46	257 (46)	98	46	243 (46)	93 **	46	211 (46)	81 *
98	40	265 (40)	45	257 (45)	97	44	242 (44)	91 **	46	212 (46)	80 *
102	37	268 (37)	40	264 (40)	99	42	242 (42)	90 **	46	212 (46)	79 *
104	37	266 (37)	40	261 (40)	98	42	240 (42)	90 **	42	208 (42)	78 *

< >: No.of effective animals, (): No.of measured animals %:% of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

)

TABLE 3 WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Co	ontrol		320 ppm				800 ppm				2000 ppm		
Week	<u> </u>	<50>		<50>				<49>			<50>			
on Study	Survival		Survival	WC			Survival	WC			Survival	WC		
	No.	g 	No.	g 	%		No.	g	%		No.	g 	%	
1	50	18.0 (50)	50	15.6 (50)	87	**	49	14.2 (49)	79	**	50	11.7 (50)	65	**
2	50	18.8 (50)	50	16.8 (50)	89	**	49	15.1 (48)	80	**	50	12.1 (50)	64	**
3	50	20.3 (50)	50	16.9 (50)	83	**	49	15.4 (49)	76	**	50	13.3 (50)	66	**
4	50	19.9 (50)	50	17.3 (50)	87	**	49	15.5 (48)	78	**	50	13.4 (50)	67	**
5	50	18.9 (50)	50	16.4 (50)	87	**	49	14.9 (49)	79	**	50	12.8 (50)	68	**
6	50	18.6 (50)	50	16.1 (50)	87	**	49	14.6 (49)	78	**	50	12.2 (50)	66	**
7	50	18.5 (50)	50	16.9 (50)	91	**	49	14.5 (49)	78	**	50	12.2 (50)	66	**
8	50	18.2 (50)	50	16.4 (50)	90	**	49	13.9 (49)	76	**	50	11.6 (50)	64	**
9	50	17.9 (50)	50	15.8 (50)	88	**	49	13.9 (49)	78	**	50	11.9 (50)	66	**
10	50	17.8 (50)	50	16.0 (50)	90	**	49	14.6 (49)	82	**	50	12.1 (50)	68	**
11	50	17.1 (50)	50	15.2 (50)	89	**	49	13.5 (49)	79	**	50	11.6 (50)	68	**
12	50	16.9 (50)	50	15.0 (50)	89	**	49	13.6 (49)	80	**	50	11.5 (50)	68	**
13	50	17.7 (50)	50	16.0 (50)	90	**	49	14.2 (49)	80	**	50	11.8 (50)	67	**
14	50	17.5 (50)	50	15.3 (50)	87	**	49	13.9 (49)	79	**	50	11.7 (50)	67	**
18	50	16.5 (50)	50	14.8 (50)	90	**	49	13.8 (49)	84	**	50	11.7 (50)	71	**
22	50	16.2 (50)	50	14.9 (50)	92	**	49	13.1 (49)	81	**	50	11.4 (50)	70	**
26	50	16.7 (50)	50	14.6 (50)	87	**	49	13.3 (49)	80	**	50	11.6 (49)	69	**
30	50	16.5 (50)	50	15.0 (50)	91	**	49	13.5 (49)	82	**	50	11.6 (50)	70	**
34	50	16.5 (50)	50	14.4 (50)	87	**	49	13.3 (49)	81	**	50	11.7 (50)	71	**
38	50	16.4 (50)	50	14.4 (50)	88	**	49	13.6 (49)	83	**	50	12.3 (50)	75	**
42	50	16.3 (50)	50	14.4 (50)	88	**	49	13.7 (49)	84	**	49	12.0 (49)	74	**
46	50	16.4 (50)	50	14.7 (50)	90	**	49	13.7 (49)	84	**	49	12.6 (49)	77	**
50	50	16.5 (50)	50	15.4 (50)	93	**	49	14.1 (49)	85	**	49	12.6 (49)	76	**
5 4	50	17.5 (50)	50	15.8 (50)	90	**	49	14.9 (49)	85	**	49	13.1 (49)	75	**
58	50	16.8 (50)	50	15.3 (50)	91	**	49	14.5 (49)	86	**	49	12.8 (49)	76	**
62	50	17.5 (50)	50	15.9 (50)	91	**	48	15.4 (48)	88	**	49	13.5 (49)	77	**
66	50	17.0 (50)	50	15.7 (50)	92	**	48	15.0 (48)	88	**	47	13.3 (47)	78	**
70	49	18.6 (49)	49	16.6 (49)	89	**	47	15.7 (47)	84	**	46	13.7 (46)	74	**
74	49	18.3 (49)	48	16.4 (48)	90	**	47	15.5 (47)	85	**	46	13.7 (46)	75	**
78	49	18.3 (49)	47	16.4 (47)	90	**	46	15.3 (45)	84	**	45	13.7 (45)	75	**
82	48	17.8 (48)	47	16.4 (47)	92	**	46	15.3 (46)	86	**	45	13.6 (45)	76	**
86	48	18.0 (48)	47	16.2 (47)	90	**	44	15.1 (43)	84	**	44	13.7 (43)	76	**
90	47	18.4 (47)	47	16.7 (47)	91	**	42	16.4 (42)	89	**	43	14.1 (43)	77	**
94	45	18.9 (45)	47	17.0 (47)	90	**	41	16.5 (41)	87	**	41	14.1 (41)		
98	41	19.7 (41)	47	17.2 (47)	87	**	41	17.4 (41)	88	**	39	15.3 (39)	78	**
102	40	20.4 (40)	44	17.7 (44)	87	**	39	17.6 (38)	86	**	36	15.8 (36)	77	**
104	40	20.4 (40)	44	17.5 (44)	86	**	37	17.7 (37)	87	**	35	15.8 (35)	77	**

< > : No.of effective animals, () : No.of measured animals % : % of control group
Significant Difference, **: $p \le 0.01$, Test of Dunnett

