Summary of Drinking Water Carcinogenicity Study of *o*-Phenylenediamine Dihydrochloride in F344 Rats

February 2004

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on February 26 2004.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Drinking Water Carcinogenicity Study of o-Phenylenediamine Dihydrochloride in F344 Rats

Purpose, materials and methods

o-Phenylenediamine dihydrochloride (o-PD2HCl, 1,2-benzenediamine dihydrochloride, CAS No. 615-28-1) is a light red crystalline powder with a melting point of 258°C and is soluble in water.

The carcinogenicity and chronic toxicity of o-PD2HCl were examined in groups of 50 F344/DuCrj (Fischer) rats of both sexes administered o-PD2HCl in drinking water for 2 years (104 weeks). The drinking water concentration of o-PD2HCl was 0, 500, 1000 or 2000 ppm (w/w) for male rats, and 0, 250, 500 or 1000 ppm for female rats. The highest dose levels were chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. o-PD2HCl was analyzed for purity and stability by both infrared spectrometry and high performance liquid chromatography before and after its use. The concentrations of o-PD2HCl in drinking water were determined by high performance liquid chromatography at the time of preparation, and on the 8th day after preparation, while stored at room temperature. The animals were observed daily for clinical signs and mortality. Body weight, water consumption and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year administration period underwent complete necropsy. Urinalysis was performed near the end of the administration period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of dose-response relationship for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, water consumption, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

There was no significant difference in survival rate between any *o*-PD2HCl-administered group of either sex and the respective control. Body weight and water consumption were significantly decreased in all the *o*-PD2HCl-administered male groups and in the females administered 500 and 1000 ppm. Food consumption was suppressed in the 2000 ppm-administered males and in the 1000 ppm-administered females throughout the 2-year administration period and in both 500 and 1000 ppm-administered males during both the early and late periods of 2-year administration.

The incidence of hepatocellular adenomas was significantly increased in the middle and highdosed groups of both sexes, while the incidence of hepatocellular carcinomas was significantly increased in the high-dosed groups of both sexes. The incidences of the hepatocellular tumors exceeded the respective maximum incidences of the Japan Bioassay Research Center (JBRC) historical control data. As a pre-neoplastic lesion, the incidence of basophilic cell foci in the liver was significantly increased in the males administered 1000 ppm and above and in all the o-PD2HCl-administered female groups. Plasma levels of AST (GOT), ALT (GPT) and γ-GTP were increased in the o-PD2HCl-administered males and females. Moreover, the incidences of transitional cell papillomas and carcinomas in the urinary bladder of the 2000 ppm-administered males exceeded the respective maximum incidences of the JBRC historical control data. The combined incidence of transitional cell papillomas and carcinomas was increased in the males administered 2000 ppm, together with the increased incidence of hyperplasia of transitional epithelium. In the kidney, the incidences of papillary necrosis, papillary mineralization and urothelial hyperplasia of the pelvis were increased in the o-PD2HCl-administered males and females. In the nasal cavity, eosinophilic change in the olfactory epithelium was observed in the o-PD2HCl-administered males and females. Those renal and nasal lesions were thought to be related to the o-PD2HCl administration. The incidence of follicular adenomas in the thyroid of the o-PD2HCl-administered males was increased, but was not clearly related to the o-PD2HCl administration. A no-observed-adverse-effect-level (NOAEL) for o-PD2HCl could not determined in the 2-year drinking water study, since the incidences of basophilic cell foci of the liver and urothelial hyperplasia of the pelvis in the o-PD2HCl-administered females were increased at the lowest dose level. The lowest-observed-adverse-effect-level (LOAEL) was 250 ppm (0.014 - 0.034 mg/kg/body weight per day for females) for these endpoints. The lower confidence limits of the benchmark dose yielding a response with a 10% extra risk (BMDL₁₀) value for the endpoint of urothelial hyperplasia of the pelvis was 148 ppm.

Conclusions

In rats, there was clear evidence of carcinogenic activity of o-PD2HCl in males and females,

based on the increased incidences of hepatocellular adenomas and carcinomas in males and females and the increased combined incidences of urinary bladder transitional cell papillomas and carcinomas in males.

TABLES

TABLE 1	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 2	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 3	WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 4	WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 5	FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 6	FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 7	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 8	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

TABLES (CONTINUED)

TABLE 9	HEMATOLOGY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 10	HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 11	BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 12	BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 13	URINALYSIS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 14	URINALYSIS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 15	ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 16	ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

TABLES (CONTINUED)

TABLE 17	INCIDENCES OF SELECTED LESIONS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 18	INCIDENCES OF SELECTED LESIONS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
TABLE 19	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj MALE RATS
TABLE 20	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS
TABLE 21	CAUSE OF DEATH OF RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

)

TABLE 1 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Cont	rol	500) ppm		100	0 ppm		200	00 ppm	
Week	Av. Wt.	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. 0
on Study	<50	Surviv. >	<	cont. 50>	Surviv.	<	cont. 50>	Surviv.	<	cont. <50>	Surviv
0	118 (50)	50 / 50	118 (50)	100	50 / 50	118 (50)	100	50 / 50	118 (50)	100	50 / 50
1	147 (50)	50 / 50	143 (50)	97	50 / 50	139 (50)	95	50 / 50	129 (50)	88	50 / 50
2	176 (50)	50 / 50	171 (50)	97	50 / 50	166 (50)	94	50 / 50	154 (50)	88	50 / 50
3	202 (50)	50 / 50	194 (50)	96	50 / 50	192 (50)	95	50 / 50	178 (50)	88	50 / 50
4	223 (50)	50 / 50	214 (50)	96	50 / 50	212 (50)	95	50 / 50	196 (50)	88	50 / 50
5	239 (50)	50 / 50	229 (50)	96	50 / 50	228 (50)	95	50 / 50	211 (50)	88	50 / 50
6	251 (50)	50 / 50	239 (50)	95	50 / 50	238 (50)	95	50 / 50	219 (50)	87	50 / 50
7	261 (50)	50 / 50	250 (50)	96	50 / 50	248 (50)	95	50 / 50	227 (50)	87	50 / 50
8	273 (50)	50 / 50	259 (50)	95	50 / 50	257 (50)	94	50 / 50	235 (50)	86	50 / 50
9	282 (50)	50 / 50	268 (50)	95	50 / 50	266 (50)	94	50 / 50	241 (50)	85	50 / 50
10	289 (50)	50 / 50	276 (50)	96	50 / 50	274 (50)	95	50 / 50	247 (50)	85	50 / 50
11	296 (50)	50 / 50	282 (50)	95	50 / 50	281 (50)	95	50 / 50	251 (50)	85	50 / 50
12	303 (50)	50 / 50	288 (50)	95	50 / 50	287 (50)	95	50 / 50	257 (50)	85	50 / 50
13	310 (50)	50 / 50	296 (50)	95	50 / 50	294 (50)	95	50 / 50	263 (50)	85	50 / 50
14	315 (50)	50 / 50	300 (50)	95	50 / 50	297 (50)	94	50 / 50	267 (50)	85	50 / 50
18	330 (50)	50 / 50	319 (50)	97	50 / 50	313 (50)	95	50 / 50	279 (50)	85	50 / 50
22	344 (50)	50 / 50	332 (50)	97	50 / 50	326 (50)	95	50 / 50	289 (50)	84	50 / 50
26	358 (50)	50 / 50	345 (50)	96	50 / 50	338 (50)	94	50 / 50	301 (50)	84	50 / 50
30	368 (50)	50 / 50	354 (50)	96	50 / 50	346 (50)	94	50 / 50	306 (50)	83	50 / 50
34	376 (50)	50 / 50	360 (50)	96	50 / 50	353 (50)	94	50 / 50	313 (50)	83	50 / 50
38	382 (50)	50 / 50	369 (50)	97	50 / 50	361 (50)	95	50 / 50	316 (50)	83	50 / 50
42	388 (50)	50 / 50	375 (50)	97	50 / 50	365 (50)	94	50 / 50	319 (50)	82	50 / 50
46	396 (50)	50 / 50	380 (50)	96	50 / 50	369 (50)	93	50 / 50	322 (50)	81	50 / 50
50	398 (50)	50 / 50	383 (50)	96	50 / 50	373 (50)	94	50 / 50	325 (50)	82	50 / 50
54	404 (50)	50 / 50	387 (50)	96	50 / 50	376 (50)	93	50 / 50	325 (50)	80	50 / 50
58	410 (50)	50 / 50	389 (50)	95	50 / 50	377 (50)	92	50 / 50	327 (49)	80	49 / 50
62	413 (50)	50 / 50	392 (50)	95	50 / 50	379 (50)	92	50 / 50	328 (49)	79	49 / 50
66	420 (50)	50 / 50	394 (50)	94	50 / 50	380 (50)	90	50 / 50	327 (48)	78	48 / 50
70	425 (50)	50 / 50	396 (50)	93	50 / 50	382 (49)	90	49 / 50	330 (48)	78	48 / 50
74	426 (50)	50 / 50	394 (49)	92	49 / 50	384 (49)	90	49 / 50	329 (48)	77	48 / 50
78	426 (50)	50 / 50	400 (47)	94	47 / 50	382 (47)	90	47 / 50	327 (48)	77	48 / 50
82	426 (49)		401 (47)	94	47 / 50	383 (46)	90	46 / 50	327 (48)	77	48 / 50
86	430 (47)		403 (46)	94	46 / 50	381 (46)	89	46 / 50	323 (48)	75	48 / 50
90	430 (46)		399 (46)	93	46 / 50	376 (46)	87	46 / 50	317 (47)	74	47 / 50
94	426 (45)		387 (42)	91	42 / 50	370 (45)	87	45 / 50	309 (46)	73	46 / 50
98	419 (44)		383 (40)	91	40 / 50	362 (43)	86	43 / 50	302 (44)		44 / 50
102	413 (42)		377 (39)	91	39 / 50	355 (43)	86	43 / 50	294 (43)	71	43 / 50
104	406 (41)		377 (36)	93	36 / 50	349 (42)	86	42 / 50	287 (42)	71	42 / 50
			ive animals, (ody weight (Un		

