ヒドラジン一水加物のラット及びマウスを用いた経口投与によるがん原性予備試験(混水試験)報告書

APPENDIX

 $(B1-1\sim C3)$

13 週間試験:ラット/0265;マウス/0266

)

)

APPENDIX B 1-1	CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
APPENDIX B 1-2	CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY) RAT : FEMALE
APPENDIX B 1-3	CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 1-4	CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
APPENDIX B 2-1	BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
APPENDIX B 2-2	BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 2-3	BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 2-4	BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
APPENDIX B 3-1	WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
APPENDIX B 3-2	WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : FEMALE
APPENDIX B 3-3	WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : MALE
APPENDIX B 3-4	WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : FEMALE

)

APPENDIX B 4-1	FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
APPENDIX B 4-2	FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : FEMALE
APPENDIX B 4-3	FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 4-4	FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
APPENDIX B 5-1	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
APPENDIX B 5-2	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY : SUMMARY) RAT : FEMALE
APPENDIX B 5-3	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 5-4	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
APPENDIX B 6-1	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
APPENDIX B 6-2	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 6-3	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 6-4	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE

APPENDIX B 7-1 BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE APPENDIX B 7-2 BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE APPENDIX B 7-3 BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE APPENDIX B 7-4 BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE APPENDIX B 8-1 URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE APPENDIX B 8-2 URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE APPENDIX B 8-3 URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE APPENDIX B 8-4 URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE APPENDIX B 9-1 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE: DEAD AND MORIBUND ANIMALS APPENDIX B 9-2 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE: SACRIFICED ANIMALS APPENDIX B 9-3 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE: SACRIFICED ANIMALS

APPENDIX B 9-4 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE: DEAD AND MORIBUND ANIMALS APPENDIX B 9-5 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE: SACRIFICED ANIMALS APPENDIX B 9-6 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE: SACRIFICED ANIMALS APPENDIX B 10-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE RAT: MALE APPENDIX B 10-2 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE RAT: FEMALE APPENDIX B 10-3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE MOUSE: MALE APPENDIX B 10-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE MOUSE: FEMALE APPENDIX B 11-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE RAT: MALE APPENDIX B 11-2 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE RAT: FEMALE APPENDIX B 11-3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE MOUSE: MALE APPENDIX B 11-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE MOUSE: FEMALE

APPENDIX B 12-1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
	(THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE: DEAD AND MORIBUND ANIMALS
APPENDIX B 12-2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
	(THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE: SACRIFICED ANIMALS
APPENDIX B 12-3	HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS
	(THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE: SACRIFICED ANIMALS
APPENDIX B 12-4	HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS
AITENDIA DIL-4	(THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE: DEAD AND MORIBUND ANIMALS
ADDDING D 10 F	THOROLOGICAL PRIDRICG, NON NEODI ACTIC I PCIONO
APPENDIX B 12-5	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE: SACRIFICED ANIMALS
APPENDIX B 12-6	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE: SACRIFICED ANIMALS
APPENDIX B 13-1	IDENTITY OF HYDRAZINE MONOHYDRATE
	(THIRTEEN-WEEK STUDIES)
APPENDIX B 13-2	STABILITY OF HYDRAZINE MONOHYDRATE
III 1 BI () BI () B	(THIRTEEN-WEEK STUDIES)
APPENDIX B 13-3	CONCENTRATION HYDRAZINE MONOHYDRATE IN DRINKING WATER
MILINDIX D 10-0	(THIRTEEN-WEEK STUDIES)
APPENDIX B 13-4	STABILITY OF HYDRAZINE MONOHYDRATE IN DRINKING WATER
APPENDIA D 13-4	(THIRTEEN-WEEK STUDIES)
APPENDIX C 1	METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS
	(TWO-WEEK STUDIES)
APPENDIX C 2	METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS
	(THIRTEEN-WEEK STUDIES)
ADDENIDIN C 2	LIMITE AND DECIMAL DLACE DOD HEMATOLOGY AND DIOCHEMICTRY

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

APPENDIX C 3

APPENDIX B 1-1

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265 ANIMAL: RAT F344 REPORT TYPE: A1 13 CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Λdmini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	2	0	0	0	0	0	0	1	0	0	0	0	
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	
ABNORMAL RESPIRATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	

(HAN190)

STUDY NO.: 0265 ANIMAL: RAT F344 REPORT TYPE: A1 13 CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 2

Clinical sign	Group Name	Admini	stration We	ek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
·		1	1	1	1	1	1	1	1	1	1	1	1	1
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
United Stood	25 ppm	ő	Ö	Ö	ŏ	ŏ	Ö	ŏ	Ö	Ŏ	0	Ŏ	Ö	0
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	1	2	1	0	0	0	0

(HAN190)

APPENDIX B 1-2

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265 ANIMAL: RAT F344 REPORT TYPE: A1 13 CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

PAGE: 3

Clinical sign	Group Name	Admini	stration We	eek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
		1	1	1	1	1	1	1	1	1	1	1	1	1
HUNCHBACK POSITION	Contro L	0	0	0	0	0	0	0	0	0	0	n	0	0
iononbion 1 0011100	25 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0
	50 ppm	Ô	0	0	Ô	0	0	Ô	0	0	0	0	Ô	0
	100 ppm	Ô	0	Ô	0	Ô	0	Ô	0	0	0	0	Ô	0
	150 ppm	Ö	Ö	Ö	Ö	Ö	Ö	Ŏ	Ŏ	Ö	Ŏ	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	25 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

APPENDIX B 1-3

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: MALE

STUDY NO. : 0266 ANIMAL : MOUSE BDF1 REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	0	0	0	0	0.	0	1	1	
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	1	1	2	2	2	2	2	2	2	2	1	1	
ASTING	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	200 ppm	0	0	0	0	0	1	1	1	1	1	1	0	0	
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	. 0	0	0	0	Ô	0	0	Ō	0	0	Ō	0	
	200 ppm	1	2	3	3	3	3	3	3	3	3	3	2	2	

(HAN190)

APPENDIX B 1-4

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: FEMALE

STUDY NO. : 0266

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE BDF1
REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
III om vo														•	
WASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	Ü	0	0	0	0	0	0	0	0	Ü	U	Ü	0	
	70 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	0	1	1	1	0	0	0	0	0	0	0	0	0	
	200 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0	
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	25 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	50 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	150 ppm	1	1	1	1	1	1	1	1	1	2	2	1	1	
	200 ppm	4	5	5	1	1	Ô	Ô	ō	ō	0	1	2	2	

(IIAN190)

APPENDIX B 2-1

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY:SUMMARY)

RAT: MALE

STUDY NO. : 0265

ANIMAL : RAT F344
UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 1

OUD Name	Admini	stration	n week-day											
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
Control	122±	5	148±	8	177±	10	200±	11	221±	10	236±	11	251±	10
25 ppm	122±	5	146±	8	172±	11	195±	13	214土	13	229±	13	241±	12
50 ppm	122±	5	142±	6	165±	9	184±	10*	202±	11	215±	10	227±	12
100 ppm	122±	5	137±	6**	158±	7*	175±	8**	191±	8*	200±	8**	207±	8**
150 ppm	122±	5	132±	6**	149±	8**	163±	8**	171±	8**	176±	11**	179±	12**
200 ppm	122±	5	114±	12**	123±	22**	138±	20**	147士	20**	145±	24**	143±	31**
Significant difference;	* ; P ≦ ().05	** : P ≦ 0.0	01			Test of D	unnett						

(HAN260)

STUDY NO.: 0265

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

roup Name	Ad	inistration	week-day											
		'-7	8-7		9-7		10-7		11-7		12-7		13-7	
Contral	261	Ł 12	275±	10	284±	11	291±	13	298士	11	304±	10	307±	12
25 ppm	249	± 14	263±	14	271±	14	277±	13	283±	13	288士	12	292±	12
50 mag 03	233	± 13	245±	15	253±	14	260±	15	266±	15	273±	14	278±	14
100 ppm	211	± 8**	217±	8**	221±	9**	227±	10**	232±	10**	236±	10**	237±	11**
150 ppm	180	± 10**	186±	13**	187±	14**	190±	15**	192±	15**	197±	19**	197±	21**
200 ppm	139	± 34**	138±	37**	133±	40**	139±	36**	139±	35**	139±	32**	142±	33**
Significant differe	ence; *:P	≦ 0.05	**: P ≤ 0.0	01			Test of Du	unnett				-		

(HAN260)

BAIS 2

PAGE: 2

APPENDIX B 2-2

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265 ANIMAL : RAT F344

UNIT : g

REPORT TYPE : A1 13 SEX: FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 3

Group Name Administration week-day_ 0-0 1-7 2-7 3-7 4-7 5-7 6-7

Control 101± 3 115± 4 127± 5 135± 6 143± 7 151± 9 155± 10 25 ppm 102± 3 113± 3 124± 132± 5 138± 5 145± 8 148± 8 4 50 ppm 102士 3 $120\pm$ 5 129± 7 137± 9 $143 \pm$ 9 109± 4* 145± 8

100 ppm $101 \pm$ 3 $101 \pm$ 110± 118± 6** 122生 6** $127 \pm$ 7** 128士 8** 4** 5**

150 ppm 102士 3 91± 5** 102± 7** 111± 8** 115± 8** $120\pm$ 9** 119± 10**

200 ppm 102士 3 81土 7** 87士 12** 99土 9** 104土 8** 106土 9** 104土 10**

Significant difference : $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(IIAN260) BAIS 2 STUDY NO.: 0265 ANIMAL : RAT F344

UNIT : g REPORT TYPE: A1 13 BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : FEMALE

PAGE: 4

roup Name	Admin	istration	week-day											
	7-7	,	8-7		9-7		10-7		11-7		12-7		13-7	
Control	159±	11	162±	12	166±	13	168±	12	171±	13	172士	13	174土	12
25 ppm	150±	10	155±	8	157±	8	159±	9	164±	8	165±	10	169±	9
50 ppm	146±	9*	151±	9	152±	10*	155±	9*	158±	9	162±	11	166±	10
100 ppm	129±	9**	132±	9**	134±	8**	135±	10**	137±	10**	138±	10**	141±	10**
150 ppm	119±	10**	121±	11**	121±	11**	122±	12**	122±	12**	124±	12**	126±	13**
200 ppm	98±	11**	98土	14**	97±	13**	94±	14**	92±	16**	92±	18**	90±	19**
Significant differ	ence; *: P ≦	0.05	**: P ≤ 0.0)1			Test of Du	unnett						

(IIAN260)

APPENDIX B 2-3

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY:SUMMARY)

MOSUE: MALE

STUDY NO. : 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : MALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

oup Name	Administration	n week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	24.3± 0.9	24.7± 0.9	26.0± 1.0	26.9± 1.1	28.1± 1.1	29.4± 1.2	30.2± 1.3
25 ppm	24.4± 0.8	24.3± 0.8	25.5± 0.9	26.0± 1.1	26.9± 1.2	27.4± 1.6	28.0± 1.5
50 ppm	24.3± 0.9	23.3± 0.8*	24.5± 0.7	25.4± 0.8	25,6± 1,5	26.1± 1.1*	26.7± 1.0*
100 ppm	24.3± 0.9	23.0± 0.9**	23.8± 0.8*	24.9± 1.0*	25.6± 1.0*	25.9± 0.8**	26.1± 1.1**
150 ppm	24.4± 0.8	21.9± 0.7**	22.5± 0.8**	23.8± 0.9**	24,3± 0,6**	24.6± 1.1**	24.9± 1.4**
200 ppm	24.4± 0.9	20.5± 1.7**	20.3± 3.5**	20.6± 4.1**	20.8± 4.5**	21.0± 4.6**	21.6± 5.1**
Significant difference	; *: $P \le 0.05$	** : $P \le 0.01$		Test of Dunnett			

(IIAN260)

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

PAGE: 2

oup Name	Administration	week-day		<u> </u>			
	7-7	8-7	9–7	10-7	11-7	12-7	13-7
Control	30.8± 1.3	32.1± 1.6	32.6± 1.7	33.3± 1.7	34.0± 1.6	34.5± 1.9	35.2± 1.6
25 ppm	27.6± 1.6	28.5± 1.5	28.7± 1.8	28.9± 1.4	30.1± 1.7	30.3± 1.6	30.7± 1.8**
50 ppm	26.3± 1.3*	27.1± 0.9*	27.2± 1.2*	27.7± 1.2*	28.8± 1.0	28.8± 1.3*	29.1± 1.0**
100 ppm	25.9± 1.0**	26.4± 1.0**	26.3± 0.9**	26.5± 1.0**	27.6± 1.0**	27,6± 0,8**	27.3± 1.1**
150 ppm	24.7± 1.1**	24.8± 1.5**	24.7± 1.2**	25.1± 0.9**	26,2± 1.4**	26.1± 1.1**	25.2± 1.1**
200 ppm	21.2± 4.5**	21.5± 4.5**	21.6± 4.4**	21.8± 4.2**	22.8± 4.5**	23.9± 2.4**	23.4± 1.9**
Significant difference	ce; *: P ≦ 0.05 ×	**: P ≤ 0.01		Test of Dunnett			

(IIAN260)

APPENDIX B 2-4

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO. : 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 3

oup Name	Administratio	n week-day					
	0-0	1-7	2-7	3–7	4-7	5-7	6-7
Control	19.3± 0.6	18.9± 1.1	20.5± 1.2	20.7± 1.1	20.7± 1.2	21.7± 1.4	21.7± 1.3
25 ppm	19.4± 0.6	19.2± 0.6	20.3± 0.9	20.6± 0.8	21.1± 1.0	21.8± 1.0	22.2± 0.8
50 ppm	19.3± 0.6	18.9± 0.6	19.7± 0.5	20.3± 0.8	20.7± 0.6	21.1± 1.0	21.9± 1.3
100 ppm	19.3± 0.6	18.8± 0.9	19.6± 0.5	19.9± 0.7	20.6± 0.8	21.3± 0.9	21.8± 0.7
150 ppm	19.3± 0.6	16.8± 1.5*	17.6± 2.5**	18.8± 2.2*	19.4± 2.4	20.3± 2.0	20.3± 2.0
200 ppm	19.3± 0.6	15.3± 0.9**	14.6± 1.7**	17.0± 2.0**	19.0± 1.2	18.9± 1.1**	19.3± 1.0**
		· ·					
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(IIAN260)

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

roup Name	Administration	week-day					
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
Control	22.3± 1.5	22.8± 1.8	22.4± 1.4	22.6± 1.3	23.6± 1.4	23.7± 1.4	23.8± 1.6
25 ppm	21.9± 1.0	22.3± 0.7	22.7± 1.1	22.6± 1.1	23.6± 1.3	23.4± 1.1	24.2± 1.0
50 ppm	21.8± 1.0	21.8± 0.7	22.2± 1.3	22.3± 0.9	23.2± 0.8	23.2± 1.1	23.1± 1.1
100 ppm	21.4± 1.2	21.5± 0.7	21.8± 0.7	21.8± 0.7	22.7± 0.8	22.7± 0.9	22.5± 1.3
150 ppm	20.4± 1.3**	21.0± 1.2*	21.2± 1.1	21.3± 1.1*	22.3± 0.8*	22.3± 0.9*	22.1± 0.8*
200 ppm	19.6± 0.9**	20.4± 1.3**	20.0± 1.0**	20.0± 0.7**	21.1± 1.4**	20.9生 1.5**	20.7± 1.7**
Significant differe	ence; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 3-1