TABLE 4 WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Co	ntrol		320 ppm				800 ppm				2000 ppm		
Week		<50>		<50>				<50>				<50>		
on Study	Survival No.	WC g	Survival No.	WC g	%		Survival No.	WC g	%		Survival No.	WC g	%	
7	=		50		90	**			70	**	E0.	10.0 (50)	C E	**
$rac{1}{2}$	50 50	15.5 (50)	50 50	13.3 (50) 14.0 (50)		**	50 50	12.2 (50) 11.8 (50)		**	50 50	9.6 (50)		
3	50 50	16.5 (49) 16.9 (47)	50 50	14.8 (50)		**	50 50	12.1 (49)		**	50	9.9 (50)		
4	50	17.7 (49)	50	15.8 (48)			50	12.2 (50)		**	50	9.8 (50)		
5	50	16.3 (48)	50	14.9 (50)			50	11.9 (50)		**	50	10.0 (50)		
6	50	16.8 (48)	50	15.0 (49)			50	12.3 (49)		**	50	10.3 (50)		
7	50	15.9 (46)	50	14.3 (50)			50	11.8 (50)		**	50	8.8 (50)		
8	50	15.9 (46)	50	14.3 (48)			50	11.5 (50)		**	50	8.6 (50)		
9	50	16.5 (48)	50	14.8 (46)			50	11.4 (47)		**	50	9.2 (50)		
10	50	16.7 (48)	50	14.7 (47)		*	50	11.4 (48)		**	50	8.5 (50)		
11	50	15.2 (48)	50	14.1 (48)			50	11.7 (49)		**	50	8.9 (50)		
12	50	16.5 (48)	50	14.5 (48)		*	50	12.1 (48)	73	**	50	9.2 (50)	56	**
13	50	17.1 (49)	50	15.1 (46)			50	11.6 (49)	68	**	50	8.8 (50)	51	**
14	50	17.4 (50)	50	15.1 (46)	87	*	50	11.4 (48)	66	**	50	8.8 (50)	51	**
18	50	17.5 (46)	50	15.3 (47)	87		50	11.8 (48)	67	**	50	8.8 (50)	50	**
22	50	16.6 (47)	50	14.4 (44)	87	*	50	12.3 (49)	74	**	50	9.0 (50)	54	**
26	50	16.1 (49)	50	14.8 (49)	92		50	12.0 (50)	75	**	50	8.9 (50)	55	**
30	50	17.1 (49)	50	15.3 (47)	89		50	12.9 (50)	75	**	50	9.0 (50)	53	**
34	50	16.6 (50)	50	14.7 (49)	89		50	11.2 (49)	67	**	50	8.8 (50)	53	**
38	50	16.1 (49)	50	15.2 (50)	94		50	11.3 (49)	70	**	50	9.0 (48)	56	**
42	50	16.8 (50)	50	16.0 (50)	95		50	12.4 (50)	74	**	50	9.0 (50)	54	**
46	50	15.5 (49)	50	15.3 (50)	99		50	12.0 (50)	77	**	50	9.3 (50)	60	**
50	49	15.3 (49)	50	13.9 (50)	91		49	11.3 (49)	74	**	50	9.2 (50)	60	**
54	49	16.6 (49)	50	14.8 (50)	89		49	12.1 (49)	73	**	50	9.6 (50)	58	**
58	49	14.4 (49)	50	13.6 (50)	94		49	10.6 (49)	74	**	50	9.4 (50)		
62	49	16.5 (49)	49	14.8 (49)	90		48	11.8 (48)		**	50	10.2 (50)		**
66	49	15.8 (47)	49	15.1 (49)			48	12.3 (48)	78	**	50	10.4 (50)		**
70	48	16.0 (48)	49	14.0 (49)	88	*	48	12.0 (48)		**	50	10.8 (50)		**
74	47	15.7 (47)	48	14.1 (48)	90		48	11.7 (48)	75	**	50	10.8 (50)		
78	47	15.1 (47)	48	13.2 (47)			48	11.8 (48)			50	11.1 (50)		
82	46	15.7 (46)	48	13.0 (48)			47	11.5 (47)			49	11.0 (49)		
86	44	15.4 (43)	48	13.8 (48)			47	11.5 (47)			47	11.3 (47)		
90	42	15.9 (40)	47	14.2 (47)			47	12.6 (47)			46	12.0 (46)		
94	42	16.5 (42)	46	14.7 (46)			46	12.0 (46)			46	12.8 (46)		
98	40	17.4 (40)	45	15.3 (45)			44	12.4 (44)			46	13.5 (46)		
102	37	18.1 (36)	40	16.5 (40)			42	13.0 (42)			46	13.7 (46)		
104	37	17.4 (37)	40	14.5 (40)	83	**	42	12.7 (42)	73	**	42	13.2 (42)	76	**

< > : No.of effective animals, () : No.of measured animals % : % of control group
Significant Difference, *: p \leq 0.05, ** : p \leq 0.01, Test of Dunnett

)