TABLE 2 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Cont	rol	25	0 ppm		ŧ	500 ppm		10	000 ppm	
Week on Study	Av. Wt. <50	No. of Surviv.	Av. Wt.	% of cont. 50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. o
0	95 (50)	50 / 50	95 (50)	100	50 / 50	95 (50) 100	50 / 50	95 (50)	100	50 / 50
1	110 (50)	50 / 50	110 (50)	100	50 / 50	108 (50) 98	50 / 50	105 (50)	95	50 / 50
2	123 (50)	50 / 50	123 (50)	100	50 / 50	121 (50) 98	50 / 50	118 (50)	96	50 / 50
3	133 (50)	50 / 50	133 (50)	100	50 / 50	130 (50) 98	50 / 50	126 (50)	95	50 / 50
4	141 (50)	50 / 50	140 (50)	99	50 / 50	138 (50	98	50 / 50	132 (50)	94	50 / 50
5	148 (50)	50 / 50	147 (50)	99	50 / 50	144 (50) 97	50 / 50	137 (50)	93	50 / 50
6	153 (50)	50 / 50	151 (50)	99	50 / 50	149 (50) 97	50 / 50	140 (50)	92	50 / 50
7	157 (50)	50 / 50	156 (50)	99	50 / 50	153 (50) 97	50 / 50	145 (50)	92	50 / 50
8	161 (50)	50 / 50	160 (50)	99	50 / 50	157 (50) 98	50 / 50	149 (50)	93	50 / 50
9	165 (50)	50 / 50	164 (50)	99	50 / 50	160 (50) 97	50 / 50	151 (50)	92	50 / 50
10	167 (50)	50 / 50	166 (50)	99	50 / 50	164 (50) 98	50 / 50	155 (50)	93	50 / 50
11	171 (50)	50 / 50	172 (50)	101	50 / 50	167 (50) 98	50 / 50	158 (50)	92	50 / 50
12	173 (50)	50 / 50	174 (50)	101	50 / 50	170 (50) 98	50 / 50	160 (50)	92	50 / 50
13	175 (50)	50 / 50	176 (50)	101	50 / 50	172 (50) 98	50 / 50	161 (50)	92	50 / 50
14	176 (50)	50 / 50	178 (50)	101	50 / 50	174 (50) 99	50 / 50	163 (50)	93	50 / 50
18	184 (50)	50 / 50	185 (50)	101	50 / 50	181 (50) 98	50 / 50	169 (50)	92	50 / 50
22	189 (50)	50 / 50	188 (50)	99	50 / 50	185 (50) 98	50 / 50	173 (50)	92	50 / 50
26	193 (50)	50 / 50	194 (50)	101	50 / 50	190 (50) 98	50 / 50	178 (50)	92	50 / 50
30	199 (50)	50 / 50	198 (50)	99	50 / 50	196 (50) 98	50 / 50	182 (50)	91	50 / 50
34	204 (50)	50 / 50	204 (50)	100	50 / 50	200 (50) 98	50 / 50	185 (50)	91	50 / 50
38	206 (50)	50 / 50	205 (50)	100	50 / 50	202 (50) 98	50 / 50	187 (50)	91	50 / 50
42	211 (50)	50 / 50	210 (50)	100	50 / 50	205 (50) 97	50 / 50	189 (50)	90	50 / 50
46	215 (50)	50 / 50	213 (50)	99	50 / 50	208 (49) 97	49 / 50	191 (50)	89	50 / 50
50	219 (50)	50 / 50	216 (50)	99	50 / 50	212 (49) 97	49 / 50	196 (50)	89	50 / 50
54	223 (50)	50 / 50	220 (50)	99	50 / 50	216 (49) 97	49 / 50	199 (50)	89	50 / 50
58	227 (50)	50 / 50	223 (50)	98	50 / 50	220 (49) 97	49 / 50	202 (50)	89	50 / 50
62	232 (50)	50 / 50	227 (49)	98	49 / 50	224 (49) 97	49 / 50	204 (50)	88	50 / 50
66	237 (50)	50 / 50	232 (49)	98	49 / 50	228 (49) 96	49 / 50	206 (50)	87	50 / 50
70	243 (49)	49 / 50	236 (49)	97	49 / 50	232 (49) 95	49 / 50	209 (49)	86	49 / 50
74	250 (48)		244 (47)	98	47 / 50	237 (49) 95	49 / 50	214 (49)	86	49 / 50
78	255 (48)	48 / 50	248 (47)	97	47 / 50	240 (49) 94	49 / 50	217 (48)	85	48 / 50
82	263 (47)		252 (46)	96	46 / 50	245 (49		49 / 50	221 (48)		48 / 50
86	264 (47)		255 (45)	97	45 / 50	249 (49) 94	49 / 50	219 (48)		48 / 50
90	264 (45)	45 / 50	256 (45)	97	45 / 50	251 (49) 95	49 / 50	221 (46)	84	46 / 50
94	265 (45)		253 (45)	95	45 / 50	249 (48		48 / 50	220 (45)		45 / 50
98	267 (44)		256 (43)	96	43 / 50	251 (45		45 / 50	219 (44)		44 / 50
102	271 (41)		259 (40)	96	40 / 50	250 (44		44 / 50	218 (42)		42 / 50
104	269 (41)		253 (38)		38 / 50	248 (44		44 / 50	217 (41)		41 / 50
			ive animals, (ody weight (U		

TABLE 3 WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control	500 pp	m	1000	0 ppm	200	00 ppm	
Week on Study	Av. WC. No. of Surviv <50>		of No. of nt. Surviv.	Av. WC.	% of No. of cont. Surviv.	Av. WC.		No. of Surviv
1	17.1 (50) 50 / 50	15.7 (50) 9	2 50 / 50	13.7 (50)	80 50 / 50	11.7 (50)	68	50 / 50
2	18.0 (50) 50 / 50	16.0 (49) 8	9 50 / 50	14.3 (50)	79 50 / 50	12.3 (50)	68	50 / 50
3	19.1 (49) 50 / 50	17.4 (50) 9	1 50 / 50	15.3 (50)	80 50 / 50	13.4 (50)	70	50 / 50
4	19.5 (50) 50 / 50	17.2 (50) 8	8 50 / 50	15.8 (50)	81 50 / 50	13.4 (50)	69	50 / 50
5	19.5 (50) 50 / 50	17.4 (50) 8	9 50 / 50	16.4 (50)	84 50 / 50	13.2 (50)	68	50 / 50
6	19.8 (50) 50 / 50	16.9 (50) 8	5 50 / 50	16.2 (50)	82 50 / 50	13.3 (50)	67	50 / 50
7	19.1 (50) 50 / 50	16.8 (50) 8	8 50 / 50	15.5 (50)	81 50 / 50	12.7 (50)	66	50 / 50
8	19.0 (50) 50 / 50	16.9 (50) 8	9 50 / 50	15.4 (50)	81 50 / 50	12.7 (50)	67	50 / 50
9	18.7 (50) 50 / 50	17.4 (50) 9	3 50 / 50	15.8 (50)	84 50 / 50	13.1 (50)	70	50 / 50
10	18.6 (50) 50 / 50	17.5 (50) 9	4 50 / 50	16.2 (50)	87 50 / 50	13.2 (50)	71	50 / 50
11	18.0 (50) 50 / 50	16.4 (50) 9	1 50 / 50	15.2 (50)	84 50 / 50	12.9 (50)	72	50 / 50
12	18.1 (49) 50 / 50	16.2 (50) 9	0 50 / 50	14.9 (50)	82 50 / 50	12.4 (50)	69	50 / 50
13	18.0 (50) 50 / 50	16.1 (50) 8	9 50 / 50	15.0 (50)	83 50 / 50	12.3 (50)	68	50 / 50
14	18.1 (50) 50 / 50	16.1 (50) 8	9 50 / 50	14.4 (50)	80 50 / 50	12.4 (50)	69	50 / 50
18	18.0 (50) 50 / 50	16.6 (50) 9	2 50 / 50	15.2 (50)	84 50 / 50	12.7 (50)	71	50 / 50
22	17.3 (50) 50 / 50	15.5 (50) 9	0 50 / 50	14.8 (50)	86 50 / 50	12.4 (50)	72	50 / 50
26	17.2 (50) 50 / 50	15.7 (50) 9	1 50 / 50	14.3 (50)	83 50 / 50	12.2 (50)	71	50 / 50
30	16.1 (50) 50 / 50	14.8 (50) 9	2 50 / 50	13.7 (50)	85 50 / 50	11.6 (50)	72	50 / 50
34	16.5 (50) 50 / 50	15.1 (50) 9	2 50 / 50	14.3 (50)	87 50 / 50	12.1 (50)	73	50 / 50
38	16.7 (50) 50 / 50	15.2 (49) 9	1 50 / 50	14.6 (50)	87 50 / 50	12.5 (50)	75	50 / 50
42	16.5 (50) 50 / 50	15.4 (50) 9	3 50 / 50	14.4 (50)	87 50 / 50	12.8 (49)	78	50 / 50
46	16.9 (50) 50 / 50	15.3 (50) 9	1 50 / 50	14.3 (50)	85 50 / 50	12.6 (50)	75	50 / 50
50	16.9 (50) 50 / 50	15.6 (50) 9	2 50 / 50	14.8 (50)	88 50 / 50	13.4 (50)	79	50 / 50
54	17.0 (50) 50 / 50	15.7 (50) 9	2 50 / 50	14.8 (50)	87 50 / 50	13.6 (50)	80	50 / 50
58	17.2 (50) 50 / 50	15.1 (50) 8	8 50 / 50	14.4 (50)	84 50 / 50	13.0 (49)	76	49 / 50
62	17.1 (50) 50 / 50	15.6 (50) 9	1 50 / 50	14.8 (50)	87 50 / 50	13.5 (49)	79	49 / 50
66	16.6 (50) 50 / 50	14.8 (50) 8	9 50 / 50	14.2 (50)	86 50 / 50	13.3 (48)	80	48 / 50
70	17.9 (50) 50 / 50	15.5 (50) 8	7 50 / 50	14.6 (49)	82 49 / 50	13.8 (48)	77	48 / 50
74	17.6 (50) 50 / 50	15.9 (49) 9	0 49 / 50	14.5 (49)	82 49 / 50	13.0 (48)	74	48 / 50
78	17.7 (50) 50 / 50	16.4 (47) 9	3 47 / 50	14.8 (47)	84 47 / 50	13.7 (48)	77	48 / 50
82	17.6 (49) 49 / 50		3 47 / 50	14.4 (46)	82 46 / 50	13.8 (48)		48 / 50
86	18.6 (47) 47 / 50		3 46 / 50	14.6 (46)	78 46 / 50	13.9 (48)		48 / 50
90	18.6 (46) 46 / 50		4 46 / 50	14.5 (46)	78 46 / 50	14.2 (47)		47 / 50
94	19.5 (44) 45 / 50		6 42 / 50	14.7 (45)	75 45 / 50	14.2 (46)		46 / 50
98	20.7 (44) 44 / 50		4 40 / 50	15.6 (43)	75 43 / 50	15.1 (44)		44 / 50
102	19.5 (42) 42 / 50		9 39 / 50	15.3 (42)	78 43 / 50	15.5 (43)		43 / 50
104	20.0 (41) 41 / 50		1 36 / 50	15.2 (42)	76 42 / 50	15.3 (42)		42 / 50