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265

ANIMAL : RAT F344 UNIT : g

REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

oup Name	Administration	week					
	1	2	3	4	5	6	7
Control	17.5± 0.9	18.6± 1.4	21.8± 2.9	20.9± 1.5	18.6± 1.2	20.5± 1.4	18.5± 1.5
25 ppm	14.0± 1.3	15.9± 3.2	14.4± 1.3	14.8± 1.2	13.6生 0.9**	14.9± 0.9	13.4± 1.1
50 ppm	12.7± 0.8**	13.5± 1.1*	13.3± 1.0	14.8± 3.1	12.3± 1.1**	12.9± 1.2*	11.5± 1.1*
100 ppm	12.4± 1.0**	13.0± 1.1**	11.9± 1.0**	12.1± 0.7**	10.7± 1.0**	10.8± 1.3**	9.6± 0.9**
150 ppm	12.3± 2.1**	11.7± 1.1**	11.0± 1.0**	10.6± 1.6**	8.8± 1.6**	8.7± 1.9**	7.7± 0.8**
200 ppm	7.9± 2.7**	8.4± 2.6**	9.1± 1.5**	8.8± 1.3**	7.2± 1.8**	6.3± 2.6**	5.5± 2.3**
Significant differ	rence; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
(HAN260)							

STUDY NO.: 0265 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

TOUP Name	Administr	ation week					,
	8	9	10	11	12	13	
Contral	19.6± 1.2	2 19.6± 1.4	18.1± 1.6	18.4± 1.3	18.8± 1.2	18.2± 1.2	
25 ppm	14.7± 0.8	3** 14.6± 1.3	13.4± 0.6	14.0± 1.0	14.2± 1.1**	14.7± 0.8**	
50 ppm	13.1± 1.2	2** 13.1± 1.1	12.0± 1.4*	12.9± 1.2*	13.6± 1.2**	13.2± 1.0**	
100 ppm	10.2± 0.9	9** 10.5± 1.1**	10.1± 1.1**	12.0± 3.6**	10.8生 1.1**	10.9士 1.2**	
150 ppm	8.8± 1.6	3** 8.8± 1.3**	8.4± 1.2**	8.4± 1.5**	8.8± 1.7**	9.1± 1.8**	
200 ppm	5.8± 2.1	1** 5.9士 2.9**	6.0± 2.0**	6.0± 2.0**	5.9± 2.0**	7.0± 1.6**	
Significant differen	nce; *:P≦0.08	5 **: P ≤ 0.01	, , , , , , , , , , , , , , , , , , , ,	Test of Dunnett		**************************************	

(HAN260)

APPENDIX B 3-2

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265 ANIMAL : RAT F344
UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administra	ation week					
	1	2	3	4	5	6	7
Control	15.3± 1.5	15.7± 1.6	15.1± 2.1	15.3± 3,2	14.6± 2.3	15.5± 3.3	15.4± 4.7
25 ppm	11.6± 0.6	11.1± 0.6	10.5± 0.7	9.9± 0.7	9.5± 0.8	9.7± 0.9	9.0± 1.0
50 ppm	10.3± 0.7	* 10.4± 0.5**	9.5± 0.7*	9,2± 0.9	8.6± 0.7*	8.6± 0.8*	8.7± 2.0
100 ppm	8.6± 0.7	** 9.7± 1.1**	9.0生 0.6**	8.2± 0.6**	7.6± 0.6**	7.5± 0.7**	7.0± 0.9**
150 ppm	8.8± 1.9	** 11.0± 3.8**	8.2± 0.9**	7.6± 0.8**	7.3± 1.5**	6.7± 0.9**	6.8± 1.3**
200 maa 002	4.6± 1.3	** 7.7± 1.5**	7.2± 0.6**	6.4± 0.9**	5.3± 0.7**	5.1± 1.0**	4.1± 0.6**
Significant differen	ce; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 2

PAGE: 3

STUDY NO.: 0265 ANIMAL : RAT F344 UNIT : g

REPORT TYPE: A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

Group Name	Administration	week		· · · · · · · · · · · · · · · · · · ·			
	8	9	10	11	12	13	
Control.	15.8± 5.6	16.3± 6.1	13.4± 2.7	17.2± 11.8	16.9± 9.5	18.1± 8.0	
25 ppm	9.7± 1.2	9.1± 0.8	8.4± 1.0	9.5± 0.7	9.4± 1.1	10.4± 0.9	
50 ppm	9.9± 3.6	8.4± 0.7	7.8± 0.9	10.1± 3.9	12.3± 8.1	9.4± 0.9	
100 ppm	6.7± 0.9**	6.8± 0.8**	6.6± 0.8**	6.7± 0.9**	6.7± 0.8**	7.9± 0.8**	
150 ppm	6.8± 1.2**	6.2± 0.9**	5.8± 0.7**	5.9± 0.8**	6.1± 0,9**	6.9± 0.9**	
200 mag 200	4.4± 0.7**	4.5± 1.1**	4.0± 1.1**	4.2± 1.1**	4.4± 1.1**	4.8± 1.2**	
Significant differ	ence; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 3-3

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

Group Name	Admin	istration	week_				······································	· · · · · · · · · · · · · · · · · · ·
	1		2	3	4	5	6	7
Control	4.5±	0.7	4.5± 0.9	4.3± 0.7	4.1± 0.6	4.1± 0.5	4.1± 0.4	4.2± 0.7
25 ppm	2.7±	0.5	2.4± 0.3	2.2± 0.2	2.3± 0.2	2.3± 0.2	2.2± 0.3**	2.1± 0.3
50 ppm	2.2±	0.2*	1.8± 0.1*	2.0± 0.2*	1.9± 0.3**	1.9± 0.3*	1.8± 0.4**	1.8± 0.2*
100 ppm	2.0±	0.2**	1.6± 0.2**	1.8± 0.2**	1.8± 0.3**	1.7± 0.3**	1.7± 0.3**	1.7± 0.2**
150 ppm	1.5±	0.2**	1.4± 0.1**	1.6± 0.2**	1.5± 0.2**	1.4± 0.2**	1.4生 0.3**	1.5± 0.2**
200 ppm	1.2±	0.3**	1.2± 0.4**	1.3± 0.3**	1.2± 0.2**	1.3± 0.4**	1.2± 0.4**	1.2± 0.1**
Significant differ	ence; *:P≦	0 0E	state • D < A A1		T+ -£ D++			
SISHILICANT CHIER	elice, *· r ≥	V.VJ	$** : P \leq 0.01$		Test of Dunnett			

(HAN260)

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Control 4.3± 0.5 4.0± 0.5 3.9± 0.4 3.9± 0.4 3.8± 0.4 3.7± 0.3 25 ppm 2.2± 0.3 1.8± 0.2 1.9± 0.2 2.1± 0.2 2.1± 0.1 2.3± 0.4** 50 ppm 1.9± 0.2* 1.6± 0.2 1.7± 0.3* 2.0± 0.2* 1.9± 0.2* 2.0± 0.3** 100 ppm 1.7± 0.2** 1.4± 0.2** 1.5± 0.2** 1.7± 0.2** 1.6± 0.1** 1.6± 0.2** 150 ppm 1.4± 0.3** 1.1± 0.2** 1.4± 0.2** 1.6± 0.2** 1.6± 0.3** 1.4± 0.2**	CUP Name	Administration week			·····	***		
25 ppm 2.2± 0.3 1.8± 0.2 1.9± 0.2 2.1± 0.2 2.1± 0.1 2.3± 0.4** 50 ppm 1.9± 0.2* 1.6± 0.2 1.7± 0.3* 2.0± 0.2* 1.9± 0.2* 2.0± 0.3** 100 ppm 1.7± 0.2** 1.4± 0.2** 1.5± 0.2** 1.7± 0.2** 1.6± 0.1** 1.6± 0.2**				10	11	12	13	
50 ppm 1.9± 0.2* 1.6± 0.2 1.7± 0.3* 2.0± 0.2* 1.9± 0.2* 2.0± 0.3** 100 ppm 1.7± 0.2** 1.4± 0.2** 1.5± 0.2** 1.7± 0.2** 1.6± 0.1** 1.6± 0.2**	Cantrol	4.3± 0.5	4.0± 0.5	3.9± 0.4	3.9± 0.4	3.8± 0.4	3.7± 0.3	
100 ppm 1.7± 0.2** 1.4± 0.2** 1.5± 0.2** 1.7± 0.2** 1.6± 0.1** 1.6± 0.2**	25 ppm	2.2± 0.3	1.8± 0.2	1.9± 0.2	2.1± 0.2	2.1± 0.1	2.3± 0.4**	
	50 ppm	1.9± 0.2*	1.6± 0.2	1.7± 0.3*	2.0± 0.2*	1.9± 0.2*	2.0± 0.3**	
150 ppm 1.4± 0.3** 1.1± 0.2** 1.4± 0.2** 1.6± 0.2** 1.5± 0.3** 1.4± 0.2**	100 ppm	1.7± 0.2**	1.4± 0.2**	1.5± 0.2**	1.7± 0.2**	1.6± 0.1**	1.6± 0.2**	
	150 ppm	1.4± 0.3**	1.1± 0.2**	1.4± 0.2**	1.6± 0.2**	1.5± 0.3**	1.4生 0.2**	
200 ppm 1.2± 0.2** 1.0± 0.3** 1.1± 0.2** 1.3± 0.2** 1.1± 0.2** 1.3± 0.2**	200 ppm	1.2± 0.2**	1.0± 0.3**	1.1± 0.2**	1.3± 0.2**	1.1± 0.2**	1.3± 0.2**	
	Significant difference;	*: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			-

(HAN260)

APPENDIX B 3-4

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

roup Name	Administration	week					
	1	2	3	4	5	6	7
Contral	4.3± 0.4	4.4± 0.5	4.4± 0.3	4.3± 0.5	4.2± 0.4	4.3± 0.3	4.5± 0.5
25 ppm	2.8± 0.5	2.9± 0.7	2.8± 0.3**	2.7± 0.3**	2.7± 0.6	2.8± 0.5	2.5± 0.2
50 ppm	2.2± 0.1	2.1± 0.2*	2.3± 0.2**	2.3± 0.2**	· 2.1± 0.2*	2.3± 0.2*	2.1± 0.2*
100 ppm	1.9± 0.2**	1.7± 0.2**	1.8± 0.2**	2.0± 0.3**	1.8± 0.2**	1.8± 0.3**	2.0± 0.6**
150 ppm	1.3± 0.3**	1.2± 0.3**	1.5± 0.2**	1.5± 0.3**	1.6± 0.4**	1.6± 0.4**	1.5± 0.2**
200 ppm	0.9± 0.1**	0.9± 0.2**	1.4± 0.3**	1.3± 0.2**	1.1± 0.1**	1.2土 0.1**	1.4± 0.2**
***		.,					
Significant differe	ence; *: P ≤ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13 SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

Group Name	Administration	week					
	8	9	10	11	12	13	
Control	4.5± 0.3	4.4± 0.6	4.6± 0.4	4.7± 0.4	4.7± 0.5	4.5± 0.4	
25 ppm	2.6生 0.5**	2.7± 1.0	2.9± 0.9	2.8± 0.9	2.9± 0.3**	2.9± 0.3**	
50 ppm	2.2± 0.3**	2.1± 0.3*	2.1± 0.2*	2.5± 0.2	2.5± 0.2**	2.5± 0.3**	
100 ppm	1.9± 0.4**	1.7± 0.2**	1.7± 0.2**	2.2± 0.6**	2.2± 0.2**	2.0± 0.3**	
150 ppm	1.4± 0.5**	1.5± 0.4**	1.4± 0.3**	1.7± 0.2**	1.7± 0.4**	1.7± 0.3**	
200 ppm	1.3± 0.3**	1.2± 0.2**	1.2± 0.1**	1.5± 0.3**	1.5± 0.4**	1.4生 0.2**	
Significant differ	ence; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 4-1

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265 ANIMAL : RAT F344
UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

Group Name	Administration	week					
	1	2	3	4	5	6	7
Control	13.4± 0.8	14.7± 1.1	15.6± 1.3	15.5± 1.0	15.3± 1.0	15.9± 0.9	15.4± 1.0
25 ppm	12.7± 0.7	14.0± 1.1	14.4± 1.3	14.1± 1.0**	14.2± 0.7	14.6± 0.7	14.3± 0.7
50 ppm	12.2± 0.6**	13.3± 0.9	14.0± 1.0*	13.5± 0.9**	13.6± 0.8**	14.0± 1.1	13.3± 1.2
100 ppm	11.2± 0.7**	12.5± 1.1**	13.1± 0.9**	12.5± 0.8**	12.6± 0.7**	12.7± 0.7**	12.0± 0.9**
150 ppm	10.7± 0.7**	12.0± 0.9**	12.2± 0.7**	11.4± 0.7**	11.0± 0.9**	11.0± 0.7**	10.7± 0.6**
200 ppm	8.8± 1.2**	10.2± 2.1**	11.1± 1.3**	10.2± 1.2**	9.1± 1.6**	8.5± 2.6**	7.9± 2.2**
Significant differ	rence; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0265 ANIMAL : RAT F344 UNIT : g
REPORT TYPE : A1 13 FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 2

oup Name	Administration	week				
	8	9	10	11	12	13
Control	15.7± 1.0	15.3± 0.9	14.7± 1.1	15.1± 0.9	14.5± 0.7	14.8± 0.7
25 ppm	14.5± 1.0	14.1± 0.8	13.7± 0.7	13.8± 0.8	13.7± 0.5	14.1± 0.5
50 ppm	13.6± 1.2	13.3± 1.2	12.9± 1.2*	13.6± 1.2*	13.6± 0.9	13.8± 0.9
100 ppm	11.9± 0.8**	11.6± 1.3**	11.5± 1.2**	12.0± 1.3**	12.1± 1.2**	12.2± 1.2**
150 ppm	10.3± 0.7**	10.3± 1.0**	10.2± 1.1**	10.4± 1.0**	10.6± 1.2**	11.0生 1.3**
200 ppm	7.9± 2.3**	7.1± 2.1**	7.5± 2.1**	7.7± 1.8**	7.9± 1.8**	8.3± 2.0**
Significant differe	nce; *:P≤0.05	** : P ≦ 0.01		Test of Dunnett		

(HAN260)

APPENDIX B 4-2

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0265 ANIMAL : RAT F344 UNIT : g
REPORT TYPE : A1 13 FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 3

oup Name	Administratio	n week					
	1	2	3	4	5	6	7
Control	10.8± 0.7	11.3± 0.9	11.0± 1.1	10.2± 1.0	10.4± 1.0	10.2± 1.2	9.8± 1.2
25 ppm	10.5± 0.7	10.5± 0.8	10.2± 0.7	9.3± 0.8	9.6± 0.9	9.3± 1.0	8.7± 1.1*
50 ppm	9.8± 0.5**	10.5± 0.6	10.3± 0.7	9.6± 1.0	9.3± 0.8*	9.2± 1.0	8.9± 0.8
100 ppm	8.3± 0.6**	9.5± 0.4**	9.5± 0.5**	8.8± 0.3	8.3± 0.6**	8.1± 0.6**	7.9± 0.7**
150 ppm	6.8± 0.8**	9.0± 0.9**	8.8± 0.7**	8.2± 0.7**	8.1± 0.6**	7.7± 0.6**	7.3± 0.7**
200 ppm	5.5± 0.6**	7.0± 1.3**	8.1± 0.7**	7.5± 0.5**	7.1± 0.6**	6.6± 0.6**	5.8± 1.0**
Significant differe	ence; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0265 ANIMAL: RAT F344