TABLE 5 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	C	ontrol		320 ppm			800 ppm			2000 ppm	
-		<50>		<50>			<49>			<50>	
Week	Surviva		Survival	FC		Survival	FC		Survival	FC	
on Study	No.	g	No.	g	%	No.	g	%	No.	g	%
1	50	14.3 (50)	50	13.6 (50)	100 *	49	13.7 (49)	96 *	50	11.9 (50)	83 **
2	50	15.4 (50)	50	15.1 (50)	98	49	14.6 (49)	95 **	50	13.4 (50)	87 **
3	50	15.9 (49)	50	15.5 (48)	97 *	49	15.2 (49)	96 **	50	14.2 (50)	89 **
4	50	15.8 (50)	50	15.5 (50)	98	49	15.2 (49)	96 **	50	14.3 (50)	91 **
5	50	15.6 (50)	50	15.2 (50)	97 *	49	14.9 (49)	96 **	50	14.3 (50)	92 **
6	50	15.1 (50)	50	14.7 (50)	97 *	49	14.4 (49)	95 **	50	13.8 (50)	91 **
7	50	15.5 (50)	50	15.0 (50)	97 *	49	14.7 (49)	95 **	50	14.0 (50)	90 **
8	50	14.9 (50)	50	14.4 (50)	97 **	49	14.1 (49)	95 **	50	13.5 (50)	91 **
9	50	14.9 (50)	50	14.4 (50)	97 *	49	14.1 (49)	95 **	50	13.6 (50)	91 **
10	50	14.7 (49)	50	14.2 (50)	97 *	49	13.9 (49)	95 **	50	13.1 (50)	89 **
11	50	14.5 (50)	50	14.1 (50)	97 *	49	13.7 (49)	94 **	50	13.3 (50)	92 **
12	50	14.2 (50)	50	13.8 (50)	97 *	49	13.5 (49)	95 **	50	13.3 (50)	94 **
13	50	14.4 (50)	50	13.8 (50)	96 **	49	13.8 (49)	96 **	50	13.3 (50)	92 **
14	50	14.0 (50)	50	13.4 (50)	96 **	49	13.5 (49)	96 **	50	12.9 (49)	92 **
18	50	14.6 (50)	50	14.2 (50)	97 *	49	13.9 (49)	95 **	50	13.5 (50)	92 **
22	50	14.6 (50)	50	14.0 (50)	96 **	49	14.0 (49)	96 **	50	13.6 (50)	93 **
26	50	15.4 (50)	50	14.7 (50)	95 **	49	14.5 (49)	94 **	50	14.2 (50)	92 **
30	50	14.9 (50)	50	14.4 (50)	97 **	49	14.4 (49)	97 *	50	14.1 (50)	95 **
34	50	15.4 (50)	50	14.7 (50)	95 **	49	14.7 (49)	95 **	50	14.7 (50)	95 **
38	50	15.6 (50)	50	14.6 (50)	94 **	49	14.8 (49)	95 **	50	14.9 (50)	96 **
42	50	15.6 (50)	50	14.7 (50)	94 **	49	15.2 (49)	97	49	14.9 (49)	96 *
46	50	15.4 (50)	50	14.8 (50)	96 **	49	15.0 (49)	97	49	15.1 (49)	98
50	50	15.5 (50)	50	14.9 (50)	96	49	15.1 (49)	97	49	15.2 (49)	98
54	50	15.9 (50)	50	15.1 (50)	95 **	49	15.3 (49)	96	49	15.2 (49)	96 **
58	50	15.8 (50)	50	15.1 (50)	96 **	49	15.5 (49)	98	49	15.0 (49)	95 **
62	50	15.8 (50)	50	15.2 (50)	96 **	48	15.4 (48)	97	49	14.8 (49)	94 **
66	50	15.5 (50)	50	15.2 (50)	98	48	15.4 (48)	99	47	14.9 (47)	96 **
70	49	16.2 (49)	49	15.5 (49)	96 **	47	15.8 (47)	98	46	15.3 (46)	94 **
74	49	16.2 (49)	48	15.7 (48)	97	47	15.6 (47)	96 *	46	15.2 (46)	94 **
78	49	15.9 (49)	47	15.2 (47)	96 **	46	15.5 (46)	97	45	15.0 (45)	94 **
82	48	15.9 (48)	47	15.4 (47)	97	46	15.5 (46)	97	45	15.1 (45)	95 **
86	48	15.8 (48)	47	15.4 (47)	97	44	15.6 (44)	99	44	15.0 (44)	95 **
90	47	15.7 (47)	47	15.4 (47)	98	42	15.2 (42)	97	43	14.8 (43)	94 **
94	45	15.9 (45)	47	15.7 (47)	99	41	15.7 (41)	99	41	15.0 (41)	94 **
98	41	16.2 (41)	47	15.4 (47)	95	41	15.1 (41)	93 *	39	14.5 (39)	90 **
102	40	16.4 (40)	44	15.6 (44)	95	39	15.2 (39)	93 *	36	14.9 (36)	91 **
104	40	15.7 (40)	44	15.2 (44)	97	37	15.1 (37)	96	35	14.7 (35)	94

< >: No.of effective animals, (): No.of measured animals %:% of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

)