< >: No.of effective animals, (): No.of measured animals, Av.WC.: Averaged water consumption (Unit:g).

TABLE 4 WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control		250	ppm			500	ppm		10	00 ppm	
Week on Study		No. of urviv.	Av. WC.	% of cont. 50>	No. of Surviv.	Av. Wo		% of cont. 60>	No. of Surviv.	Av. WC.		No. o Survi
1	15.0 (50) 50	/ 50	15.2 (50)	101	50 / 50	13.9 (5	50)	93	50 / 50	11.6 (49) 77	50 / 50
2	17.2 (49) 50	/ 50	16.0 (48)	93	50 / 50	15.4 (4	19)	90	50 / 50	11.8 (50) 69	50 / 50
3	17.4 (49) 50	/ 50	16.5 (49)	95	50 / 50	14.3 (5	50)	82	50 / 50	11.8 (48) 68	50 / 5
4	17.8 (50) 50	/ 50	17.1 (49)	96	50 / 50	14.5 (8	50)	81	50 / 50	11.5 (50) 65	50 / 5
5	17.7 (47) 50	/ 50	17.2 (46)	97	50 / 50	15.3 (4	19)	86	50 / 50	11.4 (50) 64	50 / 5
6	17.1 (46) 50	/ 50	19.1 (47)	112	50 / 50	15.9 (5	50)	93	50 / 50	11.4 (48) 67	50 / 5
7	16.3 (49) 50	/ 50	15.3 (48)	94	50 / 50	13.0 (5	50)	80	50 / 50	10.4 (50) 64	50 / 5
8	18.0 (48) 50	/ 50	17.3 (48)	96	50 / 50	13.7 (4	19)	76	50 / 50	11.2 (50) 62	50 / 5
9	18.2 (49) 50	/ 50	18.5 (49)	102	50 / 50	15.5 (5	50)	85	50 / 50	11.6 (50) 64	50 / 5
10	18.0 (48) 50		17.7 (48)	98	50 / 50	15.2 (4	18)	84	50 / 50	11.3 (50) 63	50 / 5
11	17.0 (50) 50	/ 50	17.0 (50)	100	50 / 50	14.5 (5	50)	85	50 / 50	11.0 (50) 65	50 / 5
12	16.7 (49) 50		16.9 (49)	101	50 / 50	14.5 (8	50)	87	50 / 50	10.9 (50) 65	50 / 5
13	18.1 (47) 50	/ 50	18.0 (46)	99	50 / 50	14.4 (4		80	50 / 50	10.8 (50) 60	50 / 5
14	20.4 (50) 50		19.6 (50)	96	50 / 50	14.6 (4		72	50 / 50	10.9 (50		50 / 5
18	19.2 (47) 50		17.3 (47)	90	50 / 50	15.4 (4		80	50 / 50	11.7 (50) 61	50 / 5
22	16.6 (48) 50		16.5 (50)	99	50 / 50	14.8 (50 / 50	11.0 (50		50 / 5
26	16.5 (49) 50		17.1 (50)	104	50 / 50	14.7 (5		89	50 / 50	10.8 (50) 65	50 / 5
30	17.8 (50) 50		15.7 (50)	88	50 / 50	14.0 (5		79	50 / 50	10.7 (50		50 / 5
34	15.8 (50) 50		15.4 (50)	97	50 / 50	13.3 (5			50 / 50	10.4 (49		50 / 5
38	15.7 (50) 50		14.4 (49)	92	50 / 50	13.0 (5			50 / 50	10.6 (48		50 / 5
42	15.4 (50) 50		14.5 (49)	94	50 / 50	13.6 (5			50 / 50	10.8 (49		50 / 5
46	14.9 (50) 50		14.3 (49)	96	50 / 50	13.3 (4		89	49 / 50	10.8 (50		50 / 8
50	14.6 (50) 50		13.9 (50)	95	50 / 50	12.7 (4		87	49 / 50	11.1 (50		50 / 5
54	15.2 (50) 50		14.4 (50)	95	50 / 50	13.5 (4		89	49 / 50	11.4 (50		50 / 5
58	14.7 (50) 50		14.1 (50)	96	50 / 50	12.9 (4		88	49 / 50	11.1 (50		50 / 5
62	14.9 (50) 50		14.4 (49)	97	49 / 50	12.9 (4		87	49 / 50	11.3 (50		50 / 5
66	14.6 (50) 50		13.8 (49)	95	49 / 50	12.9 (4			49 / 50	12.0 (50		50 / 5
70	15.1 (49) 49		14.0 (49)	93	49 / 50	12.8 (4			49 / 50	11.6 (48		49 / 5
74	14.3 (48) 48		13.9 (47)	97	47 / 50	12.4 (4			49 / 50	11.3 (49		49 / 5
78	15.8 (48) 48		14.2 (47)		47 / 50	13.1 (4			49 / 50	11.3 (48		48 / 5
82	16.0 (47) 47		13.9 (46)	87	46 / 50	12.9 (4			49 / 50	11.5 (48		48 / 5
86	15.3 (47) 47		14.4 (45)	94	45 / 50	13.2 (4			49 / 50	11.2 (47		48 / 5
90	15.6 (45) 45		14.0 (45)		45 / 50	13.2 (4			49 / 50	11.8 (46		46 / 5
94	16.3 (44) 45		15.1 (45)		45 / 50	13.7 (4			48 / 50	12.3 (45		45 / 5
98	16.9 (44) 44		16.2 (43)	96	43 / 50	13.8 (4			45 / 50	12.3 (42		44 / 5
102	17.7 (40) 41		15.7 (40)	89	40 / 50	13.7 (4			44 / 50	12.6 (42		42 / 5
104	18.1 (40) 41		15.8 (38)		38 / 50	14.4 (4			44 / 50	12.6 (41		41 / 5