UNIT : g

REPORT TYPE : A1 13 SEX : FEMALE FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administration	week					
	8	9	10	11	12	13	
Control	9.6± 1.4	9.7± 1.1	9.1± 0.9	9.6± 1.4	9.5± 1.3	9.8± 1.1	
25 ppm	8.8± 0.8	8.7± 0.6*	8.0± 0.8*	8.8± 0.8	8.9± 1.1	9.5± 1.0	
50 ppm	9.0± 0.9	8.7± 0.8*	8.5± 0.7	8.9± 0.9	9.0± 1.0	9.4± 0.8	
100 ppm	7.9± 0.6**	7.4± 0.5**	7.4± 0.7**	7.5± 0.6**	7.5± 0.8**	8.1± 0.8**	
150 ppm	7.2± 0.6**	7.1± 0.7**	6.9± 0.6**	7.1± 0.6**	7.2± 0.6**	7.5± 0.8**	
200 ppm	5.8± 1.0**	5.9± 0.9**	5.5± 1.2**	5.3± 1.2**	5.7± 1.3**	5.7生 1.2**	
Significant differe	ence; *: P ≦ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 4-3

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO. : 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

roup Name	Administration	week					
	1	2	3	4	5	6	7
Control	3.9± 0.1	3.9± 0.4	3.8± 0.3	4.0± 0.2	4.0± 0.2	3.8± 0.2	3.9± 0.2
25 ppm	3.8± 0.3	3.8± 0.3	3.7± 0.2	3.7± 0.2	3.5± 0.3**	3.4± 0.3*	3.4± 0.3**
50 ppm	3.6± 0.2	3.7± 0.2	3.7± 0.2	3.6± 0.3*	3.5± 0.4*	3.5± 0.3	3.4± 0.2**
100 ppm	3.5± 0.4	3.6± 0.2	3.7± 0.2	3.5± 0.2**	3.6± 0.2*	3.4± 0.2*	3.4± 0.2**
150 ppm	3.1± 0.2**	3.5± 0.2*	3.5± 0.2*	3.5± 0.2**	3.4± 0.2**	3.3± 0.2**	3.4± 0.2**
200 ppm	3.0± 0.4**	3.2± 0.6**	3.4± 0.4**	3.4± 0.6**	3.3± 0.5**	3.1± 0.5**	3.1± 0.5**
Significant difference	; *: P ≤ 0.05 *	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

Group Name	Administration	week		· · · · · · · · · · · · · · · · · · ·			
	8	9	10	11	12	13	
Control	4.1± 0.3	4.1± 0.2	3.9± 0.2	4.0± 0.2	4.0± 0.2	4.0± 0.1	-
25 ppm	3.5± 0.2*	3.5± 0.2*	3.3± 0.2**	3.6± 0.3*	3.5± 0.1*	3.6± 0.2**	
50 ppm	3.4± 0.2*	3.5± 0.3**	3.4± 0.3*	3.6± 0.1**	3.6± 0.3*	3.5± 0.2**	
100 ppm	3.4± 0.2**	3.5± 0.2**	3.3± 0.2**	3.5± 0.2**	3.4± 0.1**	3.4± 0.2**	
150 ppm	3.4± 0.2**	3.4± 0.2**	3.3± 0.2**	3.7± 0.2*	3.5± 0.2**	3.3± 0.2**	
200 ppm	3.1± 0.6**	3.2± 0.6**	3.0± 0.7**	3.3± 0.7**	3.3± 0.1**	3.3± 0.1**	
Significant difference HAN260)	ce; *: P ≤ 0.05 *	**: P ≦ 0.01		Test of Dunnett			

APPENDIX B 4-4

FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO.: 0266

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

oup Name	Administration	week					
	1	2	3	4	5	6	7
Control	3.3± 0.3	3.6± 0.2	3.5± 0.2	3.4± 0.3	3.6± 0.3	3.5± 0.3	3.7± 0.5
25 ppm	3.3± 0.3	3.5± 0.3	3.5± 0.2	3.4± 0.3	3.6± 0.3	3.5± 0.3	3.4± 0.2
50 ppm	3.2± 0.2	3.2± 0.3**	3.3± 0.2	3.3± 0.2	3.5± 0.3	3.4± 0.2	3.3± 0.2
100 ppm	3.0± 0.2*	3.3± 0.2*	3.2± 0.3*	3.2± 0.3	3.2± 0.2**	3.2± 0.3	3.2± 0.3*
150 ppm	2.7生 0.2**	3.1± 0.3**	3.2± 0.3*	3.2± 0.4	3.2± 0.3**	3.2± 0.3	3.2± 0.3*
200 ppm	2.3± 0.3**	2.5± 0.3**	3.1± 0.3**	3.2± 0.3	2.8± 0.2**	2.9± 0.2**	2.9± 0.3**
							·
Significant differend	ce; *:P≦0.05 *	$*: P \leq 0.01$		Test of Dunnett			

(HAN260)

STUDY NO. : 0266

ANIMAL : MOUSE BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administration	week				At the control of the second o	t.#
	8	9	10	11	12	13	
Control	3.8± 0.4	3.9± 0.8	3.7± 0.6	3.9± 0.6	3.8± 0.5	3.7± 0.7	
25 ppm	3.4± 0.2	3.5± 0.2	3.5± 0.3	3.6± 0.3	3.5± 0.3	3.6± 0.4	
50 ppm	3.3± 0.2**	3.4± 0.2	3.4± 0.2	3.5± 0.2	3.4± 0.2*	3.4± 0.2	
100 ppm	3.2± 0.2**	3.3± 0.2*	3.2± 0.2	3.4± 0.2**	3.3± 0.3**	3.4± 0.3	
150 ppm	3.3± 0.3**	3.3± 0.2*	3.2± 0.3	3.3± 0.3**	3.3± 0.3**	3.4± 0.2	
200 ppm	3.0± 0.3**	3.0± 0.2**	3.0± 0.4**	3.1± 0.4**	3.0± 0.3**	3.1± 0.3**	
Significant difference	ce; *: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			
HAN260)							

APPENDIX B 5-1

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265

CHEMICAL INTAKE CHENGES (SUMMARY)

ANIMAL : RAT F344 UNIT : mg/kg/day

ALL ANIMALS

REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Group Name	Administration (weeks)							
	1	2	3	4	5	6	7	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
25 ppm	2.397± 0.118	2.316± 0.425	1.846± 0.092	1.728± 0.071	1,485± 0,055	1.549± 0.077	1.348± 0.056	
50 ppm	4.467± 0.187	4.084± 0.200	3.613± 0.138	3.689± 0.845	2.859± 0.228	2.845± 0.155	2.476± 0.160	
100 ppm	9.114± 0.859	8.242± 0.447	6.776± 0.485	6.328± 0.274	5.326± 0.328	5.225± 0.565	4.578± 0.370	
150 ppm	14.014± 2.527	11.842± 0.825	10.079± 0.752	9.318± 1.503	7.451± 1.012	7.297± 1.309	6.455± 0.508	
200 ppm	13.762± 4.175	13.333± 2.309	13.203± 1.719	12.070± 1.151	9.922± 2.193	8.272± 2.362	7.557± 2.039	

(IIAN300)

STUDY NO. : 0265

ANIMAL : RAT F344

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Admini:	stration	(weeks)									
8		9		10		11	-	12		13	
0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0,000±	0.000
1.405±	0.077	1.348±	0.084	1.211±	0.040	1.238±	0.071	1,235±	0.079	1.254±	0.040
2.667±	0.126	2,587±	0.181	2.310±	0.191	2.425±	0.143	2.494±	0.190	2.372±	0.153
4.705±	0.375	4.751±	0.385	4.449±	0.341	5.182±	1.465	4.573±	0.330	4,596±	0.330
7.067±	0.971	7,033±	0.609	6.600±	0.587	6.553±	0.854	6,667±	0.784	6.882±	0,829
8.246±	1.188	8.698±	3.627	8.675±	2.211	8.734±	1.961	8.485±	2.207	10.009±	1.270
	8 0.000± 1.405± 2.667± 4.705± 7.067±	Administration 8 0.000± 0.000 1.405± 0.077 2.667± 0.126 4.705± 0.375 7.067± 0.971 8.246± 1.188	8 9 $0.000\pm$ 0.000 $0.000\pm$ $1.405\pm$ 0.077 $1.348\pm$ $2.667\pm$ 0.126 $2.587\pm$ $4.705\pm$ 0.375 $4.751\pm$ $7.067\pm$ 0.971 $7.033\pm$	8 9 $0.000\pm$ 0.000 $0.000\pm$ 0.000 $1.405\pm$ 0.077 $1.348\pm$ 0.084 $2.667\pm$ 0.126 $2.587\pm$ 0.181 $4.705\pm$ 0.375 $4.751\pm$ 0.385 $7.067\pm$ 0.971 $7.033\pm$ 0.609	8 9 10 $0.000\pm$ $0.000\pm$ $0.000\pm$ $0.000\pm$ $1.405\pm$ 0.077 $1.348\pm$ 0.084 $1.211\pm$ $2.667\pm$ 0.126 $2.587\pm$ 0.181 $2.310\pm$ $4.705\pm$ 0.375 $4.751\pm$ 0.385 $4.449\pm$ $7.067\pm$ 0.971 $7.033\pm$ 0.609 $6.600\pm$	8 9 10 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.405 ± 0.077 1.348 ± 0.084 1.211 ± 0.040 2.667 ± 0.126 2.587 ± 0.181 2.310 ± 0.191 4.705 ± 0.375 4.751 ± 0.385 4.449 ± 0.341 7.067 ± 0.971 7.033 ± 0.609 6.600 ± 0.587	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 9 10 11 12 0.000 \pm 0.000 1.405 \pm 0.077 1.348 \pm 0.084 1.211 \pm 0.040 1.238 \pm 0.071 1.235 \pm 0.079 2.667 \pm 0.126 2.587 \pm 0.181 2.310 \pm 0.191 2.425 \pm 0.143 2.494 \pm 0.190 4.705 \pm 0.375 4.751 \pm 0.385 4.449 \pm 0.341 5.182 \pm 1.465 4.573 \pm 0.330 7.067 \pm 0.971 7.033 \pm 0.609 6.600 \pm 0.587 6.553 \pm 0.854 6.667 \pm 0.784	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(IIAN300)

APPENDIX B 5-2

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265

ANIMAL : RAT F344

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)
ALL ANIMALS

PAGE: 3

Group Name	∧dmini	stration	(weeks)										
	I		2	3		4		5		6		7	
Control	0.000±	0.000	0.000± 0.00	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000
25 ppm	2.581±	0.144	2.238± 0.0	00 1.987±	0.140	1,803±	0.122	1.635±	0.105	1,636±	0.147	1,507±	0.118
50 ppm	4.710±	0.330	4.326± 0.2	3.677±	0.206	3.348±	0.154	2.994±	0.162	2.950±	0.241	2.976±	0.675
100 ppm	8.517±	0.755	8.903± 1.3	4 7.672±	0.460	6.740±	0.359	5.977±	0.465	5.846±	0.437	5.433±	0,392
150 ppm	14.451±	2.895	16.025± 4.7	1 11.140±	0.946	9.887±	0.850	9.110±	1.806	8.388±	0.894	8.570±	1.422
200 ppm	11.197±	2.364	17.695± 3.0	14.646±	1.766	12.267±	1.234	10.041±	0.877	9.723士	1.133	8,373±	1.075

(HAN300)

STUDY NO.: 0265 ANIMAL: RAT F344 CHEMICAL INTAKE CHENGES (SUMMARY)
ALL ANIMALS

UNIT : mg/kg/day

REPORT TYPE: A1 13

SEX: FEMALE

PAGE: 4

Group Name Adminis	stration (weeks)					
8	9	10	11	12	13	
Control 0.000±	0.000 0.000±	0.000 0.000±	0.000 0.000±	0.000 ±	0.000 0.000±	0.000
25 ppm 1.567±	0.178 1.448±	0.084 1.324±	0.113 1.457±	0.102 1.424±	0.118 1.533±	0.113
50 ppm 3.287±	1.213 2.771±	0.246 2.510±	0.262 3.155±	1.060 3.725±	2.233 2.837±	0.274
100 ppm 5.040±	0.437 5.089±	0.512 4.846±	0.425 4.847±	0.510 4.834±	0.334 5.588±	0.354
150 ppm 8.403±	1.079 7.670±	0.886 7.134±	0.556 7.299±	0.850 7.353±	1.005 8.217±	0.861
200 ppm 9.083±	1.317 9.211±	1.802 8.412±	1.492 9.011±	1.228 9.522±	1.067 10.704±	2,258

(IIAN300)

APPENDIX B 5-3

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO. : 0266

ANIMAL : MOUSE BDF1
UNIT : mg/kg/day

REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
25 ppm	2.723± 0.471	2.315± 0.274	2.143± 0.132	2,108± 0,177	2.079± 0.181	1,961± 0.269	1.934± 0.230
50 ppm	4.787± 0.483	3.650± 0.232	3.907± 0.388	3.706± 0,521	3.675± 0.600	3.454± 0.734	3,408± 0.370
100 ppm	8.803± 0.742	6.866± 1.138	7.097± 0.655	7.141± 1.102	6,445± 0.994	6,490± 0,787	6.510± 0.548
150 ppm	10.470± 0.958	9.115± 0.724	9.943± 0.965	9,435± 1,234	8.691± 1.000	8,477± 1,670	8.966± 1.133
200 ppm	11.783± 1.969	11.894± 2,894	12.482± 2.728	11.911± 2.742	12.652± 3.776	11.764± 3.297	11.894± 3.983

PAGE: 1

(HAN300) BAIS 2

STUDY NO.: 0266

ANIMAL : MOUSE BDF1
UNIT : mg/kg/day

REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 2

roup Name	∆dmini	stration	(weeks)										
	8		9		10		11		12		13		
Control	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	
25 ppm	1.931±	0.217	1.572±	0.140	1.611±	0.147	1.739±	0.139	1.750±	0.090	1.853±	0.324	
50 ppm	3.537±	0.391	2.999±	0.328	3.040±	0.472	3.412±	0.436	3.321±	0.337	3.477±	0.542	
100 ppm	6.276±	0.426	5.276±	0.806	5.518±	0.674	6.186±	0.529	5.836±	0.387	5.714±	0.529	
150 ppm	8.540±	1.433	6.788±	0.849	8.131±	1.374	9.291±	1.001	8.753±	1.587	8.386±	1.026	
200 ppm	12.035±	4.347	10.063±	4.942	10.829±	4.210	12.217±	3.952	9.509±	1.585	10.825±	2.374	
											*		

(HAN300)