TABLE 6 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Co	ontrol		320 ppm			800 ppm			2000 ppm	
-		<50>		<50>			<50>			<50>	
Week	Survival	FC	Survival	FC		Survival	FC		Survival	FC	
on Study	No.	g	No.	g 	%	No.	g	%	No.	g	%
1	50	10.6 (50)	50	10.4 (50)	98	50	10.1 (50)	95 **	50	9.2 (50)	87 **
2	50	10.5 (50)	50	10.6 (50)	101	50	10.1 (50)	96 **	50	9.7 (50)	92 **
3	50	10.8 (50)	50	10.6 (50)	98	50	10.5 (50)	97	50	10.0 (50)	93 **
4	50	10.9 (50)	50	10.7 (50)	98	50	10.4 (50)	95 **	50	10.1 (50)	93 **
5	50	10.7 (50)	50	10.7 (50)	100	50	10.3 (50)	96 *	50	9.9 (50)	93 **
6	50	10.3 (50)	50	10.3 (50)	100	50	10.0 (50)	97	50	9.4 (50)	91 **
7	50	10.2 (50)	50	10.2 (50)	100	50	10.0 (50)	98	50	9.3 (50)	91 **
8	50	9.9 (50)	50	9.8 (50)	99	50	9.6 (50)	97	50	9.1 (50)	92 **
9	50	10.1 (50)	50	10.0 (50)	99	50	9.5 (50)	94 **	50	9.0 (50)	89 **
10	50	9.8 (50)	50	9.8 (50)	100	50	9.5 (50)	97	50	8.7 (50)	89 **
11	50	9.8 (50)	50	9.8 (50)	100	50	9.5 (50)	97	50	8.7 (50)	89 **
12	50	9.8 (50)	50	9.8 (50)		50	9.6 (50)	98	50	8.8 (50)	90 **
13	50	9.7 (50)	50	10.0 (50)		50	9.6 (50)	99	50	8.8 (50)	91 **
14	50	9.7 (50)	50	9.9 (50)		50	9.6 (50)	99	50	9.0 (50)	93 **
18	50	10.3 (49)	50	10.2 (50)	99	50	9.9 (50)	96 *	50	9.1 (50)	88 **
22	50	10.1 (50)	50	10.3 (50)		50	10.0 (50)	99	50	9.3 (50)	92 **
26	50	10.2 (50)	50	10.3 (50)		50	10.1 (50)	99	50	9.5 (50)	93 **
30	50	10.6 (50)	50	10.8 (50)		50	10.4 (50)	98	50	9.6 (50)	91 **
34	50	10.5 (49)	50	10.7 (50)		50	10.2 (50)	97	50	9.6 (50)	91 **
38	50	10.6 (50)	50	10.9 (50)		50	10.2 (50)	96	50	9.8 (48)	92 **
42	50	10.7 (49)	50	10.9 (50)		50	10.5 (50)	98	50	10.0 (50)	93 **
46	50	10.8 (50)	50	11.0 (50)		50	10.8 (50)		50	10.0 (50)	93 **
50	49	10.7 (49)	50	10.9 (50)		49	10.4 (49)	97	50	9.9 (50)	93 **
54	49	11.2 (49)	50	11.4 (50)		49	11.0 (49)	98	50	10.3 (50)	92 **
58	49	10.9 (49)	50	11.0 (50)		49	10.6 (49)	97	50	9.9 (50)	91 **
62	49	11.3 (49)	49	11.4 (49)		48	11.0 (48)	97	50	10.3 (50)	91 **
66	49	11.5 (49)	49	11.8 (49)		48	11.0 (48)	96	50	10.4 (50)	90 **
70	48	11.4 (48)	49	11.4 (49)		48	11.1 (48)	97	50	10.4 (50)	91 **
74	47	11.7 (47)	48	11.9 (48)		48	11.1 (48)	95 *	50	10.3 (50)	
78	47	11.9 (47)	48	11.7 (48)		48	11.1 (48)	93 **	50	10.1 (50)	85 **
82	46	11.6 (46)	48	11.9 (48)		47	11.4 (47)	98	49	10.6 (49)	91 **
86	44	11.7 (44)	48	11.8 (48)		47	11.2 (47)	96 **	47	10.8 (47)	92 **
90	42	11.7 (44)	47	11.7 (47)		47	11.1 (47)	94 **	46	10.4 (46)	88 **
94	42	11.8 (42)	46	11.9 (46)		46	11.4 (46)	97	46	10.7 (46)	91 **
98	40	12.0 (40)	45	11.6 (45)	97	44	11.4 (40)	92 **	46	10.9 (46)	91 **
102	40 37	12.0 (40)	40	12.0 (40)	99	42	11.3 (42)	93 *	46	10.6 (46)	88 **
102	37	11.6 (37)	40	11.5 (40)	99	42	11.0 (42)		42	10.6 (42)	

< > : No.of effective animals, () : No.of measured animals % : % of control group
Significant Difference, *: $p \le 0.05$, ** : $p \le 0.01$, Test of Dunnett

}

TABLE 7 INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Time of mass occurrence (wee	k) 0-13	14-26	27-39	40-52	53-65	66-78	79-91	92-104	0-104
External mass									
Control	0/50	0/50	0/50	0/50	2/50	1/50	6/49	16/47	17/50 (6/10)
320 ppm	0/50	0/50	0/50	0/50	1/50	1/50	6/47	14/47	14/50 (1/6)
800 ppm	0/49	0/49	0/49	1/49	2/49	2/48	6/47	10/42	13/49 (5/12)
2000 ppm	0/50	0/50	0/50	2/50	2/49	1/47	3/45	7/42	9/50 (2/15)
Internal mass									
Control	0/50	0/50	0/50	0/50	0/50	0/50	0/49	2/47	2/50 (1/10)
320 ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/47	1/47	1/50 (0/ 6)
800 ppm	0/49	0/49	0/49	0/49	0/49	0/48	0/47	0/42	0/49 (0/12)
2000 ppm	0/50	0/50	0/50	0/50	0/49	0/47	0/45	0/42	0/50 (0/15)

No. of animals with mass / No. of survival animals at first week on each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 8 INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Time of mass occurrence (week)	0-13	14-26	27-39	40-52	53-65	66-78	79-91	92-104	0-104
External mass						- "			
Control	0/50	0/50	0/50	1/50	1/49	2/49	3/46	4/42	6/50 (3/13)
$320~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	1/49	2/48	3/47	3/50 (1/10)
$800~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/49	2/48	6/48	9/46	10/50 (1/8)
$2000~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	1/50	4/50	7/46	7/50 (1/8)
Internal mass									
Control	0/50	0/50	0/50	0/50	0/49	1/49	1/46	1/42	3/50 (3/13)
$320~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	0/49	0/48	1/47	1/50 (1/10)
800 ppm	0/50	0/50	0/50	0/50	0/49	0/48	0/48	0/46	0/50 (0/ 8)
$2000~{ m ppm}$	0/50	0/50	0/50	0/50	0/50	0/50	0/50	0/46	0/50 (0/ 8)