TABLE 5 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Contr	ol	50	00 ppm		1	000 ppm		200	00 ppm	
Week on Study	Av. FC.	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.		No. of Surviv.	Av. FC.	% of cont. <50>	No. o Survi
1	13.3 (50)	50 / 50	12.7 (50	95	50 / 50	12.0 (50) 90	50 / 50	10.3 (50)	77	50 / 50
2	14.4 (50)	50 / 50	13.9 (50	97	50 / 50	13.5 (50) 94	50 / 50	12.2 (50)	85	50 / 50
3	15.7 (50)	50 / 50	14.7 (50	94	50 / 50	14.6 (50) 93	50 / 50	13.4 (50)	85	50 / 50
4	16.1 (50)	50 / 50	15.4 (50	96	50 / 50	15.3 (50	95	50 / 50	14.1 (50)	88	50 / 5
5	15.8 (50)	50 / 50	15.3 (50	97	50 / 50	15.2 (50) 96	50 / 50	14.2 (50)	90	50 / 5
6	15.9 (50)	50 / 50	15.1 (50	95	50 / 50	15.1 (50) 95	50 / 50	13.9 (50)	87	50 / 5
7	15.5 (50)	50 / 50	14.8 (50	95	50 / 50	14.8 (49) 95	50 / 50	13.5 (50)	87	50 / 5
8	15.6 (50)	50 / 50	14.7 (49	94	50 / 50	14.9 (50) 96	50 / 50	13.6 (50)	87	50 / 5
9	15.5 (50)	50 / 50	14.9 (50	96	50 / 50	14.8 (50) 95	50 / 50	13.6 (50)	88	50 / 5
10	15.5 (50)	50 / 50	15.1 (50	97	50 / 50	15.4 (49) 99	50 / 50	13.8 (50)	89	50 / 5
11	15.6 (50)	50 / 50	15.0 (50	96	50 / 50	15.4 (50) 99	50 / 50	14.0 (50)	90	50 / 5
12	15.6 (50)	50 / 50	15.0 (50	96	50 / 50	15.6 (50) 100	50 / 50	14.3 (50)	92	50 / 5
13	15.3 (50)	50 / 50	14.8 (50	97	50 / 50	15.1 (50) 99	50 / 50	13.9 (50)	91	50 / 5
14	15.2 (50)	50 / 50	14.6 (50	96	50 / 50	14.8 (50	97	50 / 50	13.7 (50)	90	50 / 5
18	15.0 (50)	50 / 50	14.9 (50	99	50 / 50	14.6 (50	97	50 / 50	13.7 (50)	91	50 / 5
22	15.3 (50)	50 / 50	14.9 (50	97	50 / 50	15.4 (50) 101	50 / 50	14.3 (50)	93	50 / 5
26	15.5 (50)	50 / 50	15.3 (50	99	50 / 50	15.2 (50	98	50 / 50	14.4 (50)	93	50 / 8
30	15.1 (50)	50 / 50	14.9 (50	99	50 / 50	14.9 (50) 99	50 / 50	14.0 (50)	93	50 / 8
34	15.2 (50)	50 / 50	15.3 (50	101	50 / 50	15.3 (50) 101	50 / 50	14.7 (50)	97	50 / 5
38	15.5 (50)	50 / 50	15.5 (50	100	50 / 50	15.6 (50) 101	50 / 50	14.6 (50)	94	50 / 5
42	15.5 (50)	50 / 50	15.8 (50	102	50 / 50	15.7 (50) 101	50 / 50	15.0 (50)	97	50 / 5
46	15.7 (50)	50 / 50	15.7 (50	100	50 / 50	15.8 (50) 101	50 / 50	14.9 (50)	95	50 / 5
50	15.8 (50)	50 / 50	15.7 (50	99	50 / 50	15.9 (50) 101	50 / 50	15.0 (50)	95	50 / 5
54	16.2 (50)	50 / 50	16.1 (50	99	50 / 50	16.2 (50) 100	50 / 50	15.3 (50)	94	50 / 5
58	16.1 (50)	50 / 50	15.8 (50	98	50 / 50	15.8 (50) 98	50 / 50	15.2 (49)	94	49 / 5
62	15.9 (50)	50 / 50	15.8 (50	99	50 / 50	15.8 (50) 99	50 / 50	14.7 (49)	92	49 / 5
66	15.9 (50)	50 / 50	15.2 (50)	96	50 / 50	15.1 (50) 95	50 / 50	13.8 (48)	87	48 / 5
70	15.9 (50)	50 / 50	15.3 (50)	96	50 / 50	15.3 (49) 96	49 / 50	14.5 (48)	91	48 / 5
74	16.1 (50)	50 / 50	15.2 (49	94	49 / 50	15.8 (49		49 / 50	14.5 (48)	90	48 / 5
78	16.1 (50)	50 / 50	16.0 (47	99	47 / 50	15.8 (47) 98	47 / 50	14.6 (48)	91	48 / 5
82	15.8 (49)		15.7 (47		47 / 50	15.5 (46		46 / 50	14.5 (48)		48 / 5
86	15.8 (47)		15.3 (46		46 / 50	15.3 (46			14.0 (48)		48 / 5
90	16.3 (46)		15.5 (46			15.3 (46		46 / 50	14.1 (47)		47 / 5
94	16.0 (45)		15.3 (42		42 / 50	15.1 (45		45 / 50	13.8 (46)		46 / 5
98	15.9 (44)		15.6 (40)		40 / 50	15.0 (43		43 / 50	14.0 (44)		44 / 5
102	15.7 (42)		15.5 (37)		39 / 50	14.9 (43		43 / 50	13.9 (43)		43 / 5
104	15.5 (41)		16.2 (36)		36 / 50	14.7 (42		42 / 50	13.4 (42)		42 / 5

TABLE 6 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control		250	ppm		5	00 ppm		10	00 ppm	
Week on Study		No. of Surviv.	Av. FC.	% of cont. 50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.		No. o Survi
1	10.5 (50) 5	0 / 50	10.5 (50)	100	50 / 50	10.0 (50) 95	50 / 50	9.3 (50) 89	50 / 5
2	10.7 (50) 5	0 / 50	10.9 (50)	102	50 / 50	10.6 (50) 99	50 / 50	10.1 (50	94	50 / 50
3	10.9 (50) 5	0 / 50	11.0 (50)	101	50 / 50	10.9 (50) 100	50 / 50	10.3 (50) 94	50 / 50
4	11.0 (50) 5	0 / 50	11.1 (50)	101	50 / 50	10.9 (50) 99	50 / 50	10.1 (50) 92	50 / 5
5	10.9 (50) 5	0 / 50	10.8 (50)	99	50 / 50	10.6 (50	97	50 / 50	10.0 (50) 92	50 / 5
6	10.6 (50) 5	0 / 50	10.6 (50)	100	50 / 50	10.4 (50	98	50 / 50	9.5 (50) 90	50 / 5
7	10.3 (50) 5	0 / 50	10.4 (50)	101	50 / 50	10.2 (50) 99	50 / 50	9.5 (50) 92	50 / 5
8	10.5 (50) 5	0 / 50	10.5 (50)	100	50 / 50	10.3 (50) 98	50 / 50	9.8 (50	93	50 / 5
9	10.5 (50) 5	0 / 50	10.7 (50)	102	50 / 50	10.3 (50) 98	50 / 50	9.8 (50) 93	50 / 5
10	10.3 (50) 5	0 / 50	10.6 (50)	103	50 / 50	10.5 (50) 102	50 / 50	9.8 (50) 95	50 / 5
11	10.5 (50) 5	0 / 50	10.8 (50)	103	50 / 50	10.5 (50) 100	50 / 50	9.8 (50	93	50 / 5
12	10.5 (50) 5	0 / 50	10.8 (50)	103	50 / 50	10.5 (50) 100	50 / 50	9.9 (50) 94	50 / 5
13	10.2 (50) 5	0 / 50	10.5 (50)	103	50 / 50	10.4 (50) 102	50 / 50	9.7 (50) 95	50 / 5
14	10.1 (50) 5	0 / 50	10.5 (50)	104	50 / 50	10.2 (50) 101	50 / 50	9.4 (50) 93	50 / 5
18	10.3 (50) 5	0 / 50	10.5 (50)	102	50 / 50	10.3 (50) 100	50 / 50	9.6 (50) 93	50 / 5
22	10.5 (50) 5	0 / 50	10.7 (50)	102	50 / 50	10.6 (49) 101	50 / 50	9.9 (50) 94	50 / 5
26	10.5 (50) 5	0 / 50	10.9 (50)	104	50 / 50	10.8 (50) 103	50 / 50	10.1 (50) 96	50 / 5
30	10.8 (50) 5	0 / 50	10.9 (50)	101	50 / 50	10.7 (50) 99	50 / 50	10.0 (49	93	50 / 8
34	10.7 (50)5	0 / 50	10.9 (50)	102	50 / 50	10.6 (49) 99	50 / 50	10.0 (50	93	50 / 5
38	10.7 (50) 5	0 / 50	10.8 (50)	101	50 / 50	10.5 (49) 98	50 / 50	10.0 (50	93	50 / 5
42	11.1 (50) 5	0 / 50	11.2 (50)	101	50 / 50	10.9 (50) 98	50 / 50	10.4 (50	94	50 / 5
46	11.1 (50) 5	0 / 50	11.2 (50)	101	50 / 50	10.9 (49) 98	49 / 50	10.4 (50) 94	50 / 5
50	11.2 (50) 5	0 / 50	11.1 (50)	99	50 / 50	11.0 (49) 98	49 / 50	10.6 (50	95	50 / 5
54	11.4 (50) 5	0 / 50	11.3 (50)	99	50 / 50	10.9 (49) 96	49 / 50	10.6 (50	93	50 / 5
58	11.1 (50) 5	0 / 50	11.2 (50)	101	50 / 50	11.2 (49) 101	49 / 50	10.6 (50	95	50 / 5
62	11.2 (50) 5	0 / 50	11.2 (48)	100	49 / 50	11.0 (49	98 (49 / 50	10.3 (50	92	50 / 5
66	11.1 (50) 5	0 / 50	11.0 (49)	99	49 / 50	10.9 (49	98	49 / 50	10.3 (50	93	50 / 5
70	11.3 (49) 4	9 / 50	11.4 (49)	101	49 / 50	11.1 (49	98	49 / 50	10.4 (49	92	49 / 5
74	11.3 (48) 4	8 / 50	11.4 (47)	101	47 / 50	11.1 (49	98	49 / 50	10.6 (49	94	49 / 5
78	11.9 (48) 4	8 / 50	11.7 (46)	98	47 / 50	11.3 (49) 95	49 / 50	10.6 (48) 89	48 / 5
82	12.2 (47) 4	7 / 50	11.7 (46)	96	46 / 50	11.5 (49) 94	49 / 50	10.9 (48	89	48 / 5
86	11.7 (47) 4	7 / 50	11.6 (45)	99	45 / 50	11.3 (49	97	49 / 50	10.4 (48	89	48 / 5
90	11.9 (45) 4	5 / 50	11.9 (45)	100	45 / 50	11.5 (49	97	49 / 50	10.9 (46	92	46 / 5
94	11.9 (45) 4	5 / 50	11.7 (45)	98	45 / 50	11.2 (48	94	48 / 50	10.7 (45	90	45 / 5
98	11.9 (44) 4	4 / 50	12.1 (43)	102	43 / 50	11.4 (45) 96	45 / 50	10.6 (44	89	44 / 5
102	12.1 (41) 4	1 / 50	11.8 (40)	98	40 / 50	11.1 (44	92	44 / 50	10.6 (42	88 (42 / 5
104	11.6 (41) 4	1 / 50	11.2 (38)	97	38 / 50	11.2 (44	97	44 / 50	10.5 (40	91	41 / 5