APPENDIX B 5-4

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: FEMALE

STUDY NO.: 0266

CHEMICAL INTAKE CHENGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE BDF1 UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

oup Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
25 ppm	3.613± 0.729	3.611± 0.826	3.359± 0.436	3.187± 0.299	3,099± 0,680	3.090± 0.579	2.905± 0.281
50 ppm	5.824± 0.324	5.266± 0.510	5.562± 0.452	5.494± 0.404	5,010± 0,549	5.215± 0.540	4.913± 0.418
100 ppm	9.964± 0.740	8.607± 0.748	9.273± 0.770	9.555± 1.263	8,612± 0,503	8.394± 1.070	9.076± 2.409
150 ppm	11.457± 1.816	10.485± 1.461	12.057± 2.359	11.373± 1.345	11.625± 2.499	11.616± 2.392	10.997± 1.130
200 ppm	11.708± 1.417	11.551± 1.647	15.839± 2.680	14.005± 2.510	11.604± 0.959	12.201± 1.206	14.187± 1.716
200 ррт	11.708± 1.417	11.551± 1.647	15.839± 2.680	14.005± 2.510	11.604± 0.959	12.201± 1.206	14.187±

(IIAN300)

STUDY NO. : 0266

ANIMAL : MOUSE BDF1 UNIT : mg/kg/day
REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY) ALL ANIMALS

PAGE: 4

Group Name	Admini	stration	(weeks)										
	8		9		10		11		12		13		
Control	0.000±	0.000	0.000±	0.000	0.000±	0.000	0.000±	0.000	0,000±	0.000	0.000±	0,000	
25 ppm	2.906±	0.586	2.909±	0.957	3.156±	0.949	2.979±	1.010	3.088±	0.370	2.973±	0.327	
50 ppm	5.053±	0.634	4.636±	0.576	4.674±	0.344	5.412±	0.394	5.332±	0.422	5,300±	0.732	
100 ppm	8.740±	1.818	7.642±	0.728	7.850±	0.961	9.486±	2,521	9.547士	0.835	8.762±	1.153	
150 ppm	10.098±	2,821	10.784±	2.609	9.906±	2.009	11.105±	1.441	11.256±	2.232	11.623±	1.620	
200 ррт	12.682±	2.305	11.540±	1.483	11.811±	1.237	13.889±	1.872	14.361土	2.724	13.180±	1,602	

(IIAN300)

APPENDIX B 6-1

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

roup Name	NO. of Animals	RED BLOC		HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f e		MCH pg		MCHC g∕dl	· 	PLATELE 1 Ο³ / μ	
Control	10	9.25±	0.39	16.3±	0.4	46.2±	1.9	50.0±	0.7	17.7±	0.9	35.4±	1.7	734±	38
25 ppm	10	9.19±	0.14	16.1±	0.2	46.0±	0.9	50.1±	0.4	17.5±	0.3	34.8±	0.6	756±	42
50 ppm	9	9.17±	0.24	15.9±	0.5	45.9±	1.4	50.1±	0.6	17.3±	0.3	34.6±	0.6	722±	26
100 ppm	10	8.83±	0.30	15.2±	0.5**	44.5±	1.7	50.4±	0.7	17.2±	0.2	34.3±	0.5	722±	44
150 ppm	10	8.69±	0.29**	14.7±	0.4**	43.4±	1.4**	49.9±	0.7	16.9±	0.3**	33.9±	0.5**	738±	43
200 ppm	9	8.14±	0.59**	14.0±	0.6**	40.9±	3.0**	50.2±	1.6	17.2±	1.1	34.2±	2.1**	683±	95

(IICL070)

STUDY NO.: 0265
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	RETICUL ‰	OCYTE	PROTHRO sec	MBIN TIME	APTT sec					
Control	10	30±	5	16.6±	2.2	22.1±	2.0				
25 ppm	10	31±	8	16.0±	2.4	21.4±	2.4				
50 ppm	9	30±	5	13.9±	1.5	20.6±	2,5				
100 ppm	10	37±	7	12.5±	0.7**	17.7±	3.0**				
150 ppm	10	44±	8**	12.0±	0.4**	17.1±	1.9**				
200 ppm	9	59±	22**	11.7±	0.3**	15.6±	1.6**				
Significan	nt difference;	*: P ≤ 0	.05	** : P ≤ 0.0)1			Test of Dunnett	 	· · · · · · · · · · · · · · · · · · ·	
(IICI 070)									 		 DAIC

(HCL070)

STUDY NO.: 0265 ANIMAL: RAT F344 REPORT TYPE: A1 SEX: MALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	WBC 1 0°/	μ¢	Dif N-B	ferential AND	L WBC (% N-S		EOS	SINO	BAS	50	MOM	10	LYM	IPIIO	OT	HERS
Control	10	5.45±	1.34	0±	0	30±	5	1±	1	0±	0	5±	2	64±	6	0±	0
25 ppm	10	5.24±	0.95	0土	0	28±	6	2±	1	0±	0	4±	3	66士	7	0±	0
50 ppm	9	5.01±	1.58	0±	0	26±	4	Ι±	1	0±	0	5±	2	67±	5	0±	1
100 ppm	10	5.11±	1.32	0±	1	28±	5	2±	1	0±	0	4±	2	66±	5	0±	0
150 ppm	10	4.12±	1.28	0±	0	28±	7	1±	1	0±	0	5±	3	66±	8	0±	0
200 ppm	9	3.16±	1.28**	0±	1	30±	8	1±	1	0±	0	4±	1	64±	9	0±	1
Significar	nt difference ;	; *: P ≦	0.05	** : P ≦	0.01			Test	of Dunne	tt							RAIC

(IICL071)

APPENDIX B 6-2

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	RED BL 1 0°/	OOD CELL	HEMOGLO g∕dl	DBIN	HEMATOO %	CRIT	MCV f ℓ		MCH pg		MCHC g∕dl		PLATELE 1 O³/μ	
Control	8	8.71±	0.28	16.2±	0.5	46.0±	1.7	52.8±	0.6	18,6±	0.2	35.2±	0.5	864±	42
25 ppm	10	8.52±	0.27	15.8±	0.5	45.0±	1.8	52.8±	0.8	18.6±	0.2	35.1±	0.6	811±	34
50 ppm	10	8.39±	0.41	15.6±	0.4*	43.8±	2.6	52.1±	0.8	18.6±	0.8	35.6±	1.9	776±	42*
100 ppm	10	8.32±	0.34*	15.0±	0.5**	42.8±	2.0**	51.5±	0.6**	18.0±	0.6	35.0±	1.0	791±	41
150 ppm	10	8.38±	0.31	14.6±	0.3**	42.0±	1.7**	50.1±	0.9**	17.4±	0.5**	34.7±	1.4	722±	60**
200 ppm	10	8.14±	0,18**	13.9±	0.6**	40.9±	1.3**	50.2±	0.8**	17.1±	0.5**	34.0±	1.1**	642±	97**
Significan	t difference;	*: P ≦	0.05	** : P ≤ 0,0)1			Test of Dur	nnett		<u>-</u>				
(IICL070)															В

STUDY NO.: 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	RETICUL ‰	осуте	PROTHRO sec	MBIN TIME	APTT sec					
Control	8 -	31±	6	11.6±	0.3	15.5±	1.1				
25 ppm	10	32±	8	11.8±	0.4	16.4±	0.7				
50 ppm	10	39±	7	11.8±	0.4	15.4±	1.7				
100 ppm	10	45±	10**	11.8±	0.4	14.9±	1.3		•		
150 ppm	10	44±	8*	11.6±	0.4	14.9±	1.5				
200 ppm	10	58±	13**	11.7±	0.5	15.0±	1.1				
Significant	t difference;	*: P ≤ 0	.05 *	*: P ≦ 0.0	1			Test of Dunnett	 		
(IICL070)			· · · · · · · · · · · · · · · · · · ·	-					 	 	BAIS

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	WBC 1 O ^a	; ' / μ.ξ	Dif N-B	ferentia AND		SEG	EOS	SINO	BAS	50	МОМ	10	LY	MPIIO	OT	THERS
Control	8	3.02±	0.76	0±	1	23±	6	2±	1	0±	0	5±	2	69±	6	1±	1
25 ppm	10	3.71±	0.86	0±	1	26±	7	1±	1	0±	0	4±	1	68±	8	0±	1
70 ppm	10	4.14±	1.15	0±	0	26±	7	2±	1	0±	0	4±	2	69±	8	0±	0
100 ppm	10	4.09±	1.57	0±	1	23±	5	2±	1	0±	0	5土	2	70±	5	0±	1
150 ppm	10	3.49±	0.91	0±	1	24土	5	2±	1	0±	0	4±	3	70±	6	0±	0
200 ppm	10	2.50±	1.41	0±	0	34±	16	1±	1	0±	0	5±	2	59±	16	1±	1
Significa	nt difference ;	*: P:	≤ 0.05	** ; P ≦	0.01			Test	of Dunne	ett				٠,			
(IICL071)																	BAIS 2

APPENDIX B 6-3

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO. : 0266 ANIMAL : MOUSE BDF1 HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

roup Name	NO. of Animals	RED BLOO 1 06/118		HEMOGLO g∕dl	BIN	HEMATOO %	RIT	MCV fe		MCII pg		g∕dl MCNC		PLATELE 1 0³/µ	
Control	10	10.54±	0.30	15.5±	0.2	48.0±	2.2	45.5±	1.2	14.7±	0.2	32.4±	1.1	1429±	118
25 ppm	7	10.37±	0.26	15.2±	0.5	46.7±	1.4	45.1±	0,4	14.6±	0.2	32.4±	0.5	1421±	151
50 ppm	8	10.54±	0.32	15.2±	0.7	47.4±	2.3	44.9±	1.0	14.4±	0.3	32.1±	0.4	1427±	85
100 ppm	9	10.28±	0.36	15.0±	0.6	46.4±	2.1	45.1±	0.8	14.6±	0.1	32.4±	0.4	1335±	159
150 ppm	7	10.35±	0.54	15.0±	0.8	46.9±	2.7	45.3±	0.6	14.5±	0.2	32.1±	0.6	1346±	109
200 ppm	9	9.41±	2.42	15.2±	1.3	42.4±	10.8	45.1±	0.9	19.3±	14.3	32.4±	1.9	1132±	292**

(HCL070)

STUDY NO. : 0266 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	WBC 1 O ³	; } ∕ hrఠ	Dif N-B	ferentia AND	L WBC (% N-S		EOS	SINO	BAS	60	МОМ	10	LYN	IPHO	01	THERS
Control	10	0.80±	0.64	1±	1	20土	9	0±	1	0土	0	2±	1	77±	9	0土	0
25 ppm	9	0.70±	0.72	0±	1	17±	5	1±	2	0±	0	2±	1	79±	7	0±	0
50 ppm	10	0.48±	0.35	0±	1	14±	6	0土	0	0±	0	3±	2	82±	5	0±	1
100 ppm	8	0.40±	0.33	0±	0	19±	4	0±	0	0±	0	3±	2	79±	4	0±	0
150 ppm	9	0.47±	0.40	0±	0	13±	4	0±	1	0±	0	2±	1	84±	4	0±	1
200 ppm	9	0.66±	0.53	0±	0	14±	7	1±	1	0±	0	2±	1	83±	7	0±	0
Significar	nt difference ;	*: P <u>\$</u>	≦ 0.05	** : P ≦	0.01			Test	of Dunne	tt							Dita

(IICL071)

APPENDIX B 6-4

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO.: 0266 ANIMAL : MOUSE BDF1 HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

REPORT TYPE : A1 SEX: FEMALE

roup Name	NO. of Animals	RED BLO	OOD CELL	HEMOGLO g∕dl	BIN	HEMATOC %	RIT	MCV f @		MCII pg		MCNC g∕dl		PLATELE 1 O³/μ	
Control	10	10.20±	0.39	15.2±	0.5	46.9±	1.6	45.9±	0.5	14.9±	0.1	32.5±	0.3	1292±	142
25 ppm	9	10.06±	0.40	15.1±	0.8	46.4±	1.9	46.1±	0.6	15.0±	0.2	32.5±	0.5	1219±	61
50 ppm	10	9.79±	0.41	14.6±	0.6	45.1±	2.1	46.0±	0.8	14.9±	0.3	32.4±	0.4	1125±	161
100 ppm	8	9,69±	0.43	14.5±	0.6	45.4±	1,9	46.8±	0.8	15.0±	0.2	31.9±	0.4	1183±	105
150 ppm	9	9.41±	0.50**	13.8±	0.7**	43.7±	2.3**	46.5±	1.1	14.7±	0.3	31.6±	0,4**	1007±	324*
200 ppm	9	9.91±	0.36	14.5±	0.6	45.4±	1.4	45.8±	1.0	14.6±	0.3*	31.9±	0.5*	1149±	99*

(IICL070)

PAGE: 2

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

STUDY NO. : 0266 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE PAGE: 1

Group Name	NO. of Animals	WBC 1 O³	/ µ.k		ferential AND		SEG	EOS	INO	BAS	60	MON	10	LYI	IPIIO	OTT	IIERS
Control	10	1.39±	0.87	0±	0	14±	10	1±	1	0±	0	2±	1	82±	9	0±	0
25 ppm	7	1.03±	0.72	0±	1	14±	3	1±	1	0±	0	2±	1	82±	4	0±	0
50 ppm	8	1.69±	1.81	0±	0	13±	3	1±	1	0±	0	3±	1	83±	4	0 ±	0
100 ppm	9	0.69±	0.34	0±	0	12±	5	1±	1	0 ±	0	2±	1	85±	5	0±	0
150 ppm	7	0.78±	0.68	0±	0	15±	6	1±	1	0±	0	2±	2	81±	7	0±	0
200 ppm	9	0.44±	0.32**	1±	1	21±	13	1±	1	0±	0	3±	2	75±	14	0±	0
Significar	nt difference	; *:P:	≤ 0.05	**: P ≤	0.01			Test	of Dunne	tt							

(HCL071)

APPENDIX B 7-1

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0265 ANIMAL : RAT F344 BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

REPORT TYPE: A1 SEX : MALE

Group Name NO. of TOTAL PROTEIN ALBUMIN A/G RATIO T-BILIRUBIN GLUCOSE T-CHOLESTEROL TRIGLYCERIDE Animals g/dl g/dl mg/dl mg/dl mg/dl mg/dl Control 10 6.4± 0.1 3.6± 0.1 $1.3\pm$ 0.17 ± 0.01 190± 9 $60 \pm$ 13 80± 29 0.0 25 ppm 10 $6.3 \pm$ 0.2 $3.6 \pm$ 0.1 $1.3 \pm$ 0.0 0.17± 0.01 $197 \pm$ 14 60土 4 89士 17 50 ppm 9 $6.3 \pm$ 0.1 $3.6 \pm$ 0.1 1,4± 0.17 ± 0.01 191± 8 62± 5 89± 16 0.1 100 ppm 10 $6.3 \pm$ 0.2 $3.7\pm$ 0.1 1,4± 0.0* 0.17± 0.01 $187 \pm$ 11 $75\pm$ 6* 49士 13 150 ppm 10 $6.3 \pm$ 0.2 $3.7\pm$ 0.2 1,5± 0.1** 0.18± 0.02 $171\pm$ 15* 84± 12** $31 \pm$ 5** 200 ppm 9 11** $6.3 \pm$ 0.2 $3.9 \pm$ 0.1** $1.6 \pm$ 0.1** 0.19± 0.02* 145士 24** 108± 13** $36 \pm$ Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett (IICL074)

BAIS 2

PAGE: 1

STUDY NO.: 0265 ANIMAL: RAT F344 REPORT TYPE: A1 BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