No. of animals with mass / No. of survival animals at first week on each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 9 HEMATOLOGY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group	Control	320 ppm	800 ppm	2000 ppm
No. of animals examined	40	44	37	34
Red blood cell $(10^6/\mu\mathrm{L})$	8.00 ± 1.60	8.50 ± 1.26	8.36 ± 1.38	8.47 ± 1.60
Hemoglobin (g/dL)	$13.5~\pm~2.8$	14.1 ± 1.8	13.7 ± 2.1	$13.4 ~\pm~ 2.4$
Hematocrit (%)	$41.2~\pm~7.2$	$42.9~\pm~4.7$	$42.0~\pm~5.3$	41.8 ± 6.6
MCV (fL)	$52.2~\pm~6.5$	51.0 ± 5.7 *	50.9 ± 5.2 **	* 49.9 ± 3.9 **
MCH (pg)	17.0 ± 1.6	16.8 ± 1.6	16.5 ± 1.1 *	$15.9 \pm 1.0 **$
MCHC (g/dL)	32.6 ± 1.7	32.9 ± 1.1	32.5 ± 1.6	32.0 ± 1.2 **
Platelet $(10^3/\mu L)$	$891 ~\pm~ 277$	861 ± 228	932 ± 148	856 ± 163
WBC $(10^3/\mu\mathrm{L})$	8.19 ± 11.57	$7.02 ~\pm~ 2.63$	$6.96~\pm~2.68$	11.15 ± 23.07

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 10 HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group	Control	320 ppm	800 ppm	2000 ppm			
No. of animals examined	37	37	41	42			
Red blood cell $(10^6/\mu$ L)	8.11 ± 0.74	8.00 ± 0.85	$7.14~\pm~1.92$	** 7.09 ±	1.05 **		
Hemoglobin (g/dL)	$14.8~\pm~1.3$	$14.6~\pm~1.3$	13.1 ± 3.3	** 13.1 ±	1.5 **		
Hematocrit (%)	$43.6~\pm~2.9$	$43.1~\pm~3.3$	$39.2~\pm~8.5$	** 39.5 ±	4.0 **		
MCV (fL)	$53.9~\pm~2.4$	$54.2~\pm~3.2$	57.3 ± 10.6	56.4 ±	4.6 **		
MCH (pg)	$18.3~\pm~0.5$	18.3 ± 0.8	$18.7~\pm~2.5$	$18.7 \pm$	1.2		
MCHC (g/dL)	$34.0~\pm~0.9$	$33.9~\pm~0.7$	$33.0~\pm~2.3$	** 33.2 ±	0.8 **		
Platelet $(10^3/\mu$ L)	$618~\pm~103$	$645~\pm~93$	$641~\pm~169$	* 718 ±	77 **		
WBC $(10^3/\mu L)$	13.51 ± 59.34	4.04 ± 5.69	5.03 ± 11.32	$4.79 \pm$	13.31		

Data represent means \pm S.D.

TABLE 11 BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Control	320 ppm	800 ppm	2000 ppm
No. of animals examined	40	44	37	34
Total protein (g/dL)	$6.5~\pm~0.5$	6.7 ± 0.4 **	$6.6~\pm~0.4$	6.5 ± 0.3
Albumin (g/dL)	$3.3~\pm~0.4$	$3.4~\pm~0.3$	$3.3~\pm~0.3$	$3.4~\pm~0.2$
A/G ratio	$1.1~\pm~0.1$	$1.1~\pm~0.2$	$1.0~\pm~0.1$	$1.1 ~\pm~ 0.1$
T-Bilirubin (mg/dL)	$0.22~\pm~0.44$	0.66 ± 3.18 *	$0.22~\pm~0.15~**$	$0.33 \pm 0.35 **$
Glucose (mg/dL)	$153~\pm~18$	$155~\pm~19$	$142~\pm~24~$	$146~\pm~17$
T-Cholesterol (mg/dL)	$164~\pm~42$	218 ± 50 **	$252 \pm 72 **$	285 ± 43 **
Triglyceride (mg/dL)	73 ± 51	108 ± 83 *	115 ± 82 **	195 ± 148 **
Phospholipid (mg/dL)	232 ± 71	$301 \pm 70 **$	341 ± 87 **	409 ± 67 **
GOT (IU/L)	95 ± 62	$106~\pm~87$	$104 \pm 24 *$	171 ± 69 **
GPT (IU/L)	41 ± 16	52 ± 50	47 ± 15	66 ± 19 **
LDH (IU/L)	$208~\pm~58$	$196~\pm~39$	$177 \pm 42 **$	193 ± 134 **
ALP (IU/L)	$231~\pm~115$	283 ± 95 *	335 ± 116 **	484 ± 171 **
γ -GTP (IU/L)	12 ± 8	24 ± 11 **	46 ± 29 **	111 ± 33 **
CPK (IU/L)	$106~\pm~73$	$94~\pm~14$	$94~\pm~21$	$107~\pm~71$
Urea nitrogen (mg/L)	19.2 ± 6.9	$18.7~\pm~3.1$	$21.4~\pm~4.0~^{**}$	23.0 ± 4.0 **
Creatinine (mg/dL)	$0.5~\pm~0.1$	$0.5~\pm~0.1$	$0.6~\pm~0.1$	0.5 ± 0.1
Sodium (mEq/L)	$142~\pm~2$	141 ± 2	141 ± 1 **	140 ± 1 **
Potassium (mEq/L)	$3.7~\pm~0.4$	$3.8~\pm~0.5$	$3.8~\pm~0.4$	4.0 ± 0.4 *
Chloride (mEq/L)	107 ± 2	$105 \pm 2 \qquad **$	105 ± 2 **	105 ± 2 *
Calcium (mg/dL)	$10.2~\pm~0.4$	$10.2~\pm~0.9$	10.3 ± 0.3 *	$10.4~\pm~0.3~$
Inorganic phosphorus (mg/dL)	$4.3~\pm~0.7$	$4.3~\pm~1.3$	$4.4~\pm~0.5$	$4.2~\pm~0.5$