TABLE 7 INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

					00 00	00 70	10 01	$92 \sim 104$	0~104
Control	0/50	0/50	0/50	1/50	2/50	3/50	2/50	7/46	10/50(2/ 9)
$500~\mathrm{ppm}$	1/50	0/50	0/50	2/50	6/50	12/50	15/47	19/45	22/50(7/14)
1000 ppm	0/50	0/50	0/50	0/50	2/50	3/50	7/46	10/46	14/50(2/ 8)
2000 ppm	0/50	0/50	0/50	0/50	5/50	4/48	7/48	8/47	11/50(1/ 8)
Control	0/50	0/50	0/50	0/50	0/50	0/50	0/50	1/46	1/50(1/9)
$500~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	0/50	0/47	0/45	0/50(0/14)
1000 ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/46	2/46	2/50(1/8)
$2000~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	0/48	0/48	2/47	2/50(0/8)
	500 ppm 1000 ppm 2000 ppm Control 500 ppm 1000 ppm	500 ppm 1/50 1000 ppm 0/50 2000 ppm 0/50 Control 0/50 500 ppm 0/50 1000 ppm 0/50	500 ppm 1/50 0/50 1000 ppm 0/50 0/50 2000 ppm 0/50 0/50 Control 0/50 0/50 500 ppm 0/50 0/50 1000 ppm 0/50 0/50	500 ppm 1/50 0/50 0/50 1000 ppm 0/50 0/50 0/50 2000 ppm 0/50 0/50 0/50 Control 0/50 0/50 0/50 500 ppm 0/50 0/50 0/50 1000 ppm 0/50 0/50 0/50	500 ppm 1/50 0/50 0/50 2/50 1000 ppm 0/50 0/50 0/50 0/50 2000 ppm 0/50 0/50 0/50 0/50 Control 0/50 0/50 0/50 0/50 500 ppm 0/50 0/50 0/50 0/50 1000 ppm 0/50 0/50 0/50 0/50	500 ppm 1/50 0/50 0/50 2/50 6/50 1000 ppm 0/50 0/50 0/50 0/50 2/50 2000 ppm 0/50 0/50 0/50 0/50 5/50 Control 0/50 0/50 0/50 0/50 0/50 500 ppm 0/50 0/50 0/50 0/50 0/50 1000 ppm 0/50 0/50 0/50 0/50 0/50	500 ppm 1/50 0/50 0/50 2/50 6/50 12/50 1000 ppm 0/50 0/50 0/50 0/50 2/50 3/50 2000 ppm 0/50 0/50 0/50 0/50 5/50 4/48 Control 0/50 0/50 0/50 0/50 0/50 0/50 0/50 500 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/50 1000 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/50	500 ppm 1/50 0/50 0/50 2/50 6/50 12/50 15/47 1000 ppm 0/50 0/50 0/50 0/50 2/50 3/50 7/46 2000 ppm 0/50 0/50 0/50 0/50 5/50 4/48 7/48 Control 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 500 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/47 1000 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/46	500 ppm 1/50 0/50 0/50 2/50 6/50 12/50 15/47 19/45 1000 ppm 0/50 0/50 0/50 0/50 2/50 3/50 7/46 10/46 2000 ppm 0/50 0/50 0/50 5/50 4/48 7/48 8/47 Control 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 1/46 500 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/47 0/45 1000 ppm 0/50 0/50 0/50 0/50 0/50 0/50 0/46 2/46

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 8 INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Time of mass occurrence (week)	0~13	14~26	27~39	40~52	53~65	66~78	79~91	92~104	0~104
External mass									
Control	0/50	0/50	0/50	0/50	1/50	2/50	5/48	8/45	9/50(3/9)
250~ m ppm	0/50	0/50	0/50	0/50	1/50	3/49	4/46	6/45	9/50(4/12)
500 ppm	0/50	0/50	0/50	0/50	0/49	1/49	4/49	10/49	11/50(2/6)
1000 ppm	0/50	0/50	1/50	1/50	2/50	1/50	3/48	4/46	6/50(4/9)
Internal mass									
Control	0/50	0/50	0/50	0/50	0/50	0/50	0/48	0/45	0/50(0/9)
250~ m ppm	0/50	0/50	0/50	0/50	0/50	2/49	0/46	3/45	5/50(2/12)
500 ppm	0/50	0/50	0/50	0/50	0/49	0/49	0/49	0/49	0/50(0/6)
1000 ppm	0/50	0/50	0/50	0/50	0/50	0/50	2/48	3/46	4/50(3/9)

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 9 HEMATOLOGY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF ρ -PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	500 ppm	1000 ppm	2000 ppm
No. of examined animals	40	36	42	42
MCV (fL)	$50.1~\pm~7.7$	48.4 ± 2.3	48.8 ± 4.4 *	50.0 ± 3.7
MCH (pg)	$16.8~\pm~2.0$	$16.2 ~\pm~ 1.5~~*$	$16.4 ~\pm~ 1.3 ~~*$	$16.8 ~\pm~ 1.2$

Mean \pm S.D.

TABLE 10 HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-Phenylenediamine Dihydrochloride

Group name	Control	250 ppm	500 ppm	1000 ppm
No. of examined animals	39	38	43	41
Hemoglobin (g/dL)	$14.5~\pm~1.8$	$14.1 ~\pm~ 3.2$	$13.9 ~\pm~ 2.8$	$14.0 \pm 1.8 *$
MCV (fL)	53.2 ± 3.4	$55.5~\pm~14.1$	$54.4 ~\pm~ 10.0$	52.1 ± 5.8 **
MCH (pg)	18.4 ± 0.8	18.8 ± 2.7	18.5 ± 2.5	$17.9 ~\pm~ 1.9 ~~**$
MCHC (g/dL)	$34.7 ~\pm~ 1.0$	$34.3 ~\pm~ 2.2$	$34.2 ~\pm~ 1.9$	$34.4 ~\pm~ 0.8 ~~**$
$\rm Platelet(10^3/\mu L)$	$644~\pm~115$	578 ± 154	661 ± 156	777 ± 168 **

Mean \pm S.D.

^{*)} Significant difference, p<0.05 (Test of Dunnett)

^{**)} Significant difference, p<0.01 (Test of Dunnett)

^{*)} Significant difference, p<0.05 (Test of Dunnett)

^{**)} Significant difference, p<0.01 (Test of Dunnett)

TABLE 11 BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	500 ppm	1000 ppm	2000 ppm
No. of examined animals	40	36	42	42
Total protein(g/dL)	$6.8 ~\pm~ 0.4$	$6.6 ~\pm~ 0.4$	$6.7 ~\pm~ 0.3$	6.5 ± 0.4 **
A/G ratio	1.1 ± 0.1	$1.1 ~\pm~ 0.1$	$1.1 ~\pm~ 0.1$	1.2 ± 0.1 **
T-cholesterol (mg/dL)	185 ± 72	$172 ~\pm~ 77$	$155~\pm~52$	123 ± 39 **
Phospholipid (mg/dL)	272 ± 98	$265~\pm~103$	$237 ~\pm~ 69$	201 ± 51 **
GOT (IU/L)	$97 ~\pm~ 49$	76 ± 25	167 ± 270	1887 ± 10973 *
GPT (IU/L)	45 ± 23	41 ± 17	90 ± 168	256 ± 1059 *
γ-GTP (IU/L)	12 ± 6	14 ± 6	23 ± 36 *	16 ± 12
CPK (IU/L)	92 ± 26	82 ± 14	87 ± 31 *	97 ± 88
Urea nitrogen (mg/L)	$19.1 ~\pm~ 2.0$	$20.0 ~\pm~ 2.8$	$19.6 ~\pm~ 3.7$	26.0 ± 19.2 **
Sodium (mEq/L)	142 ± 2	141 ± 2	141 ± 1 *	141 ± 2 *
Potassium (mEq/L)	3.9 ± 0.3	$4.0 ~\pm~ 0.3$	$4.1 ~\pm~ 0.3$	4.3 ± 1.0 **
Calcium (mg/dL)	$10.3 ~\pm~ 0.4$	10.1 ± 0.3 *	$10.2 ~\pm~ 0.3$	10.0 ± 0.4 **

Mean \pm S.D.

TABLE 12 BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	250 ppm	500 ppm	1000 ppm
No. of examined animals	39	38	43	41
Total protein (g/dL)	$7.1 ~\pm~ 0.4$	6.8 ± 0.5 **	$6.9 ~\pm~ 0.5$	$7.0 ~\pm~ 0.4$
T-cholesterol (mg/dL)	139 ± 36	132 ± 34	139 ± 32	165 ± 36 **
Phospholipid (mg/dL)	257 ± 64	247 ± 64	254 ± 48	290 ± 51 *
GOT (IU/L)	$127 ~\pm~ 82$	$179 ~\pm~ 263$	$179 ~\pm~ 325$	596 ± 928 **
GPT (IU/L)	54 ± 26	62 ± 54	78 ± 218	254 ± 322 **
ALP (IU/L)	139 ± 81	$193 ~\pm~ 313$	$141 ~\pm~ 128$	206 ± 128 **
γ-GTP (IU/L)	6 ± 5	7 ± 6	9 ± 13	42 ± 56 **
Urea Nitrogen (mg/dL)	$17.2 ~\pm~ 5.3$	17.1 ± 2.7	18.8 ± 11.6	18.7 ± 3.2 **
Calcium (mg/dL)	$10.3 ~\pm~ 0.3$	$10.2 ~\pm~ 0.3$	$10.4 ~\pm~ 0.4$	$10.5 \pm 0.4 \qquad *$

Mean \pm S.D.