SEX : MALE

PAGE: 2

roup Name	NO. of Animals	PIIOSPIIOI mg/dl	LIPID	GOT IU/e		GPT IU/ℓ		LDH IU/0		ALP IU/e		G-GTP IU/e		CPK I U / 0	
Control	10	111±	23	73±	6	42±	3	146±	68	262士	35	1±	0	102±	25
25 ppm	10	111±	7	70±	6	40±	4	120土	20	249±	11	1±	0	94±	10
50 ppm	9	112±	9	77±	5	44± -	4	139±	16	260±	14	0±	1	100±	15
100 ppm	10	125±	9	106±	23*	60±	15*	142±	28	250±	20	1±	1	91 ±	11
150 ppm	10	131±	20*	142±	31**	77±	21**	170±	49	255±	21	1士	0	98±	17
200 ppm	9	172±	25**	188±	51**	100±	32**	185±	61	287±	34	2±	1	91 ±	10

(IICLO74) BAIS 2

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	UREA NI mg∕dl		CREATIN mg/dg	INE	SODIUM mEq/e		POTASSI mEq/		CHLORIDE mEq/e		CALCIUN mg∕d£	[I NORGAN mg/dl	VIC PHOSPHORUS
Control	10	18.0±	1.8	0.5±	0.0	143±	1	3.4±	0.3	109±	1	10.3±	0.1	5.3±	0.7
25 ppm	10	19.8±	1.0	0.6±	0.1	141±	1*	3.5±	0.3	108±	1	10.3±	0.1	5.5±	0.5
50 ppm	9	19.9±	1.1	0.5±	0.1	141±	1*	3.6±	0,3	108±	2	10.4±	0,2	5.7±	0.6
100 ppm	10	22.6±	2.0**	0.5±	0.0	141±	1*	3.7±	0.2*	107±	1*	10.4±	0.2	5.6±	0.5
150 ppm	10	25.0±	2.8**	0.5±	0.0	142±	1	3.8±	0.2**	109±	2	10.4±	0.2	5.8±	0.6
200 ppm	9	31.2±	5.6**	0.5±	0.0	143±	1	3.9±	0.2**	111±	2	10.5±	0.2*	5,5±	0.8

(IICL074)

APPENDIX B 7-2

BIOCHEMISTRY(THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0265
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	g/dl g/dl	PROTEIN	g∕dl MLBUMIN		A/G RAT	.10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLE mg∕dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	8	6.3±	0.3	3.6±	0.1	1.3±	0.1	0.17±	0.01	159±	12	75±	8	34±	29
25 ppm	10	6.0±	0.1*	3.4±	0.1	1.3±	0.1	0.17±	0.01	166±	8	69±	6	29±	7
50 ppm	10	6.0±	0.1*	3,5±	0.1	1.4±	0.1	0.17±	0.01	166±	6	71±	10	31±	10
100 ppm	10	5.9±	0.1**	3.5±	0.1	1.5±	0.1**	0.18±	0.01	166±	13	85±	10	28±	3
150 ppm	10	6.1±	0.1	3.7±	0.1	1.5±	0.1**	0.18±	0.01	143±	16	93±	14	26生	5
200 ppm	10	5.9±	0.3*	3.6±	0.2	1.5±	0.1**	0.22±	0.03**	105±	28*	112±	23*	42±	17**

(IICL074)

STUDY NO.: 0265
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE : 5

roup Name	NO. of Animals	PIIOSPIIOI mg/dl	LIPID	GOT I U∕ℓ		GPT IU∕ℓ		LDII IU/4	?	ALP IU/e		G−GTP IU∕€		CPK IU/0	
Control	8	134±	14	71±	5	37±	5	142±	37	198士	48	1±	1	98±	11
25 ppm	10	125±	12	74±	7	38±	7	169±	72	194土	39	1±	1	104±	22
50 ppm	10	128±	14	80±	5	41±	5	173±	77	202±	24	2±	1	104±	22
100 ppm	10	149±	16	119±	21**	57±	11**	238±	72	236±	22	2土	1	116±	25
150 ppm	10	156±	18	137±	32**	58±	16**	229±	91	268±	36**	4±	1**	108±	19
200 ppm	10	196±	38**	162±	41**	70±	20**	320±	229*	285±	37**	6±	2**	129±	59

(IICL074)

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 6

NO. of Animals	UREA NI mg∕dl	TROGEN	CREATIN mg∕dl	INE	SODIUM mEq∕ℓ		POTASSI mEq/		CILORIDE mEq∕ℓ		CALCIUM mg/dl		INORGAN mg∕dl	IC PHOSPHORUS
8	18.7±	1.4	0.6±	0.1	142±	2	3.5±	0.2	110±	2	10.2±	0.2	4.7±	1.2
10	20.3生	2.2	0.5±	0.0*	140±	1	3.6±	0.2	110±	1	9.9±	0.2*	4.6±	0.9
10	22.6±	2.2	0.5±	0.0**	140土	1*	3.7±	0.1*	108±	1	10.1±	0.2	5.3±	0.8
10	27.3±	2.6**	0.5±	0.1*	141±	1	3.8±	0.2**	110±	2	10.2士	0.1	5.5±	0.7
10	30.3±	3.8**	0.5±	0.0*	142±	2	3.8±	0.2**	110±	2	10.3±	0.2	5.4±	0.6
10	41.1±	6.6**	0.5±	0.1	146±	4	3.9±	0.3**	114±	4	10.2±	0.3	5.4±	0.9
-	Animals 8 10 10 10 10	## Animals mg/d# ## 18.7± 10	Animals $mg/d\ell$ 8 18.7 ± 1.4 10 20.3 ± 2.2 10 22.6 ± 2.2 10 $27.3\pm 2.6**$ 10 $30.3\pm 3.8**$	Animals $mg/d\ell$ $mg/d\ell$ 8 $18.7\pm$ 1.4 $0.6\pm$ 10 $20.3\pm$ 2.2 $0.5\pm$ 10 $22.6\pm$ 2.2 $0.5\pm$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ 10 $30.3\pm$ $3.8**$ $0.5\pm$	Animals mg/dl mg/dl 8 18.7 \pm 1.4 0.6 \pm 0.1 10 20.3 \pm 2.2 0.5 \pm 0.0* 10 22.6 \pm 2.2 0.5 \pm 0.0** 10 27.3 \pm 2.6** 0.5 \pm 0.1* 10 30.3 \pm 3.8** 0.5 \pm 0.0*	Animals mg/dl mEq/ ℓ 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$	Animals mg/dl mEq/l 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 2 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 1 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ $1*$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 1 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$ 2	Animals mg/dl mEq/l mEq/l 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 2 $3.5\pm$ 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 1 $3.6\pm$ 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ $1*$ $3.7\pm$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 1 $3.8\pm$ 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$ 2 $3.8\pm$	Animals mg/dl mg/dl mEq/l mEq/l 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 2 $3.5\pm$ 0.2 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 1 $3.6\pm$ 0.2 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ $1*$ $3.7\pm$ $0.1*$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 1 $3.8\pm$ $0.2**$ 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$ 2 $3.8\pm$ $0.2**$	Animals $mg/d\ell$ $mg/d\ell$ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ 0.1 $142\pm$ 2 $3.5\pm$ 0.2 $110\pm$ 10 $20.3\pm$ 2.2 $0.5\pm$ 0.0* $140\pm$ 1 $3.6\pm$ 0.2 $110\pm$ 10 $22.6\pm$ 2.2 $0.5\pm$ 0.0** $140\pm$ 1* $3.7\pm$ 0.1** $108\pm$ 10 $27.3\pm$ 2.6** $0.5\pm$ 0.1** $141\pm$ 1 $0.8\pm$ 0.2 ** $0.5\pm$ 0.1** $0.5\pm$ 0.0** $0.5\pm$ 0.1** $0.5\pm$ 0.0**	Animals $mg/d\ell$ $mg/d\ell$ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 2 $3.5\pm$ 0.2 $110\pm$ 2 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 1 $3.6\pm$ 0.2 $110\pm$ 1 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ $1*$ $3.7\pm$ $0.1*$ $108\pm$ 1 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 1 $3.8\pm$ $0.2**$ $110\pm$ 2 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$ 2 $3.8\pm$ $0.2**$ $110\pm$ 2	Animals $mg/d\ell$ $mg/d\ell$ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ meq/ℓ $mg/d\ell$ 8 $18.7\pm$ 1.4 $0.6\pm$ 0.1 $142\pm$ 2 $3.5\pm$ 0.2 $110\pm$ 2 $10.2\pm$ 10 $20.3\pm$ 2.2 $0.5\pm$ $0.0*$ $140\pm$ 1 $3.6\pm$ 0.2 $110\pm$ 1 $9.9\pm$ 10 $22.6\pm$ 2.2 $0.5\pm$ $0.0**$ $140\pm$ $1*$ $3.7\pm$ $0.1*$ $108\pm$ 1 $10.1\pm$ 10 $27.3\pm$ $2.6**$ $0.5\pm$ $0.1*$ $141\pm$ 1 $3.8\pm$ $0.2**$ $110\pm$ 2 $10.2\pm$ 10 $30.3\pm$ $3.8**$ $0.5\pm$ $0.0*$ $142\pm$ 2 $3.8\pm$ $0.2**$ $110\pm$ 2 $10.3\pm$	Animals $mg/d\ell$ $mg/d\ell$ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ meq/ℓ $meq/d\ell$ me	Animals $mg/d\ell$ $mg/d\ell$ mEq/ℓ mEq/ℓ mEq/ℓ mEq/ℓ meq/ℓ $mg/d\ell$ $mg/d\ell$ $mg/d\ell$ $mg/d\ell$ $mg/d\ell$ $m = 1.4$ 1.4 0.6 ± 0.1 1.42 ± 2 3.5 ± 0.2 110 ± 2 10.2 ± 0.2 4.7 ± 10 20.3 ± 2.2 $0.5\pm 0.0*$ 140 ± 1 3.6 ± 0.2 110 ± 1 $9.9\pm 0.2*$ 4.6 ± 10 22.6 ± 2.2 $0.5\pm 0.0**$ $140\pm 1*$ $3.7\pm 0.1*$ 108 ± 1 10.1 ± 0.2 5.3 ± 10 $27.3\pm 2.6**$ $0.5\pm 0.1*$ 141 ± 1 $3.8\pm 0.2**$ 110 ± 2 10.2 ± 0.1 5.5 ± 10 $30.3\pm 3.8**$ $0.5\pm 0.0*$ 142 ± 2 $3.8\pm 0.2**$ 110 ± 2 10.3 ± 0.2 5.4 ± 10

APPENDIX B 7-3

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

roup Name	NO. of Animals	g/dl g/dl		ALBUMIN g∕dl	1	A/G RAT	10	T-BILI mg/dl		GLUCOSE mg∕dl		T-CHOLE mg∕dl	STEROL	TRIGLYCI mg∕⊲lℓ	ERIDE
Control	10	5.3±	0.2	3.1±	0.1	1.3±	0.1	0.24±	0.13	221±	40	90±	11	40±	12
25 ppm	7	5.2±	0.2	2,9士	0.1	1.3±	0.0	0.21±	0.03	211±	44	81±	5	33±	4
50 ppm	8	5.0±	0.2*	2.9±	0.2	1.4±	0.1	0.23±	0.05	203±	51	77±	7**	31±	7
100 ppm	8	4.9±	0,2**	2.8±	0.2*	1.4±	0.1	0.22±	0.02	188±	47	74±	6**	28土	5*
150 ppm	8	4.9±	0.2**	2.8±	0.1**	1.4±	0.1	0.25±	0.06	193±	22	75±	10**	27±	9*
200 ppm	8	4.7生	0.2**	2.8±	0.1**	1.5±	0,2*	0.25±	0.07	155±	15**	73±	5**	28士	4

(HCL074) BAIS 2

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	GOT IU/e		GPT I U∕ℓ		LDII I U/	e	ALP IU/0		CPK IU/4		UREA NI mg/dl	TROGEN	SODIUM mEq∕ℓ	
Control	10	47±	4	17±	3	240±	128	160±	8	94±	143	26.5±	5.3	156±	3
25 ppm	7	47±	6	17±	2	191±	35	164±	21	44±	18	28.0±	4,2	157±	3
50 ppm	8	49±	10	19±	3	241±	76	161±	16	73±	44	26.2±	5.0	155±	3
100 ppm	8	53±	10	19±	3	206±	33	162±	12	53±	18	24.7±	2.4	156±	3
150 ppm	8	60±	7*	22±	6*	257±	68	162±	19	80±	40	26.8±	4.2	156±	3
200 ppm	8	76±	14**	24±	4**	308±	152	200±	60	113±	135	30.5±	3.5	158±	3

(IICL074)

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Graup Name	NO. of Animals	POTASSI me _q /		CIILORIDE mEq∕ℓ		mg∕dl mg∕dl		INORGAN mg/dl	PHOSPHORUS	
Control	10	4.5±	0.4	127±	4	9.1±	0.2	7.6±).7	
25 ppm	7	4.3±	0.7	126士	2	8.8±	0.2	6.7±	.2	
50 ppm	8	4.2±	0.4	124土	4	8.9±	0.4	6.5±	.4	
100 ppm	8	4.3±	0.4	126±	3	8.8±	0.2	6.5±).7	
150 ppm	8	4.0±	0.3	126±	4	8.6±	0.1**	6.6±	1.0	
200 ppm	8	4.3±	0.7	126士	4	8.7±	0.2**	7.7±	1.5	
Significan	t difference ;	*; P ≦ (0.05	**: P ≤ 0.01				Test of Dur	tt	

(HCL074)

APPENDIX B 7-4

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO.: 0266 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

roup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	g∕dl g∕dl		A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg/dl		T-CHOLES	TEROL	TRIGLYCE mg/dl	RIDE
Contral	10	5.3±	0.4	3.3±	0.2	1.7±	0.1	0.24±	0.13	151±	17	76±	8	25±	6
25 ppm	9	5.2±	0.3	3.2±	0.2	1.6±	0.1	0.22±	0.04	168±	22	76±	9	27±	4
50 ppm	10	5.0±	0.3	3.1±	0.2	1.6±	0.1	0.22±	0.06	167±	32	67±	8	23±	4
100 ppm	8	5.0±	0.3	3.1生	0.2	1.7±	0.1	0.32±	0.21	163±	12	69±	5	24±	4
150 ppm	10	4.7±	0.4**	3.0±	0.2**	1.7±	0.2	0.31±	0.14	155士	25	73±	8	30±	8
200 ppm	9	4.8±	0.2*	3.0±	0.1*	1.7±	0.1	0.20±	0.02	128±	25	70±	8	27±	6

(HCL074)

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 5

roup Name	NO. of Animals	GOT I U ∕ ℓ		GPT IU∕ℓ		LDII IU/0	?	ALP IU∕ℓ		CPK IU/0		UREA NI mg∕dl	TROGEN	SODIUM mEq/e	
Control	10	62±	12	20±	5	256±	94	256±	32	73±	21	20.8±	3.4	156±	3
25 ppm	9	61±	11	22±	3	270±	85	262±	24	91±	65	21.2±	2.5	156士	3
50 ppm	10	66±	17	22±	3	295±	93	259±	34	118±	81	23.5±	2.9	158±	4
100 ppm	8	67±	17	21±	5	369±	226	248±	38	101±	68	25.7±	3.9	156±	2
150 ppm	10	63±	13	19±	4	397±	148	231±	46	119±	112	26.5±	4.8*	156±	3
200 ppm	9	76±	29	25±	5	330±	127	242±	29	123土	76	29.8±	6.4**	158±	4