TABLE 12 BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Control	320 ppm	800 ppm	2000 ppm
No. of animals examined	37	37	41	42
Total protein (g/dL)	$6.9~\pm~0.5$	$6.8~\pm~0.4$	$6.7~\pm~0.5$	6.3 ± 0.4 **
Albumin (g/dL)	$3.9~\pm~0.3$	$3.9~\pm~0.2$	$3.9~\pm~0.3$	3.8 ± 0.2 **
A/G ratio	$1.3~\pm~0.1$	$1.3~\pm~0.1$	$1.4~\pm~0.1$	$1.5~\pm~0.2~~^{**}$
T-Bilirubin (mg/dL)	$0.17~\pm~0.11$	$0.16~\pm~0.2$	$0.47 ~\pm~ 1.42$	$0.17~\pm~0.11$
Glucose (mg/dL)	$145~\pm~13$	$150~\pm~14$	$140~\pm~22$	$144 ~\pm~ 16$
T-Cholesterol (mg/dL)	130 ± 26	$140~\pm~29$	154 ± 36 **	155 ± 23 **
Triglyceride (mg/dL)	$64~\pm~54$	$62~\pm~44$	92 ± 98	75 ± 116
Phospholipid (mg/dL)	$231 ~\pm~ 48$	$235~\pm~46$	263 ± 63 *	261 ± 43 *
GOT (IU/L)	159 ± 111	$110~\pm~39$	$172~\pm~199$	120 ± 79 *
GPT (IU/L)	63 ± 35	45 ± 18 *	52 ± 41 *	42 ± 17 **
LDH (IU/L)	$330~\pm~225$	$263~\pm~78$	$379~\pm~378$	$261~\pm~104$
ALP (IU/L)	$125~\pm~75$	$115~\pm~34$	$144~\pm~101$	154 ± 58 **
γ -GTP (IU/L)	5 ± 4	5 ± 2	8 ± 6 *	12 ± 8 **
CPK (IU/L)	$150~\pm~290$	$96~\pm~21$	$158~\pm~320$	110 ± 47
Urea nitrogen (mg/L)	17.3 ± 1.7	17.4 ± 5.8	$17.5~\pm~3.1$	$20.3 \pm 3.2 **$
Creatinine (mg/dL)	$0.5~\pm~0.1$	$0.5~\pm~0.1$	$0.5~\pm~0.1$	$0.5~\pm~0.1$
Sodium (mEq/L)	140 ± 1	140 ± 2	140 ± 2	140 ± 2
Potassium (mEq/L)	$3.8~\pm~0.5$	$3.7~\pm~0.4$	$3.9~\pm~0.4$	4.0 ± 0.5 *
Chloride (mEq/L)	$105~\pm~2$	$105~\pm~2$	105 ± 3	106 ± 2
Calcium (mg/dL)	$10.2~\pm~0.3$	$10.1~\pm~0.4$	$10.2~\pm~0.4$	$10.1~\pm~0.3$
Inorganic phosphorus (mg/dL)	$4.0~\pm~0.8$	$3.9~\pm~0.8$	$4.2~\pm~0.6$	4.4 ± 0.5 *

TABLE 13 URINALYSIS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group		Control	320 ppm	800 ppm	2000 ppm	
No. of animals examined		40	44	38	35	
pН	6.0	1	0 **	2	2	
•	6.5	3	0	$\overline{3}$	ō	
	7.0	12	5	7	6	
	7.5	20	22	14	16	
	8.0	3	16	12	11	
	8.5	1	1	0	0	
	(Grade)					
Protein	` <u>-</u> ′	0	0	0 **	0	
	±	0	0	0	0	
	+	0	0	0	0	
	2+	2	2	0	0	
	3+	27	21	12	18	
	4+	11	21	26	17	
Occult blood	-	39	42	37	27 *	
	±.	1	0	0	2	
	+	0	0	0	0	
	2+	0	1	1	3	
	3+	0	1	0	3	

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$ Chi square test

TABLE 14 URINALYSIS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group		$\operatorname{Control}$	320 ppm	800 ppm	2000 ppm
No. of animals exar	nined	37	40	42	45
pН	6.0	0	0	0	1
	6.5	3	2	5	12
	7.0	11	11	12	8
	7.5	12	13	13	10
	8.0	9	13	10	13
	8.5	2	1	2	1
	(Grade)				
Protein	<u> </u>	0	0 **	0 **	0 **
	±	2	0	0	0
	+	10	1	0	1
	2+	16	16	9	6
	3+	6	11	21	27
	4+	3	12	12	11
Occult blood	-	35	37	30 *	9 **
	±	1	1	4	2
	+	0	0	0	0
	2+	1	1	0	0
	3+	0	1	8	34

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$ Chi square test

TABLE 15 ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group		Control	320 ppm	800 ppm	2000 ppm
No. of animexami		<40>	<44>	<37>	<35>
Adrenal	(g) (%)	0.070 ± 0.015 0.018 ± 0.003	0.081 ± 0.066 0.023 ± 0.019	0.083 ± 0.121 0.027 ± 0.048	$0.090 \pm 0.170 * 0.030 \pm 0.054 **$
Testis	(g) (%)	2.665 ± 1.057 0.706 ± 0.295	2.599 ± 1.004 0.726 ± 0.275	2.597 ± 0.877 0.782 ± 0.231	2.787 ± 0.748 0.937 ± 0.213 **
Heart	(g) (%)	1.178 ± 0.118 0.309 ± 0.035	1.127 ± 0.105 0.316 ± 0.032	1.103 ± 0.091 ** 0.338 ± 0.051 **	1.023 ± 0.089 ** 0.350 ± 0.049 **
Lung	(g) (%)	1.442 ± 0.373 0.380 ± 0.125	1.370 ± 0.155 0.385 ± 0.057	1.347 ± 0.168 0.415 ± 0.094 **	1.377 ± 0.400 ** 0.486 ± 0.261 **
Kidney	(g) (%)	2.515 ± 0.197 0.660 ± 0.071	2.666 ± 0.276 ** 0.750 ± 0.117 **	2.764 ± 0.210 ** 0.846 ± 0.108 **	2.791 ± 0.217 ** 0.956 ± 0.150 **
Spleen	(g) (%)	1.570 ± 3.764 0.442 ± 1.186	1.566 ± 3.674 0.456 ± 1.151	1.035 ± 0.762 0.314 ± 0.232 *	1.380 ± 2.353 0.469 ± 0.805 **
Liver	(g) (%)	10.574 ± 2.260 2.770 ± 0.669	11.038 ± 1.625 3.091 ± 0.485 **	11.425 ± 1.535 ** 3.473 ± 0.403 **	11.545 ± 2.291 ** 3.922 ± 0.757 **
Brain	(g) (%)	2.017 ± 0.063 0.530 ± 0.048	2.020 ± 0.050 0.568 ± 0.051 *	2.023 ± 0.053 0.619 ± 0.065 **	2.019 ± 0.054 0.693 ± 0.105 **