^{*)} Significant difference, p<0.05 (Test of Dunnett)

^{**)} Significant difference, p<0.01 (Test of Dunnett)

^{*)} Significant difference, p<0.05 (Test of Dunnett)

^{***)} Significant difference, p<0.01 (Test of Dunnett)

TABLE 13 URINALYSIS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group	Grade	Control	$500~\mathrm{ppm}$	$1000~\mathrm{ppm}$	2000 ppm
Number of examined a	nimals	40	36	42	43
pН	6.0	2	0	2	7
-	6.5	4	6	12	12
	7.0	10	11	12	12
	7.5	23	18	12	10
	8.0	1	1	4	2
	8.5	0	0	0	0
	Chi square tes	t			*
Occult blood		37	30	33	8
	· ±	2	2	2	1
	+	1	1	0	1
	2+	0	1	3	4
	3+	0	2	4	29
	Chi square tes	t			**

TABLE 14 URINALYSIS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

roup	Grade	Control	250 ppm	500 ppm	1000 ppm
lumber of examined a	animals	41	39	44	41
pH	6.0	0	3	2	6
	6.5	4	2	13	20
	7.0	10	9	15	11
	7.5	12	10	9	3
	8.0	14	14	5	1
	8.5	1	1	0	0
	Chi square tes	t		*	**
Protein	±	3	1	1	0
	+	12	6	9	4
	2+	13	15	14	15
	3+	6	10	13	17
	4+	7	7	7	5
	Chi square tes	t			*
Ketone body	_	22	11	11	9
•	±	18	27	33	32
	+	1	1	0	0
	Chi square tes		_	*	**
Occult blood		39	35	39	21
	±	1	0	1	4
	+	0	0	1	0
	2+	0	0	1	3
	3+	1	4	2	13
	Chi square tes		•	-	**
Significant differe	nce: *: p<0.05	**: p<0.01			

ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY TABLE 15 OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	500 ppm	1000 ppm	2000 ppm
No. of examined animals	s 41	36	42	42
Body weight (g)	382 ± 33	355 ± 47 *	330 ± 22 **	269 ± 29 **
Adrenals (g)	0.082 ± 0.072	0.064 ± 0.009	0.058 ± 0.008 **	0.069 ± 0.108 **
Adrenals (%)	$0.022 ~\pm~ 0.022$	0.018 ± 0.003	0.018 ± 0.002	0.026 ± 0.043
Testes (g)	2.751 ± 1.358	3.444 ± 0.946 *	3.796 ± 1.093 **	3.334 ± 1.356
Testes (%)	$0.721 ~\pm~ 0.346$	$0.983 \pm 0.278 **$	1.155 ± 0.347 **	$1.247 \pm 0.483 **$
Heart (g)	1.283 ± 0.203	1.195 ± 0.128	1.104 ± 0.084 **	0.975 ± 0.097 **
Heart (%)	0.338 ± 0.065	$0.342 ~\pm~ 0.057$	0.336 ± 0.034	$0.364 \pm 0.027 **$
Lungs (g)	1.448 ± 0.319	1.360 ± 0.098	1.383 ± 0.466 **	1.192 ± 0.095 **
Lungs (%)	0.381 ± 0.091	0.388 ± 0.047	$0.421 \pm 0.157 **$	$0.447 ~\pm~ 0.054 ~**$
Kidneys (g)	2.633 ± 0.322	2.564 ± 0.179	2.490 ± 0.171	2.255 ± 0.220 **
Kidneys (%)	0.692 ± 0.093	$0.732 \pm 0.090 *$	$0.756 \pm 0.049 **$	$0.845 ~\pm~ 0.095 ~~**$
Spleen (g)	1.290 ± 1.941	0.942 ± 0.396	0.918 ± 0.609	0.589 ± 0.486 **
Spleen (%)	$0.342 ~\pm~ 0.536$	0.271 ± 0.128	0.276 ± 0.169	0.223 ± 0.212 **
Liver (g)	11.367 ± 2.693	10.606 ± 1.290	10.651 ± 2.410	9.269 ± 3.410 **
Liver (%)	2.986 ± 0.753	3.009 ± 0.344	3.241 ± 0.818 **	3.461 ± 1.344 **
Brain (g)	2.043 ± 0.060	2.007 ± 0.049 **	1.988 ± 0.046 **	1.929 ± 0.048 **
Brain (%)	$0.538 ~\pm~ 0.045$	$0.573 \pm 0.056 *$	$0.605 ~\pm~ 0.043 ~^{**}$	0.726 ± 0.083 **

Mean \pm S.D.

^{*&#}x27; Significant difference, p<0.05 (Test of Dunnett)
**' Significant difference, p<0.01 (Test of Dunnett)

ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY TABLE 16 OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	250 ppm	500 ppm	1000 ppm
No. of examined animal	ls 41	38	44	41
Body weight (g)	$253 ~\pm~ 23$	$237 ~\pm~ 30$	234 ± 24 **	204 ± 19 **
Adrenals (g)	0.076 ± 0.053	0.070 ± 0.013	0.065 ± 0.012	0.081 ± 0.135 **
Adrenals (%)	0.030 ± 0.020	0.030 ± 0.007	0.028 ± 0.006	0.040 ± 0.069
Ovaries (g)	0.135 ± 0.019	$0.125~\pm~0.020$	0.127 ± 0.024	0.124 ± 0.021
Ovaries (%)	0.053 ± 0.007	0.053 ± 0.008	0.054 ± 0.009	0.061 ± 0.011 **
Heart (g)	0.874 ± 0.063	0.878 ± 0.096	0.870 ± 0.081	$0.791 \pm 0.079 **$
Heart (%)	0.348 ± 0.031	0.377 ± 0.073	$0.376 \pm 0.054 *$	$0.389 \pm 0.037 **$
Lungs (g)	1.015 ± 0.094	1.084 ± 0.303	1.051 ± 0.315	$0.957 \pm 0.146 **$
Lungs (%)	0.404 ± 0.048	0.473 ± 0.190	0.454 ± 0.152	$0.474 \pm 0.093 **$
Kidneys (g)	1.729 ± 0.140	1.715 ± 0.133	1.712 ± 0.126	1.691 ± 0.153
Kidneys (%)	$0.688 ~\pm~ 0.071$	0.739 ± 0.139	0.738 ± 0.087 *	0.833 ± 0.085 **
Spleen (g)	0.660 ± 0.566	1.312 ± 2.723	0.697 ± 0.707	0.716 ± 1.332
Spleen (%)	0.264 ± 0.230	0.616 ± 1.402	0.307 ± 0.353	0.363 ± 0.734
Liver (g)	6.694 ± 0.951	6.580 ± 1.098	6.814 ± 1.323	9.406 ± 3.630 **
Liver (%)	2.653 ± 0.338	2.809 ± 0.538	2.934 ± 0.626	4.649 ± 1.846 **
Brain (g)	1.862 ± 0.049	$1.854 ~\pm~ 0.044$	1.833 ± 0.043 *	1.826 ± 0.050 **
Brain (%)	0.743 ± 0.071	$0.797 ~\pm~ 0.119$	$0.792 \pm 0.088 *$	0.904 ± 0.097 **

Mean \pm S.D.

^{**)} Significant difference, p<0.05 (Test of Dunnett)
**) Significant difference, p<0.01 (Test of Dunnett)

TABLE 17 INCIDENCES OF SELECTED LESIONS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group Number of examined animals		Control 50	500 ppm 50	1000 ppm 50	2000 ppm 50	Peto test	Cochran Armitage
Organ	Grade of nonneoplastic		,		-		test
Findings	finding						
Nasal cavity							
Mineralization	1+	20	24	22	9		
	Chi square test				*		
Inflammation:foreign body	1+	15	10	10	3		
	2+	1	2	3	2		
	3+	0	1	0	1		
	Chi square test				*		
Eosinophilic change:	1+	27	25	21	20		
olfactory epithelium	2+	4	7	16	22		
	3+ Chi square test	2	1	2	6 **		
Heart							
Myocardial fibrosis	1+	19	20	16	9		
	Chi square test				*		
Tooth							
Inflammation	1+	11	0	1	8		
	2+	1	0	0	0		
	Chi square test		**	**			
Liver							
Clear cell focus	1+	2	9	8	3		
	2+	0	0	3	0		
	3+	0	0	1	0		
	Chi square test			*			
Basophilic cell focus	1+	18	22	15	25		
•	2+	1	9	17	12		
	3+	0	0	4	1		
	4+	0	0	1	0		
	Chi square test		**	**	**		
Hepatocellular adenoma 1)		3	2	12 *	15 **	↑ ↑	↑ ↑
Hepatocellular carcinoma 2)		1	1	6	10 **	↑ ↑	↑ ↑
1)+2)		4	3	16 **	22 **	<u> </u>	<u> </u>
Pancreas							
Islet cell adenoma		7	3	1 *	1 *		\downarrow
Grade	1+: Slight 2	+:Moderate	3+:Marked	4+:Severe			·
Significant difference	*:p<0.05	**: p<0.01	Cł	ni square test for r	on-neoplastic lesio	n	
-					or neoplastic lesion		
	1(1)	Λ Λ/1 Ιλ					i.a.
The combined incidences ind	↑(↓):p<0.05				nitage test for neop	nasuc ies	NULL

TABLE 17 INCIDENCES OF SELECTED LESIONS OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE (Continued)