(IICL074)

STUDY NO. : 0266 ANIMAL : MOUSE BDF1 BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

REPORT TYPE : A1

SEX : I	FEMALE
---------	--------

Group Name	NO. of Animals	POTASSI mEq/		CIILORIDE mEq∕ℓ		CALCIUM mg∕dl		INORGAN mg/dl	C PHOSPHORUS	
Control	10	4.7±	0.5	127±	4	9.0±	0.5	6.5±	1.2	
25 ppm	9	4.6±	0.5	126±	3	9.1±	0.4	6.7±	1.6	
50 ppm	10	4.3±	0.6	128±	4	8.9±	0.4	6.9±	1.1	
100 ppm	8	4.3±	0.7	125±	4	8.7±	0.8	7.5±	1.6	
150 ppm	10	4.4±	0.6	126±	3	8.8±	0.5	8.0±	1.2	
200 ppm	9	4.2±	0.7	127±	5	9.2±	0.4	8.7±	2.2*	
Significan	t difference;			**: P ≤ 0.01				Test of Dur	nett	
(IICL074)							····			BAIS

PAGE: 6

APPENDIX B 8-1

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE : 013-6

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of	Дq								Pro	teir	3				G	uco	se				Ket	tone	bad	dy.			Bi	liru	bin			
	Animals	5.0	6.0	6.5	7,0	7,5	8.0	8,5	CHI		± ·	+ 2	+ 3+	+ 4+	CHI		±	+	2+ 3	3+ 4+	CHI	_	±	+ :	2+ 3	+ 4+	CIII	_	+	2+ 3-	+ C	II I	
Control	10	٥	0	0	0	0	9	1		0	٥	6	1 (0		14	١ ٥	۸	٥	0 0		٥	9	Ω	٥	0 0		10	Ω	0 (n		
OCH EL OC	10	V	v	v	V	V	J	1		v	V	U	4 (, ,		11	, ,	V	v	v		v	ű	Ō	V	v		10	v	v	U		
25 ppm	10	0	0	0	0	1	8	1		0	0	4	6 (0 0		1	0	0	0	0 0		0	1	9	0	0 0		10	0	0	0		
50 ppm	10	0	0	0	0	0	6	4		0	0	2	8 (0 0		1	0	0	0	0 0		0	1	9	0	0 0		10	0	0	0		
100 ppm	10	0	0	0	0	2	6	2		. 0	0	2	8 (0 0		1	0	0	0	0 0		0	5	5	0	0 0		10	0	0	0		
150 ppm	10	0	0	0	3	3	3	1	*	0	0	1	9 (0 0	*	1	0	0	0	0 0		0	4	6	0	0 0		10	0	0	0		
200 ppm	9	0	0	1	1	2	5	0		0	0	1	7	1 0		;	3 0	0	0	0 0		0	8	1	0	0 0	**	Ę	0	0	0		
																								_									
Significen	t difference	* * :	P ≦	0.05	•	** :	P≦	0.01							Tes	t of	CHI	SQUA	RE														

(JCL101) BAIS 2

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6

SEX : MALE

REPORT TYPE : A1

Group Name NO. of Urabilinagen Occult blood Animals - ± + 2+ 3+ CIII ± + 2+ 3+ 4+ CHI Control 10 10 0 0 0 0 10 0 0 0 0 25 ppm 10 10 0 0 0 0 10 0 0 0 0 50 ppm 10 10 0 0 0 0 10 0 0 0 0 100 ppm 10 10 0 0 0 0 10 0 0 0 0 150 ppm 10 10 0 0 0 0 10 0 0 0 0 200 ppm 9 9 0 0 0 0 9 0 0 0 0 Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

(JCL101)

BAIS 2

PAGE: 2

APPENDIX B 8-2

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6 SEX: FEMALE

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of	pll								Pr	rote	in					Gl	ucos	se				Ke	tone	bad e	yb				Bi	iru	bir			
	Animals	5,0	6.0	6.5	7.0	7.5	8,0	8.5	CHI			-	2+	3+	4+	CHI			_	2+ 3	3+ 4	+ CHI					+ 4+	. (CHI		+			CHI	
Control	10	0	0	0	0	0	2	8		(0 () 7	3	0	0		10	0	0	0	0	0	9	1	0	0	0 0)		10	0	0	0		
25 ppm	10	0	0	0	0	1	4	5		(0 () 7	3	0	0		10	0	0	0	0	0	7	3	0	0	0 0)		10	0	0	0		
50 ppm	10	0	0	0	1	1	6	2		(0 () 2	8	0	0	*	10	0	0	0	0	0	5	5	0	0	0 0)		10	0	0	0		
100 ppm	10	0	0	0	0	3	5	2	*	4	0 () 2	8	0	0	*	10	0	0	0	0	0	5	5	0	0	0 0)		10	0	0	0		
150 ppm	10	0	0	$\tilde{2}$	0	4	3	1	**	1	0 () (8	2	0	**	10	0	0	0	0	0	3	6	1	0	0 ()	*	10	0	0	0		
200 ppm	9	0	0	1	2	1	3	2		(0 () (7	2	0	**	. 6	0	0	0	0	0 .	2	5	2	0	0 ()	*	9	0	0	0		

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6

SEX: FEMALE

REPORT TYPE : A1

PAGE: 4 Group Name NO. of Occult blood Urabilinagen Animals - ± + 2+ 3+ CHI ± + 2+ 3+ 4+ CHI Control 10 10 0 0 0 0 10 0 0 0 0 25 ppm 10 10 0 0 0 0 10 0 0 0 0 50 ppm 10 10 0 0 0 0 10 0 0 0 0 100 ppm 10 10 0 0 0 0 10 0 0 0 0 150 ppm 10 10 0 0 0 0 10 0 0 0 0 200 ppm 9 9 0 0 0 0 9 0 0 0 0 Significant difference ; $*:P \leq 0.05$ ** : $P \le 0.01$ Test of CHI SQUARE

(JCL101)

APPENDIX B 8-3

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6 SEX: MALE

REPORT TYPE : A1

PAGE: 1

Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+	ccult blood - ± + 2+ 3+ CHI
25 ppm 10 0 0 3 6 1 0 0 ** 0 0 1 8 1 0 10 0 0 0 0 0 0 0 0 10 0 1	0 0 0 0 0
25 ppm 10 0 0 3 6 1 0 0 ** 0 0 1 8 1 0 10 0 0 0 0 0 0 0 0 10 10 50 ppm 10 0 0 1 5 4 0 0 ** 0 0 0 8 2 0 * 10 0 0 0 0 0 0 0 0 ** 10	0 0 0 0 0
50 ppm 10 0 0 1 5 4 0 0 ** 0 0 0 8 2 0 * 10 0 0 0 0 0 0 0 9 1 0 0 ** 10	
	0 0 0 0 0
	0 0 0 0 0
100 ppm 10 0 1 6 3 0 0 0 ** 0 0 1 7 2 0 10 0 0 0 0 0 0 4 4 2 0 0 10	0 0 0 0 0
150 ppm 10 0 4 5 1 0 0 0 ** 0 0 0 7 3 0 * 10 0 0 0 0 0 1 4 4 1 0 0 10	0 0 0 0 0
200 ppm 8 0 5 3 0 0 0 0 ** 0 0 2 4 2 0 8 0 0 0 0 0 1 4 2 1 0 0 8	8 0 0 0 0

(JCL101)

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6

SEX : MALE

REPORT TYPE : A1

Urobilinogen Group Name NO. of Animals ± + 2+ 3+ 4+ CIII Control 10 10 0 0 0 0 25 ppm 10 10 0 0 0 0 50 ppm 10 10 0 0 0 0 100 ppm 10 10 0 0 0 0 150 ppm 10 10 0 0 0 0 200 ppm 8 8 0 0 0 0

Significent difference ; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of CHI SQUARE

(JCL101)

BAIS 2

PAGE: 2

APPENDIX B 8-4

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6

SEX : FEMALE

REPORT TYPE : A1

Foup Name	NO. of	llq								Prote	n					Glı	JCOS	.e					Keto	one	bady	<u>, </u>			0c	cult	t bl	anc		
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	- ±		2+	3+ 4	+	CIH				2+ 3	3+ 4-	+ CHI						4+	CIII						CIII
Control	10	0	0	0	e	1	3	0		0 1			^	^		10		Δ.	^	0			^		1 /	n .	. ^		1.0	. ^			^	
CONTRI DE	10	v	U	V	b	1	ა	v		0 1	ย	v	U	U		10	U	V	U	0	J		U	a	1 (υι) ()		10	0	U	U	U	
25 ppm	10	0	4	4	1	1	0	0	**	0 0	7	3	0	0		10	0	0	0	0	0		0	3	7 (0 (0	**	10	0	0	0	0	
50 ppm	10	0	2	6	1	1	0	0	**	0 2	3	5	0	0	*	10	0	0	0	0	0		0	3	5 :	2 (0	*	10	0	0	0	0	
100 ppm	8	0	6	2	0	0	0	0	**	0 1	4	3	0	0		8	0	0	0	0	0		0	4	2	2 (0		8	3 0	0	0	0	
150 ppm	10	0	6	3	1	0	0	0	**	0 0	5	3	1	1		10	0	0	0	0	0		0	2	4	4 (0	**	10	0	0	0	0	
200 ppm	7	0	5	1	1	0	0	0	**	0 0	1	5	1	0	**	7	0	0	0	0	0		1	0	4	2 (0	**	7	0	0	0	0	
200 ppm	,				1									·	4. 1.	<u>'</u>		·	Ū	v 			1	v	4	<i>L</i> (, v	***			V	v	V	
Significen	t difference	; *	P≦	€ 0.0	5	** :	P ≦	0.01							Test	af Cl	ні з	SQUA	RE			···												

(JCL101)

BAIS 2

PAGE: 3

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6

SEX: FEMALE

REPORT TYPE : A1

PAGE: 4 Group Name NO. of Urobilinogen ± + 2+ 3+ 4+ CHI Animals Contral 10 10 0 0 0 0 25 ppm 10 10 0 0 0 0 50 ppm 10 10 0 0 0 0 100 ppm 8 8 0 0 0 0 150 ppm 10 10 0 0 0 0 200 ppm 7 7 0 0 0 0 Significent difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

(JCL101)

APPENDIX B 9-1

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

Group Name 25 ppm 50 ppm 100 ppm Control Findings_ 0 (%) 0 (%) NO. of Animals 0 (%) 0 (%) Organ____ - (-) - (-) - (-) subcutis dгу - (-) (IIPT080) BAIS 2

PAGE: 1

STUDY NO. : 0265 ANIMAL : RAT F344

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

SEX :	MALE				PAGE: 2
0rgan	Findings	Group Name NO. of Animals	150 ppm 0 (%)	200 ppm 1 (%)	
subcutis	dry		- (-)	1 (100)	
(IIIPT080)					BAIS 2

APPENDIX B 9-2

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : MALE

)rgan	Findings	Group Name NO. of Animals	Control 10 (%)	25 ppm 10 (%)	50 ppm 10 (%)	100 ppm 10 (%)
aymus	atrophic		0 (0)	0 (0)	0 (0)	0 (0)
	red		0 (0)	1 (10)	2 (20)	1 (10)
er	herniation		0 (0)	0 (0)	0 (0)	1 (10)

ANIMAL : RAT F344

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

(IIPT080)

REPORT TYPE : A1
SEX : MALE

Organ	Findings	Group Name NO. of Animals	150 ppm 10 (%)	200 ppm 9 (%)
thymus	atrophic		5 (50)	7 (78)
	red		1 (10)	0 (0)
liver	herniation		0 (0)	0 (0)

BAIS 2

APPENDIX B 9-3

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

Organ	Findings	Group Name NO. of Animals	Cantral 10 (%)	25 ppm 10 (%)	50 ppm 10 (%)	100 ppm 10 (%)
hymus	atrophic		0 (0)	0 (0)	0 (0)	0 (0)
stomach	ulcer		0 (0)	0 (0)	0 (0)	0 (0)
iver	herniation		0 (0)	0 (0)	0 (0)	1 (10)

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

)rgan	Findings	150 ppm 10 (%)	200 ppm 10 (%)	
thymus	atrophic	2 (20)	9 (90)	
gl stomach	ulcer	0 (0)	1 (10)	
Liver	herniation	0 (0)	0 (0)	

APPENDIX B 9-4

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

SEX : MALE

rgan	Findings	Group Name NO. of Animals	Control 0 (%)	25 ppm 0 (%)	50 ppm 0 (%)	100 ppm 0 (%)
boutis	dry		- (-)	- (-)	- (-)	- (-)
vimus	atrophic		- (-)	- (-)	- (-)	- (-)
een	atrophic		- (-)	- (-)	- (-)	- (-)
stis	atrophic		- (-)	- (-)	- (-)	- (-)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 : MALE SEX

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

200 ppm Group Name 150 ppm 0 (%) 1 (%) Organ____ Findings_ NO. of Animals - (-) 1 (100) subcutis dry - (-) thymus 1 (100) atrophic - (-) 1 (100) spleen atrophic

- (-)

1 (100)

(IIPT080)

testis

atrophic

BAIS 2

APPENDIX B 9-5

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE: SACRIFICED ANIMALS

STUDY NO. : 0266 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 1

)rgan	Findings	Group Name NO. of Animals	Control 10 (%)	25 ppm 10 (%)	50 ppm 10 (%)	100 ppm 10 (%)
spleen	black zone		2 (20)	1 (10)	0 (0)	0 (0)
Ver	red zone		0 (0)	0 (0)	0 (0)	1 (10)
iney	hydronephrasis		2 (20)	0 (0)	1 (10)	0 (0)
stis	atrophic		0 (0)	0 (0)	1 (10)	0 (0)

(HPT080)

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

: MALE

PAGE: 2

Organ	Findings	Group Name NO. of Animals	150 ppm 10 (%)	200 ppm 9 (%)		
spleen	black zone		0 (0)	1 (11)		
liver	red zone		0 (0)	0 (0)		
kidney	hydronephrosis		0 (0)	1 (11)		
testis	atrophic		1 (10)	0 (0)		
(IIPT080)					В	BAIS 2

(IIPT080)

APPENDIX B 9-6

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

SEX : FEMALE

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	25 ppm 10 (%)	50 ppm 10 (%)	100 ppm 9 (%)
pleen	black zone		1 (10)	0 (0)	0 (0)	0 (0)
idney	hydronephrosis		0 (0)	0 (0)	0 (0)	0 (0)

ANIMAL : MOUSE BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	 Group Name NO. of Animals	150 ppm 10 (%)	200 ppm 10 (%)	
spleen	black zone		0 (0)	1 (10)	
kidney	hydranephrasis		1 (10)	1 (10)	
(HPT080)					BAIS 2