TABLE 16 ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group		Control	320 ppm	800 ppm	2000 ppm
No. of anir		<37>	<40>	<42>	<42>
Adrenal	(g) (%)	0.067 ± 0.011 0.027 ± 0.004	$0.067 \pm 0.009 \\ 0.027 \pm 0.004$	0.065 ± 0.010 0.029 ± 0.005	0.058 ± 0.013 ** 0.030 ± 0.010
Ovaries	(g) (%)	0.129 ± 0.019 0.052 ± 0.009	0.135 ± 0.033 0.056 ± 0.016	0.142 ± 0.102 0.063 ± 0.040	0.122 ± 0.027 0.063 ± 0.015 **
Heart	(g) (%)	0.842 ± 0.100 0.340 ± 0.040	0.837 ± 0.077 0.344 ± 0.027	0.818 ± 0.092 0.370 ± 0.074 *	0.745 ± 0.050 ** 0.385 ± 0.035 **
Lung	(g) (%)	1.066 ± 0.186 0.431 ± 0.079	1.046 ± 0.191 0.434 ± 0.109	1.030 ± 0.157 0.466 ± 0.104	0.949 ± 0.115 ** 0.492 ± 0.077 *
Kidney	(g) (%)	1.666 ± 0.103 0.672 ± 0.046	1.897 ± 0.300 ** 0.784 ± 0.157 **	1.902 ± 0.230 ** 0.854 ± 0.116 **	1.786 ± 0.128 ** 0.924 ± 0.086 **
Spleen	(g) (%)	0.854 ± 1.247 0.346 ± 0.488	0.743 ± 0.869 0.308 ± 0.374	1.313 ± 2.631 0.619 ± 1.269	0.599 ± 0.406 0.315 ± 0.230 *
Liver	(g) (%)	6.493 ± 1.190 2.606 ± 0.388	6.592 ± 1.002 2.697 ± 0.283	6.702 ± 1.160 2.996 ± 0.503 **	6.347 ± 0.981 3.277 ± 0.512 **
Brain	(g) (%)	1.861 ± 0.047 0.754 ± 0.078	1.848 ± 0.042 0.766 ± 0.097	1.835 ± 0.046 * 0.830 ± 0.118 **	1.835 ± 0.039 * 0.953 ± 0.104 **

TABLE 17 NEOPLASTIC LESIONS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group	$\operatorname{Control}$	$320~\mathrm{ppm}$	$800~\mathrm{ppm}$	$2000~\mathrm{ppm}$	
No. of animals examined	<50>	<50>	<49>	<50>	
Skin					
Keratoacanthoma	3 (6%) a)	2 (4%)	1 (2%)	2 (4%)	
Squamous cell papilloma	1 (2%)	2(4%)	1 (2%)	1 (2%)	
Subcutis					
Fibroma	7 (14%)	2 (4%)	4 (8%)	3 (6%)	
Lung					
Bronchiolar-alveolar adenoma	1 (2%)	3 (6%)	2 (4%)	1 (2%)	
Spleen					
Mononuclear cell leukemia	6 (12%)	4 (8%)	6 (12%)	5 (10%)	
Stomach					
Squamous cell papilloma	1 (2%)	1 (2%)	0 (0%)	0 (0%)	
Squamous cell carcinoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)	
Liver					
Hepatocellular adenoma	1 (2%)	4 (8%)	4 (8%)	10 (20%) **	វវ ប្ប
Pituitary					
Adenoma	21~(42%)	22 (44%)	14 (29%)	13 (26%)	Û
Thyroid					
Č-cell adenoma	7 (14%)	10 (20%)	6 (12%)	11 (22%)	
Follicular adenoma	0 (0%)	0 (0%)	1 (2%)	$2\ (\ 4\%)$	
Follicular adenocarcinoma	0 (0%)	1 (2%)	0 (0%)	1 (2%)	
Follicular adenoma / adenocarcinoma	0 (0%)	1 (2%)	1 (2%)	3 (6%)	Ť
Testis					
Interstitial cell tumor	28 (56%)	31 (62%)	35 (71%)	35 (70%)	Ť

a) : No. of animals with bearing tumor (incidence; %)

^{** :} Statistically differenct from control group at p≤0.01 by Fisher exact test

¹ and **11**: The trend of treated groups statistically different from control group at $p ext{ ≤ } 0.05$ and $p ext{ ≤ } 0.01$ by Peto test, respectively.

 $[\]mathbb{Q}$ and \mathbb{Q} \mathbb{Q} : The trend of treated groups statistically different from control group at $p \le 0.05$ and $p \le 0.01$ by Cochran-Armitage test, respectively.