Group Number of examined animals		Control 50	500 ppm 50	1000 ppm 50	2000 ppm 50	Peto test	Cochran- Armitage
Organ	Grade of			-			test
	Nonneoplastic						
Findings	finding						
Kidney							
Infract	1+	0	2	2	6		
IIIIuov	2+	0	0	0	1		
	Chi square test		•	-	*		
Chronic nephropathy	1+	3	10	8	16		
chrome nephropasny	2+	25	18	18	19		
	3+	20	13	20	5		
	4+	2	3	0	0		
	Chi square test		*	v	**		
Papillary necrosis	1+	0	0	0	10		
rapidal, modernia	2+	0	Ō	0	5		
	Chi square test				**		
Mineralization:papilla	1+	7	18	16	24		
	2+	0	0	0	2		
	Chi square test		*	•	**		
Urothelial hyperplasia:pelvis	1+	8	10	17	19		
	2+	0	0	1	3		
	Chi square test				**		
Urinary bladder							
Simple hyperplasia:	1+	1	0	3	6		
transitional epithelium	3+	0	1	0	0		
ordinational optimization	Chi square test	_	-	•	·		
Nodular hyperplasia:	1+	0	1	1	6		
transitional epithelium	Chi square test				*		
Transitional cell papilloma 3)		1	0	0	6	1 1	1 1
Transitional cell carcinoma 4		1	0	0	4	1	1
3)+4)		2	0	0	10 *	<u> </u>	11
Pituitary							
Adenoma		25	20	10 **	13 *		↓ ↓
Thyroid							
Follicular adenoma 5)		0	1	0	4	1 1	1
Follicular adenocarcinoma 6)		1	0	1	1		•
5)+6)		1	1	1	5	1	1
Testis				.=			
Atrophy	1+	47	46	43	35		
	Chi square test				**		
Intrestitial cell tumor		37	39	45 *	43	1	
Grade	1+: Slight 2	+:Moderate	3+:Marked	4+:Severe			
Significant difference	-	**: p<0.01			on-neoplastic lesi	on	
	P -0.00	P -0.01					
	1 (1):	* *() .			or neoplastic lesion		÷an
mi i i i i i i i i i i i i i i i i i i	↑(↓):p<0.05				nitage test for neo	piastic ies	1011
The combined incidences indi	cate the tumor-b	earing anima	us but not the ti	amors.			

TABLE 18 INCIDENCES OF SELECTED LESIONS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group Number of examined animals		Control 50	250 ppm 50	5	00 ppm 50	1000 ppm 50		Peto test	Cochran- Armitage
Organ	Grade of nonneoplastic					***************************************			test
Findings	finding								
Nasal cavity	1+	24	16		16	12			
Mineralization	Chi square test	24	10		10	*			
Eosinophilic change:	1+	20	13		8	6			
olfactory epithelium	2+	23	17		28	12			
	3+ 4+	5 0	15 0		11 0	29 1			
	Chi square test		*		*	**			
Lung Metastasia iliyan tuman		0	0		0	5			
Metastasis :liver tumor		<u> </u>	U		U	9			
Liver	1.0	7	15		21	17			
Basophilic cell focus	1+ 2+	1	15 6		13	8			
	3+	0	0		5	8			
	Chi square test		*		**	**			
Bile duct hyperplasia	1+	13	10		10	3			
	Chi square test					*			
Hepatocellular adenoma 1)		1	3		15 **	36	**	1 1	1 1
Hepatocellular carcinoma 2)		0	0		4	18	**	ΤŢ	† †
1)+2)		1	3		19 **	44	**	<u> </u>	11
Pancreas									
Atrophy	1+	0	6 *		1	4			
WATER REPORTED LYTE CONTROL OF A VINITAL OF STREET AND	Chi square test								
Kidney	1:	a			•				
Papillary necrosis	1+ 2+	$\frac{2}{0}$	1 0		1 0	6 5			
	Chi square test	v	v		v	*			
Mineralization:papilla	1+	7	8		12	22			
	2+	0	1		0	2			
	Chi square test					**			
Urothelial hyperplasia:pelvis	1+	2	12		10	17			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chi square test		**		*	**			
Urinary bladder									
Simple hyperplasia:	1+	0	1		0	0			
transitional epithelium	2+	0	0		0	2			
•	Chi square test								
Nodular hyperplasia:	1+	0	0		0	1			
transitional epithelium	Chi square test	Ū			Ů	•			
Transitional cell papilloma		1	0		1	1			
	AMARI			~~~~~~					
Pituitary	1.	10	9.4		01	1 10			
Cyst	1+ 2+	12 0	$\begin{array}{c} 24 \\ 2 \end{array}$		21 1	15 0			
	Chi square test	U	*		1	U			
Adenoma		23	9	**	14	* 11	**		1
Grade	1+: Slight	2+:Moderat	e 3+:Mar	ked	4+:Severe	)			
Significant difference		**: p<0.01				r non-neoplas	tic les	sion	
Significant unterence	· µ~0.00	. ħ~0.01				r non-neopias : for neoplasti			
	↑(↓):p<0.0	11(11):				nitage test for			ion
The combined incidences indi							TOPIE	1031	

TABLE 19 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrj MALE RATS

Organs	Tumors	No. of animals examined	No. of animals with bearing tumors	Incidence (%)	Min Max. (%)
Liver		<1499>			M-29-1000
	Hepatocellular adenoma 1)		21	1.4	0 - 6
	Hepatocellular carcinoma 2)		4	0.3	0 - 2
	1)+2)		25	1.7	0 · 6
Pancrea	as				
	Islet cell adenoma	<1499>	46	2.7	0 - 12
Urinary	y bladder	<1498>			
	Transitional cell papilloma		6	0.4	0 - 2
Pituitai	ry gland	<1494>			
	Adenoma		523	35.0	18 - 66
Thyroid	l	<1493>			
	Follicular adenoma 1)		13	0.8	0 - 4
	Follicular adenocarcinoma 2)		29	1.9	0 - 8
	1)+2)		41	2.7	0 - 8
Periton	eum	<1499>			
	Mesothelioma		41	2.7	0 - 8

30 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No.: 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0278, 0284, 0288, 0294, 0296, 0318, 0328, 0342, 0347, 0365

TABLE 20 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

Organs	Tumors	No. of animals examined	No. of animals with bearing tumors	Incidence (%)	Min Max. (%)
Liver		<1447>			
	Hepatocellular adenoma 1)		18	1.2	0 - 6
	Hepatocellular carcinoma 2)		1	0.1	0 - 2
	1)+2)		19	1.3	0 - 8
Urinary	bladder	<1445>			
	Transtional cell papilloma		8	0.6	0 - 2
Pituitar	y	<1445>			
	Adenoma		570	39.4	16 - 71
Uterus		<1447>			
	Endometrial stromal polyp		209	14.4	2 - 28
Mamma	ry gland	<1447>			
	Fibroadenoma		162	11.2	0 - 20

29 carcinogenicity studies examined in Japan Bioassay Research Center were used.
Study No.: 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0278, 0284, 0296, 0303, 0318, 0328, 0342, 0347, 0365

TABLE 21 CAUSE OF DEATH OF RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

		Male			Female				
Group		Control	500 ppm	1000 ppm	2000 ppm	Control	250 ppm	500 ppm	1000 ppm
Number of dead or moribund animals		9	14	8	8	9	12	6	9
No microscopical confirmation		0	1	1	2	0	0	0	0
Digestive system lesion		1	0	0	0	0	0	0	0
Chronic nephropathy		1	0	0	0	0	0	0	0
Urinary retension		0	1	0	0	0	0	0	0
Pneumonia		0	0	0	0	1	0	0	0
Arteritis		0	0	0	0	1	0	0	0
Tumor death leukemia		1	1	3	0	2	5	2	2
skin/app		0	1	0	0	0	0	0	1
subcutis		0	4	1	0	0	0	0	0
nasophary	rnx	0	0	0	0	0	0	0	1
thymus		0	0	0	0	1	0	0	0
liver		0	0	1	1	0	0	0	3
kidney		0	0	1	0	0	0	0	0
urinary bl	adder	0	0	0	3	0	0	0	0
pituitary		3	3	0	0	3	3	2	0
thyroid		1	0	0	1	0	0	0	0
uterus			-		-American	0	1	1	0
mammary	gland	0	0	0	0	1	0	0	0
brain		1	1	0	1	0	1	0	0
spinal core	f	1	0	0	0	0	0	0	0
Zymbal gl	and	0	0	0	0	0	0	1	1
bone		0	1	1	0	0	1	0	1
mediastiu	m	0	1	0	0	0	1	0	0

## **FIGURES**

FIGURE 1	SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 2	SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 3	BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 4	BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 5	WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 6	WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 7	FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE
FIGURE 8	FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF $o$ -PHENYLENEDIAMINE DIHYDROCHLORIDE