APPENDIX B 10-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: MALE

STUDY NO.: 0265 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

coup Name	NO. of Animals	Body 1	Weight	ТНУМ	JS	ADRE	NALS	TESTI	. S	HEAR	Γ	LUNGS	3
Control	10	290士	11	0.222±	0.024	0.051±	0.005	2.710±	0.108	0.876±	0.054	1.007±	0.089
25 ppm	10	275±	11	0.226±	0.027	0.051±	0.004	2.703±	0.102	0.824±	0.051	0.957±	0.073
50 ppm	10	261±	13	0.184±	0.022*	0.049±	0.003	2.706±	0.135	0.797±	0.058*	1.022±	0.269
100 ppm	10	225±	8**	0.156±	0.023**	0.046±	0.003*	2.645±	0.108	0.706±	0.030**	0.871±	0.073
150 ppm	10	188±	19**	0.124±	0.032**	0.047±	0.005	2.484±	0.133**	0.608±	0.052**	0.799±	0.048**
200 ppm	9	136±	31**	0.086±	0.032**	0.038±	0.004**	2.048±	0.425**	0.500±	0.080**	0.679±	0.075**

(HCL040)

STUDY NO.: 0265
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

roup Name	NO. of Animals	KID	NEYS	SPL	EEN	LIV	ER	BRA		
Control	10	1.753±	0.071	0.505±	0.024	7.133±	0,306	1,844±	0.048	
25 ppm	10	1.754±	0.073	0.483±	0.028	6.964±	0.404	1.860±	0.032	
50 ppm	10	1.772±	0.098	0.470±	0.025	6,880±	0.412	1.820±	0.060	
100 ppm	10	1.712±	0.091	0.416±	0.026**	6.072±	0.346*	1.805±	0.041	
150 ppm	10	1,607±	0.083**	0.373±	0.041**	5.240士	0.514**	1.738±	0.038**	
200 ppm	9	1.394±	0.165**	0,283±	0.055**	4.214±	0.842**	1.695±	0.061**	

(IICL040)

APPENDIX B 10-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: FEMALE

STUDY NO. : 0265 ANIMAL : RAT F344

REPORT TYPE : A1
SEX : FEMALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Bady (Weight	THYM	US	ADRE	NALS	OVAR	IES	HEAR	Γ	LUNG	5
Control	10	164±	12	0.179±	0.020	0.056±	0.009	0.097±	0.021	0.581±	0.026	0.778±	0.110
25 ppm	10	159±	8	0.178±	0.015	0.050±	0.006	0.093±	0.027	0.537±	0.033	0.713±	0.050
50 ppm	10	155±	9	0.158±	0.013	0.053±	0.009	0.095±	0.015	0.525±	0.033	0.712±	0.058
100 ppm	10	134±	9**	0.118±	0.026**	0.047±	0.008	0.074±	0.016*	0.469±	0.018**	0.645±	0.056**
150 ppm	10	120±	13**	0.107±	0.014**	0.045±	*800.0	0.061±	0.014**	0,433±	0.045**	0.591±	0.052**
200 ppm	10	86±	18**	0.053±	0.028**	0.032±	0.006**	0.044±	0.012**	0.338±	0.055**	0.530±	0.056**
Significar	nt difference ;	*: P ≤ 0.	05 **	*: P ≤ 0.01			Test	of Dunnett					

(IICL040)

STUDY NO. : 0265 ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

1.112± 0.069 1.205± 0.076 1.304± 0.085***	0.331± 0.030 0.324± 0.024 0.331± 0.022	3.891± 3.850± 3.945±	0.311	1.734± 1.733± 1.741±	0.039
1.304± 0.085**					
1.304± 0.085**	0.331± 0.022	3.945±	0.296	1.741±	0.071
1 238+ 0 082**					
1,2001 V,V02**	0.297± 0.034	3.648±	0.199	1.662±	0.038*
1.193± 0.097	0.257± 0.038**	3.559±	0.332	1,650±	0.065**
1.075± 0.100	0.180± 0.041**	3.009±	0.493**	1.589±	0.045**
	1.075± 0.100	1.075± 0.100 0.180± 0.041**		1.075± 0.100 0.180± 0.041** 3.009± 0.493**	1.075± 0.100 0.180± 0.041** 3.009± 0.493** 1.589±

(IICL040)

APPENDIX B 10-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

oup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	32.0± 1.6	0.040± 0.005	0.010± 0.001	0.221± 0.025	0.158± 0.013	0.160± 0.008
25 ppm	10	27.9± 1.6**	0.034± 0.004*	0.011± 0.002	0.209± 0.031	0.146± 0.014	0.150± 0.007
50 ppm	10	26.3± 1.2**	0.029± 0.005**	0.010± 0.002	0.205± 0.035	0.143± 0.005	0.154± 0.013
100 ppm	10	25.1± 1.0**	0.027± 0.005**	0.010± 0.002	0.207± 0.036	0.136± 0.009*	0.150± 0.018
150 ppm	10	23.6± 1.2**	0.028± 0.004**	0.009± 0.002	0.198± 0.031	0.129± 0.006**	0:142± 0.010**
200 ppm	9	22.0± 1.8**	0.026± 0.005**	0.008± 0.002	0.206± 0.022	0.124± 0.014**	0.137± 0.006**

(IICL040)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

UNIT: g

ame	NO. of Animals	KID	ONEYS	SPL	EEN	LIV	ER	BRA	N	
ol	10	0.491±	0.108	0.053±	0.006	1.180±	0.045	0.449±	0.013	
OM .	10	0.433±	0.023	0.043±	0.004**	1.088士	0.085	0.437±	0.017	
mc	10	0.489±	0.165	0.047±	0.007*	1.072±	0.035	0.437±	0.012	
OM	10	0.441±	0.025	0.041±	0.003**	1.045±	0.062**	0,443±	0.016	
om	10	0.416±	0.020**	0.041±	0.006**	0.987±	0.098**	0.429±	0.023	
om	9	0,442±	0.114**	0.032±	0.005**	0.935±	0.079**	0.429±	0.019	
		0,442± *: P ≤ 0.		0.032± : P ≤ 0.01	0.005**	0.935±			· · · · · · · · · · · · · · · · · · ·	0.429± 0.019 of Dunnett

(HCL040)

APPENDIX B 10-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS
Control	10	20.8± 1.4	0.040± 0.007	0.013± 0.002	0.031± 0.007	0.119± 0.008	0.141± 0.011
25 ppm	10	21.3± 0.8	0.039± 0.007	0.011± 0.002	0.031± 0.009	0.126± 0.006	0.146± 0.015
50 ppm	10	20.5± 1.1	0.037± 0.006	0.011± 0.002	0.032± 0.009	0.116± 0.008	0.139± 0.009
100 ppm	9	20.4± 0.6	0.032± 0.004	0.010± 0.001	0.027± 0.008	.0.118± 0.007	0.139± 0.007
150 ppm	10	20.3± 0.7	0.037± 0.007	0.011± 0.002	0.027± 0.008	0.113± 0.008	0.139± 0.010
200 ppm	10	19.5± 1.4*	0.040± 0.005	0.011± 0.002	0.023± 0.007	0.105± 0.013**	0.135± 0.009
Significa	nt difference;	* : P ≤ 0.05 **	: P ≤ 0.01	Test	of Dunnett		
(IICL040)							

(IICL040)

ANIMAL : MOUSE BDF1
REPORT TYPE : A1
SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

roup Name	NO. of Animals	KIDI	NEYS	SPLI	GEN	LIVI	ER	BRAI		
Control	10	0.282±	0.021	0.052±	0.009	0.879±	0.089	0.456±	0.012	
25 ppm	10	0.309±	0.019	0.052±	0.005	0.887±	0.056	0.443±	0.012	
50 ppm	10	0.312±	0.023	0.047±	0.006	0.850±	0.076	0.446±	0.016	
100 ppm	9	0.325±	0.013**	0.043±	0.003*	0.860±	0.042	0.444±	0.021	
150 ppm	10	0.325±	0.013**	0.055±	0.007	0.889±	0.045	0.438±	0.018	
200 ppm	10	0.334±	0.035**	0.048±	0.009	0.876±	0.061	0.420±	0.016**	

(IICL040)

APPENDIX B 11-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: MALE

ANIMAL : RAT F344

REPORT TYPE : A1
SEX : MALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

roup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	290± 11	0.077± 0.008	0.017± 0.001	0.936± 0.041	0.302± 0.010	0.348± 0.030
25 ppm	10	275± 11	0.082± 0.009	0.019± 0.002	0.984± 0.040	0.300± 0.009	0.348± 0.025
50 ppm	10	261± 13	0.071± 0.009	0.019± 0.001	1.037± 0.052	0.305± 0.017	0.393± 0.113
100 ppm	10	225士 8**	0.069± 0.010	0.021± 0.001*	1.179± 0.039**	0.314± 0.008	0.388± 0.022
150 ppm	10	188± 19**	0.065± 0.012	0.025± 0.004**	1.332± 0.097**	0.325± 0.015*	0.428± 0.028**
200 ppm	9	136± 31**	0.063± 0.014*	0.029生 0.004**	1.513± 0.126**	0.372± 0.028**	0.512± 0.068**

(HCL042)

ANIMAL : RAT F344
REPORT TYPE : A1

SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN			
Control	10	0.605± 0.026	0.174± 0.006	2.462± 0.046	0.637± 0.032			
25 ppm	10	0.638± 0.016	0.176± 0.010	2.531 ± 0.077	0.677± 0.028			
50 ppm	10	0.678± 0.023	0.180± 0.007	2.637± 0.184	0.697± 0.023			
100 ppm	10	0.763± 0.022**	0.185± 0.007	2.703± 0.072**	0.805± 0.035**			
150 ppm	10	0.863± 0.072**	0.199± 0.007**	2.795± 0.075**	0.937± 0.113**			
200 ppm	9	1.049± 0.131**	0.209± 0.017**	3.119± 0.179**	1.297± 0.261**		1	
					 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Significar	nt difference;	* : P ≤ 0.05 **:	$P \leq 0.01$	Test	t of Dunnett			
(IICL042)								BAISS

(IICL042)

APPENDIX B 11-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: FEMALE

ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	164± 12	0.109± 0.007	0.034± 0.004	0.059± 0.011	0.356± 0.018	0.478± 0.087	
25 ppm	10	159± 8	0.112± 0.009	0.031± 0.003	0.058± 0.014	0.338± 0.018	0.448± 0.021	
50 ppm	10	155± 9	0.102± 0.006	0.034± 0.005	0.061± 0.008	0.338± 0.012	0.459± 0.024	
100 ppm	10	134± 9**	0.088± 0.018*	0.035± 0.004	0.055± 0.010	0.351± 0.017	0.482± 0.026	
150 ppm	10	120± 13**	0.090± 0.010**	0.037± 0.004	0.051± 0.009	0.361± 0.019	0.494± 0.031	
200 ppm	10	86± 18**	0.059± 0.021**	0.038± 0.004	0.052± 0.008	0.398士 0.041	0.630± 0.069**	
Significan	nt difference ;	*: P ≤ 0.05	**: P ≤ 0.01	Tes	st of Dunnett			
(IICL042)						-		BAIS

STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1

REPORT TYPE : SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.680± 0.025	0.202± 0.009	2.378± 0.093	1.064± 0.089	
25 ppm	10	0.757± 0.026	0.204± 0.012	2.418± 0.116	1.091± 0.044	
50 ppm	10	0.841± 0.037*	0.214± 0.015	2.542± 0.063	1.125± 0.062	
100 ppm	10	0.925± 0.035**	0.222± 0.015**	2.729± 0.107**	1.246± 0.088*	
150 ppm	10	0.996± 0.043**	0.213± 0.013	2.965± 0.071**	1.383± 0.115**	
200 ppm	10	1.281± 0.162**	0.209± 0.009	3.534± 0.219**	1.917± 0.369**	

(IICL042)

APPENDIX B 11-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

roup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	32.0± 1.6	0.124± 0.013	0.031± 0.006	0.692± 0.086	0.495± 0.041	0.500± 0.032	
25 ppm	10	27.9± 1.6**	0.121± 0.018	0.039± 0.006	0.753± 0.127	0.523± 0.037	0.539± 0.039	
50 ppm	10	26.3± 1.2**	0.110± 0.019	0.038± 0.008	0.780± 0.124	0.545± 0.021*	0.588± 0.061**	
100 ppm	10	25.1生 1.0**	0.109± 0.019	0.040± 0.008	0.826± 0.154	0.544± 0.050	0.596± 0.060**	
150 ppm	10	23.6生 1.2**	0.117± 0.017	0.037± 0.008	0.838± 0.125*	0.549± 0.018*	0.600± 0.033**	
200 ppm	9	22.0± 1.8**	0.116± 0.017	0.036± 0.010	0.938± 0.097**	0.564士 0.045**	0.625± 0.037**	

(IICL042)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX: MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

aup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.534± 0.335	0.167± 0.022	3.690± 0.183	1.404± 0.062	
25 ppm	10	1.553± 0.074	0.156± 0.016	3.896± 0.147	1.569± 0.099	
50 ppm	10	1.871± 0.686	0.176± 0.025	4.077± 0.170**	1.664± 0.100*	
100 ppm	10	1.756± 0.083**	0.164± 0.011	4.160± 0.212**	1.762± 0.064**	
150 ppm	10	1.766± 0.095**	0.172± 0.024	4.185± 0.340**	1.822± 0.141**	
200 ppm	9	2.036± 0.651**	0.145± 0.019	4.255± 0.167**	1.963± 0.173**	

APPENDIX B 11-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE: A1
SEX: FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	20.8± 1.4	0.191± 0.021	0.060± 0.011	0.148± 0.028	0.571± 0.020	0.677± 0.034	
25 ppm	10	21.3± 0.8	0.183± 0.031	0.052± 0.006	0.148± 0.043	0.591± 0.028	0.682± 0.061	
50 ppm	10	20.5± 1.1	0.178± 0.020	0.056± 0.009	0.154± 0.038	0.567± 0.044	0.680± 0.055	
100 ppm	9.	20.4± 0.6	0.158± 0.020*	0.051± 0.006	0.132± 0.039	0.577± 0.032	0.683± 0.046	
150 ppm	10	20.3± 0.7	0.180± 0.033	0.052± 0.011	0.130± 0.038	0.556± 0.030	0.681生 0.043	
200 ppm	10	19.5± 1.4*	0.204± 0.023	0.056± 0.012	0.117± 0.032	0.536± 0.047	0.694± 0.027	
Significan	nt difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			RA

(IICL042)

BAIS 2

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

oup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.354± 0.061	0.247± 0.030	4.215± 0.240	2.196± 0.117	
25 ppm	10	1.448± 0.063	0.244± 0.018	4.159± 0.229	2.079± 0.058	
50 ppm	10	1.530± 0.131*	0.229± 0.019	4.145± 0.182	2.182± 0.131	
100 ppm	9	1.592± 0.065**	0.208± 0.014*	4.213± 0.190	2.177± 0.109	
150 ppm	10	1.597± 0.066**	0.271± 0.032	4.372± 0.174	2.156± 0.118	•
200 ppm	10	1.716± 0.164**	0.245± 0.036	4.495± 0.085**	2.159± 0.147	

APPENDIX B 12-1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE: DEAD AND MORIBUND ANIMALS