TABLE 18 NEOPLASTIC LESIONS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group No. of animals examined	Control <50>	320 ppm <50>	800 ppm <50>	2000 ppm <50>	
Spleen					
Mononuclear cell leukemia	7 (14%) ^{a)}	6 (12%)	6 (12%)	8 (16%)	
Stomach					
Squamous cell papilloma	0 (0%)	1 (2%)	0 (0%)	0 (0%)	
Liver					
Hepatocellular adenoma	0 (0%)	1(2%)	0 (0%)	3 (6%)	f û
Pituitary					
Adenoma	19 (38%)	15 (30%)	16 (32%)	15 (30%)	
Thyroid					
Č-cell adenoma	6 (12%)	4 (8%)	5 (10%)	8 (16%)	
Follicular adenoma	1 (2%)	2 (4%)	0 (0%)	0 (0%)	
Uterus					
Endometrial stromal polyp	7 (14%)	8 (16%)	11 (22%)	7 (14%)	
Endometrial stromal sarcoma	4 (8%)	1 (2%)	0 (0%)	0 (0%)	$\hat{\mathbf{U}}$
Mammary gland					
Fibroadenoma	3 (6%)	3 (6%)	6 (12%)	7 (14%)	

a) : No. of animals with bearing tumor (incidence; %)

î ↓: The trend of treated groups statistically different from control group at p≤0.05 by Cochran-Armitage test

TABLE 19 NON-NEOPLASTIC LESIONS OF MALE AND FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

				ale			Fer	nale	
Group No. of animals examined		Control <50>	320 ppm <50>	800 ppm <49>	2000 ppm <50>	Control <50>	320 ppm <50>	800 ppm <50>	2000 ppm <50>
Liver	Grade								
Basophilic cell focus	+ 2+ 3+	9 0 0	8 0 0	15 7 0	16 7 0	3 1 0	3 1 0	4 0 1	6 0 0
Kidney									
Chronic nephropathy	+ 2+ 3+ 4+	$10 \\ 25 \\ 13 \\ 0$	$egin{array}{c} 3 \\ 13 \\ 28 \\ 2 \end{array}$	4 15 26 3	3 7 36 2	15 2 2 0	18 6 7 0	16 13 6 0	31 6 0 0
Papillary necrosis	+ 2+ 3+	1 0 0	12 0 0	14 1 0	20 4 0	0 0 0	7 0 0	23 0 0	7 19 2
Mineralization : papilla	+ 2+	3 0	2 0	11 0	19 0	3 0	3	6 1	22 1
Urothelial hyperplasia : pelvis	+ 2+	16 0	18 0	25 0	.25 1	9	9	9	27 0
Stomach (Forestomach)									
Squamous cell hyperplasia	+	3	0	0	5	1	3	3	4
Basal cell hyperplasia	+	0	0	0	0	0	0	0	3

Grade +: Slight 2+: Moderate 3+: Marked 4+: Severe

TABLE 20 CAUSE OF DEATH OF MALE AND FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

		M	ale		Female			
Group	Control	320 ppm	800 ppm	2000 ppm	Control	320 ppm	800 ppm	2000 ppm
No. of dead/moribund animals	<10>	<6>	<12>	<15>	<13>	<10>	<8>	<8>
Chronic nephropathy	0	0	0	3	0	0	0	0
Urinary retention	0	0	1	0	0	0	0	0
Thrombosis	0	0	0	1	0	0	0	0
Deglutition disorder	0	0	0	0	0	0	2	0
Tumor death:								
leukemia	2	2	5	3	1	3	2	4
skin/appendage	1	0	0	1	0	0	0	0
subcutis	2	0	0	0	1	0	0	0
tongue	0	0	0	1	0	0	0	0
salivary gland	0	0	2	0	0	0	0.	0
pancreas	0	0	0	0	0	0	1	0
pituitary	1	2	1	4	4	5	1	2
adrenal	1	0	1	0	0	0	0	0
uterus	-	-	-	-	5	0	0	0
mammary gland	0	0	0	0	0	0	0	1
clitoral gland	-	-	-	-	1	0	0	0
brain	0	0	0	0	0	0	1	0
spinal cord	0	0	0	0	0	1	0	0
Zymbal gland	0	0	0	1	0	0	0	0
bone	1	0	1	0	0	0	1	0
vertebrae	0	0	1	0	0	0	0	0
peritoneum	1	0	0	0	0	0	0	0
No microscopical confirmation	1	2	0	1	1	1	0	1

TABLE 21 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrj MALE RATS

Organs Tu	umors	No. of animals examined	No. of animals with bearing tumor	Incidence (%)	Min Max. (%)
	eratoacanthoma Juamous cell papilloma	<1248>	39 14	3.1 1.1	0 - 8 0 - 4
Subcutis Fi	broma	<1249>	90	7.2	2 - 14
Lung Br	ronchiolar-alveolar adenoma	<1249>	37	3.0	0 - 8
Spleen Me	ononuclear cell leukemia	<1249>	152	12.2	4 - 22
	quamous cell papillpma quamous cell carcinoma	<1248>	2 0	0.2	0 - 2
Liver He	epatocellular adenoma	<1249>	20	1.6	0 - 6
Pituitary Ac	denoma	<1244>	439	35.3	18 - 66
Fo	-cell adenoma ollicular adenoma ollicular adenocarcinoma	<1243>	155 12 27	12.5 1.0 2.2	4 - 26 0 - 4 0 - 8
Testis In	nterstitial cell tumor	<1249>	1099	88.0	74 - 98

25 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No. : 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269 0284, 0288, 0294, 0296, 0318

TABLE 22 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

Organs Tumors	No. of animals examined	No. of animals with bearing tumor	Incidence (%)	Min Max. (%)
Spleen	<1197>			
Mononuclear cell leukemia		160	13.4	2 - 26
Stomach	<1197>			
Squamous cell papilloma		2	0.2	0 - 2
Liver	<1197>			
Hepatocellular adenoma		16	1.3	0 - 6
Pituitary	<1195>			
Adenoma		493	41.3	16 - 71
Thyroid	<1191>			
C-cell adenoma		115	9.7	0 - 16
Follicular adenoma		12	1.0	0 - 4
Uterus	<1197>			
Endometrial stromal polyp		172	14.4	2 - 28
Endometrial stromal sarcoma		7	0.6	0 - 2
Mammary gland	<1197>			
Fibroadenoma		130	10.9	0 - 20

24 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No.: 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269 0284, 0296, 0303, 0318