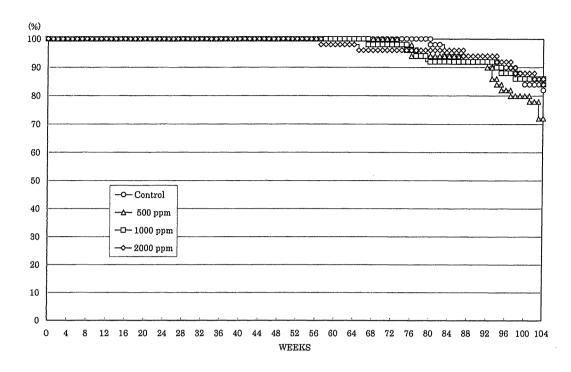



FIGURE 1 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

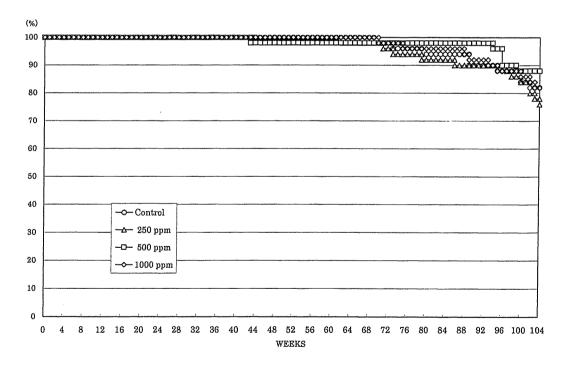



FIGURE 2 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

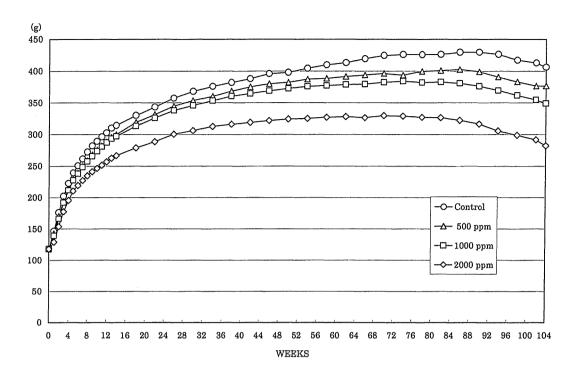



FIGURE 3 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

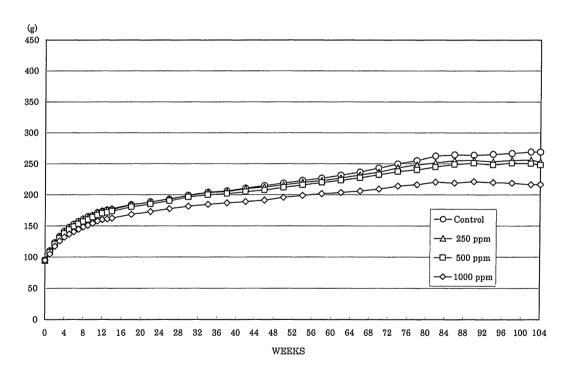



FIGURE 4 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

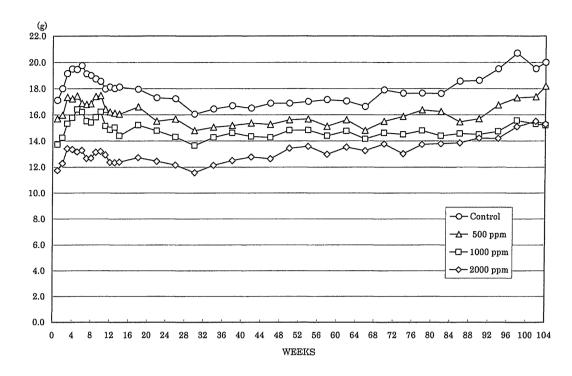



FIGURE 5 WATER CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

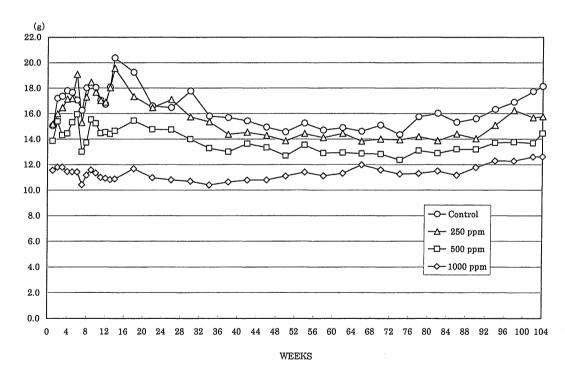



FIGURE 6 WATER CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

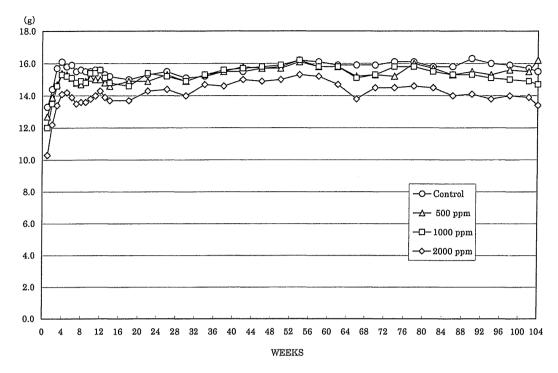



FIGURE 7 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

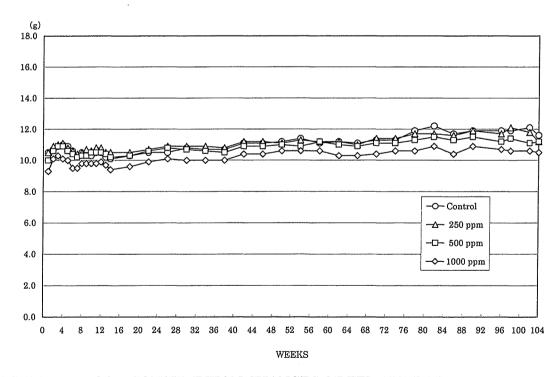
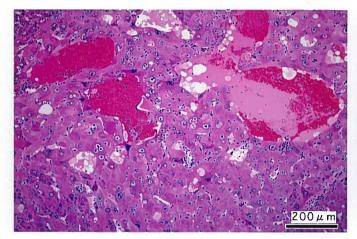
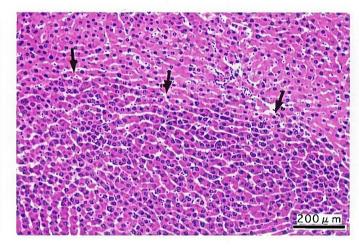
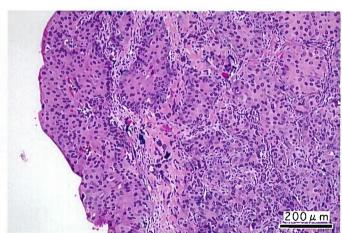




FIGURE 8 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

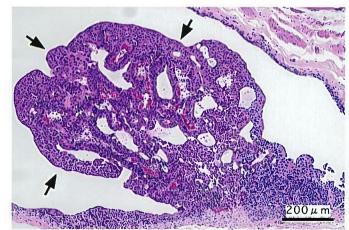
## PHOTOGRAPHS

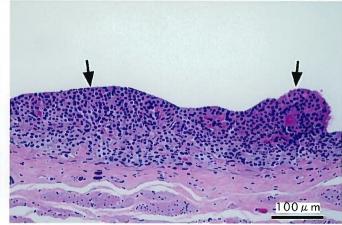

PHOTOGRAPH 1	LIVER: HEPATOCELLULAR CARCINOMA, RAT, FEMALE, 1000 ppm, ANIMAL NO. 0371-2319 (H&E)
PHOTOGRAPH 2	LIVER: HEPATOCELLULAR ADENOMA, (ARROW) RAT, FEMALE, 1000 ppm, ANIMAL NO. 0371-2302 (H&E)
PHOTOGRAPH 3	LIVER: BASOPHILIC CELL FOCUS, (ARROW) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1301 (H&E)
PHOTOGRAPH 4	URINARY BLADDER: TRANSITIONAL CELL CARCINOMA RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1319 (H&E)
PHOTOGRAPH 5	URINARY BLADDER: TRANSITIONAL CELL PAPILLOMA, (ARROW) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1328 (H&E)
PHOTOGRAPH 6	URINARY BLADDER: NODULAR HYPERPLASIA OF TRANSITIONAL EPITHELIUM, (ARROW) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1346 (H&E)
PHOTOGRAPH 7	THYROID: FOLLICLE CELL ADENOMA, (ARROW) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1317 (H&E)
PHOTOGRAPH 8	KIDNEY: PAPILLARY NECROSIS, (ARROW: A) MINERALIZATION OF PAPILLA, (ARROW: B) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1324 (H&E)
PHOTOGRAPH 9	KIDNEY: UROTHELIAL HYPERPLASIA OF PELVIS, (ARROW) RAT, MALE,2000 ppm, ANIMAL NO. 0371-1350 (H&E)
PHOTOGRAPH 10	KIDNEY:INFARCT, (ARROW) RAT, MALE, 2000 ppm, ANIMAL NO. 0371-1329 (H&E)
PHOTOGRAPH 11	NASAL CAVITY: NORMAL, (LEFT) EOSINOPHILIC CHANGE OF OLFACTORY EPITHERIUM, (RIGHT) RAT, FEMALE, 1000 ppm, ANIMAL NO. 0371-2317 (H&E)




200 μ m₁

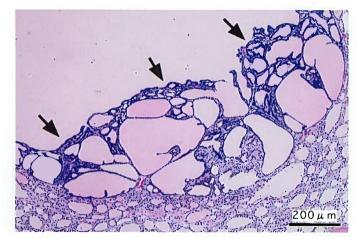
PHOTOGRAPH 1

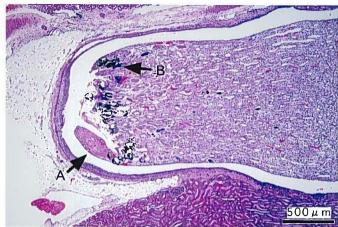

PHOTOGRAPH 2





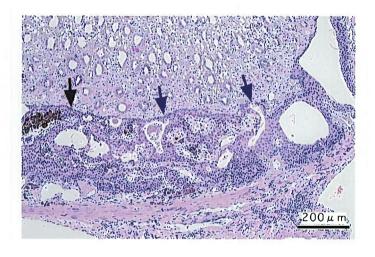

PHOTOGRAPH 3

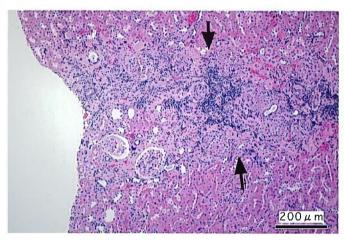

PHOTOGRAPH 4





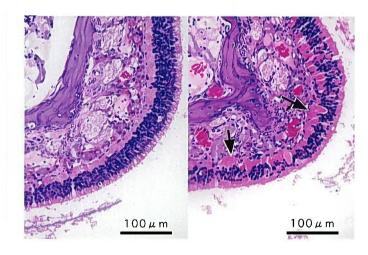

PHOTOGRAPH 5


PHOTOGRAPH 6






PHOTOGRAPH 7


PHOTOGRAPH 8





PHOTOGRAPH 9

PHOTOGRAPH 10



PHOTOGRAPH 11