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : MALI

: MALE

)rgan	Group Name No. of Animal: Grade Findings	Control s on Study 0 1 2 3 4 (%) (%) (%) (%)	25 ppm 0 1 2 3 4 (%) (%) (%) (%)	50 ppm 0 1 2 3 4 (%) (%) (%)	100 ppm 0 1 2 3 4 (%) (%) (%) (%)
Nematopoiet	cic system]				
oone marrow	congestion	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
hymus	atrophy	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)	< 0> (-) (-) (-) (-)
spleen	atrophy	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)
	deposit of hemosiderin	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) ()	(-) (-) (-) (-)
Digestive s	system]				
iver	micro Vesicular fatty change	(-) (-) (-) (-)	(-) (-) (-) (-)		< 0> (-) (-) (-) (-)
	cytoplasmic basophilic inclusion:decreased	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
rade a > b	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	4 : Severe			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

Group Name 150 ppm 200 ppm No. of Animals on Study 1 Findings_ [Hematopoietic system] < 1> bone marrow < 0> 0 0 1 0 congestion (-) (-) (-) (0) (100) (0) thymus < 0> < 1> 0 0 1 0 . atrophy (-) (-) (-) (-) (0) (0) (100) (0) spleen < 1> 0 1 0 0 atrophy (-) (-) (-) (0) (100) (0) (0) deposit of hemosiderin 0 0 1 0 (-) (-) (-) (-) (0) (0) (100) (0) [Digestive system] liver 1 0 0 0 < 1> micro vesicular fatty change (-) (-) (-) (-) (100) (0) (0) (0) cytoplasmic basophilic inclusion: decreased 1 0 0 0 (-) (-) (-) (-) (100) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

(c) (HPT150)

<a>>

b

a: Number of animals examined at the site

b: Number of animals with lesion

c : b / a * 100

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

REPORT TYPE: A1 SEX : MALE

	Grade	Name Control Animals on Study 0 1 2 3 4	25 ppm 0 <u>1 2 3 4</u>	50 ppm 0 1 2 3 4	100 ppm 0 1 2 3 4
gan	Findings	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
rinary sys	stem]				
idney		< 0>	< 0>	< 0>	< 0>
	mineralization:papilla	(-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Reproductio	ue system]				
estis		< 0>	< 0>	< 0>	< 0>
	atrophy	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
rade a > b c)	1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	ed 4: Severe			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : MALE

Group Name 150 ppm 200 ppm

No. of Animals on Study 0 1

Grade 1 2 3 4 1 2 3 4

Findings (%) (%) (%) (%) (%) (%) (%) (%)

4 : Severe

[Urinary system]

kidney

mineralization:papilla

- - - - 1 0 0 0 (-) (-) (-) (-) (100) (0) (0) (0)

[Reproductive system]

testis

atrophy

Grade 1: Slight

1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site

(a) a: Number of animals examined atb: Number of animals with lesion

(c) c:b/a*100

(HPT150)

BAIS2

APPENDIX B 12-2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : MALE

Organ		Soup Name Control . of Animals on Study 10 ade 1 2 3 4 (%) (%)	25 ppm 10 1 2 3 4 (%) (%) (%) (%)	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Respiratory s	system]				
nasal cavit	inflammation:squamous epithelium	0 0 1 0 (0) (0) (10) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	inflammation:respiratory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
	atrophy:olfactory epithelium	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0
lung	hemorrhage	<10> 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 (0) (0) (0) (0)
[Hematopoietio	c system]				
oone marrow	decreased hematopoiesis	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
lymph nade	mastcell hyperplasia	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
Grade < a > b	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	Marked 4: Severe			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 2

REPORT TYPE : A1 SEX

: MALE

Group Name 150 ppm 200 ppm No. of Animals on Study 10 Findings_ [Respiratory system] nasal cavit <10> < 9> 0 0 0 0 0 0 0 inflammation:squamous epithelium (0)(0)(0)(0) (0)(0)(0)(0) inflammation:respiratory epithelium 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (11) (0) (0) (0) atrophy:olfactory epithelium 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) lung <10> 0 0 0 0 0 0 0 0 hemorrhage (0)(0)(0)(0) (0)(0)(0)(0)[Hematopoietic system] bone marrow <10> < 9> 0 0 0 0 6 0 0 0 decreased hematopoiesis (0)(0)(0)(0) (67) (0) (0) (0) Lymph node <10> < 9> 0 1 0 0 0 0 0 0 mastcell hyperplasia (0)(10)(0)(0) (0)(0)(0)(0) 1 : Slight 3 : Marked 4 : Severe Grade 2 : Moderate (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100(HPT150) BAIS2 STUDY NO. : 0265 ANIMAL : RAT F344 REPORT TYPE : A1

: MALE

SEX

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

PAGE: 3

Organ	Group Name No. of Anim Grade Findines	Control als on Study 10 1 2 3 4 (%) (%) (%) (%) (%)	25 ppm 10 1 2 3 4 (%) (%) (%) (%)	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%)
[Nematopoie	tic system]				
thymus	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)
spleen	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)
	deposit of hemosiderin	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	1 7 2 0 (10) (70) (20) (0)
	engorgement of erythrocyte	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	10 0 0 0 (100) (0) (0) (0)
[Digestive :	system]				
liver	herniation	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
	micro vesicular fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Grade <a> b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	4 : Severe			

(IIPT150)

BAIS2

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL : RAT F344 REPORT TYPE: A1 SEX : MALE

Organ	Group Name No. of Anima Grade Findings	150 ppm 10 10 10 10 10 10 10 10 10 10 10 10 10 1	200 ppm 9 1 2 3 4 (%) (%) (%)	
[Hematopoie	etic system]			
thymus	atrophy	3 3 0 0 (30) (30) (0) (0)	(8> 1 6 0 0 (13) (75) (0) (0)	
spleen	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	
	deposit of hemosiderin	0 7 3 0 (0) (70) (30) (0)	0 1 8 0 (0) (11) (89) (0)	
	engorgement of erythrocyte	9 1 0 0 (90) (10) (0) (0)	0 8 0 0 (0) (89) (0) (0)	
[Digestive	system]			
liver	herniation	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	
	micro vesicular fatty change	2 0 0 0 0 (20) (20) (0) (0)	6 3 0 0 (67) (33) (0) (0)	
Grade <a>b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	4 : Severe		
(HPT150)				BA

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1
SEX : MALE

ononi todo mitina

0rgan	Group Name No. of Anima Grade Findings_	Control ls on Study 10 1 2 3 4 (%) (%) (%) (%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Digestive s	system]				
Liver	cytoplasmic basophilic inclusion:decreased	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
pancreas	atrophy	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
[Urinary sys	stem]				
kidney	basophilic change	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
	easinaphilic bady	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)
	mineralization:papilla	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Endocrine s	system]				
pituitary	Rathke pouch	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
Grade (a > b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	4: Severe			
(HPT150)					BAI

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1 SEX : MALE

Group Name 150 ppm 200 ppm No. of Animals on Study 9 10 Findings_ [Digestive system] Liver <10> < 9> cytoplasmic basophilic inclusion:decreased 2 0 0 0 6 3 0 0 (20) (0) (0) (0) (67) (33) (0) (0) pancreas <10> 〈 9> 0 0 0 0 0 0 0 0 atrophy (0)(0)(0)(0) (0)(0)(0)(0) [Urinary system] kidney <10> < 9> 0 0 0 0 0 0 0 0 basophilic change (0)(0)(0)(0) (0)(0)(0)(0) easinaphilic body 0 0 0 0 (60) (0) (0) (0) (0)(0)(0)(0) mineralization:papilla (50) (0) (0) (0) (89) (0) (0) (0) [Endocrine system] pituitary 0 0 0 0 Rathke pouch 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 3 : Marked 4 : Severe 2 : Moderate <a>> a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

(IIPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1 SEX : MALE

0rgan		Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	25 ppm 10 1 2 3 4 (%) (%) (%) (%)	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Endocrine s	system]				
thyroid .	ultimibranchial body remanet	(10) 1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
[Reproductiv	ue system]		,		
prostate	atrophy	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0
	inflammation	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Special ser	nse organs/appandage]				
llarder gl	lymphocytic infiltration	(10) 1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100	: Marked 4 : Se∪ere ite			
(HPT150)					BAIS

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1 SEX : MALE

Group Name 150 ppm 200 ppm No. of Animals on Study 10 9 Grade 2 3 2 3 (%) (%) (%) (%) Findings_ Organ [Endocrine system] thyroid <10> ultimibranchial body remanet 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Reproductive system] prostate <10> atrophy 0 0 0 0 (0)(0)(0)(0) (56) (0) (0) (0) inflammation (0)(0)(0)(0) (0)(0)(0)(0) [Special sense organs/appandage] Harder gl <10> < 9> 0 0 0 0 0 0 0 lymphocytic infiltration (0)(0)(0)(0) (0)(0)(0)(0)

(c) (HPT150)

Grade

<a>>

b

1 : Slight

c:b/a*100

2 : Moderate

a : Number of animals examined at the site

b: Number of animals with lesion

3 : Marked

4 : Severe

BAIS2

APPENDIX B 12-3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE: SACRIFICED ANIMALS

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX

: FEMALE

50 ppm 100 ppm Group Name Control 25 ppm 10 No. of Animals on Study 10 10 10 2 3 4 2 3 (%) (%) (%) (%) (%) (%) (%) (%) (%) Findings Organ [Respiratory system] <10> <10> <10> nasal cavit <10> 0 0 0 0 0 0 0 0 0 0 0 0 inflammation:respiratory epithelium 1 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) <10> <10> <10> <10> lung 0 0 0 0 0 0 0 0 0 0 0 0 accumulation of foamy cells 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] bone marrow <10> 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 granulation (0)(0)(0)(0) (0)(0)(0)(0) (10) (10) (0) (0) (0)(0)(0)(0) 0 0 . 0 0 0 0 0 0 decreased hematopoiesis 0 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) <10> <10> <10> thymus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 atrophy (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) <10> <10> <10> <10> 0 0 0 0 9 1 0 spleen 0 6 4 0 0 10 0 0 deposit of hemosiderin (0) (100) (0) (0) (0) (90) (10) (0) (0) (60) (40) (0) (0)(100)(0)(0) 3 : Marked 4 : Severe Grade 1 : Slight 2 : Moderate (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100(HPT150)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

: FEMALE

200 ppm Group Name 150 ppm No. of Animals on Study 10

0rgan	Findings	\(\frac{1}{\}}}}}}}}}\) \right)}}}}}}}}}}}}} \\ \\ \\ \\ \\ \\ \\ \\ \\
[Respiratory :	system]	
nasal cavit	inflammation:respiratory epithelium	(10) 0 0 0 0 0 0 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0)
tung	accumulation of foamy cells	(10) (10) (10) (10) (10) (10) (10) (10)
[Hematopoieti	c system]	
bone marrow	granulation	(10) 0 0 0 0 0 0 0 0 0 (0) (0) (0) (0) (0) (0) (0)
	decreased hematopoiesis	0 0 0 0 6 0 0 0 (0) (0) (0) (0) (0) (0)
thymus	atrophy	2 0 0 0 5 4 1 0 (20) (0) (0) (50) (40) (10) (0)
spleen		<10> <10>

deposit of hemosiderin

0 1 9 0 (0) (10) (90) (0)

0 0 10 0 (0) (0) (100) (0)

1 : Slight Grade <a>>

2 : Moderate

a: Number of animals examined at the site

3 : Marked

4 : Severe

b

b: Number of animals with lesion

(c) c : b / a * 100

(IIPT150)

BAIS2

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Group Name No. of Anima Grade	Control Is on Study 10 1 2 3 4 (%) (%) (%) (%) (%)	25 ppm 10 1 2 3 4 (%) (%) (%) (%)	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Hematopoiet	cic system]				
spleen	engorgement of erythrocyte	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)
[Digestive s	system]				
stomach	erosion:glandular stomach	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
liver	herniation	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
	micro vesicular fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
	cytoplasmic basophilic inclusion:decreased	(0) (0) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0
[Urinary sys	stem]				
kidney	hyaline cast	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
Grade (a) b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	4 : Severe			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

EX : FEMALE

Group Name 150 ppm 200 ppm No. of Animals on Study 10 10 Findings [Hematopoietic system] spleen <10> <10> 6 4 0 0 2 8 0 0 engargement of erythracyte (60) (40) (0) (0) (20) (80) (0) (0) [Digestive system] stomach 0 0 0 0 erosion:glandular stomach 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) liver <10> herniation 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) micro vesicular fatty change 10 0 0 0 0 10 0 0 (100) (0) (0) (0) (0) (100) (0) (0) cytoplasmic basophilic inclusion:decreased 0 0 10 0 0 (100) (0) (0) (0) (0) (100) (0) (0) [Urinary system] kidney 0 0 0 0 hyaline cast 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

(HPT150)

SEX

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1 : FEMALE

Group Name No. of Animal Grade Findings	Control s on Study 10 1 2 3 4 (%) (%) (%) (%) (%)	25 ppm 10 1 2 3 4 (%) (%) (%) (%)	50 ppm 10 1 2 3 4 (%) (%) (%) (%)	100 ppm 10 1 2 3 4 (%) (%) (%) (%)
tem]				
mineralization:cortico-medullary junction	1 0 0 0 (10) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
mineralization:papilla	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	4 0 0 0 (40) (0) (0) (0)
ystem]				
Rathke pouch	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
se organs/appandage]				
lymphocytic infiltration	2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	4 : Severe			
	Mo. of Animal Grade Findings	No. of Animals on Study 10 Grade 1 2 3 4 (%)	No. of Animals on Study	No. of Animals on Study 10

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE: A1

SEX : FEMALE

Organ	Group Name No. of Anim Grade	150 ppm nals on Study 10 1 2 3 4 (%) (%) (%) (%)	200 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sys	stem]			
kidney	mineralization:cortico-medullary junction	(10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	
	mineralization:papilla	6 0 0 0 0 (60) (60) (60)	8 0 0 0 0 (80) (80) (80)	
[Endocrine s	system]			
pituitary	Rathke pouch	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
[Special sen	nse organs/appandage]			
llarder gl	lymphocytic infiltration	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
Grade <a> b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	4 : Severe		
(HPT150)				

APPENDIX B 12-4

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: DEAD AND MORIBUND ANIMALS

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

REPORT TYPE : A1 SEX

: MALE

0rgan	Group Na No. of A Grade Findings	Time Control C	25 ppm 0 1 2 3 4 (%) (%) (%) (%)	50 ppm 0 1 2 3 4 (%) (%) (%) (%)	100 ppm 0 1 2 3 4 (%) (%) (%) (%)
[Nematopoiet	ic system]				
thymus	atrophy	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
spleen	atrophy	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Circulatory	system]				
œart	mineralization	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Reproductive	e system]				
testis	atrophy	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-)	< 0> (-) (-) (-) (-)
(Musculoskel	etal system]				
muscle	mineralization	(-) (-) (-) (-)	(-) (-) (-) (-)	< 0> (-) (-) (-) (-) .	(-) (-) (-) (-)
irade (a > b	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	d 4 : Severe			

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

PAGE: 2

Group Name 150 ppm 200 ppm No. of Animals on Study 1 Findings_ [Hematopoietic system] thymus atrophy (-) (-) (-) (0) (100) (0) (0) spleen < 1> 0 1 0 0 atrophy (-) (-) (-) (-) (0)(100)(0)(0) [Circulatory system] heart mineralization [Reproductive system] testis atrophy (-) (-) (-) (0) (100) (0) (0) [Musculoskeletal system] muscle mineralization (-) (-) (-) (-) (0) (100) (0) Grade 1 : Slight 2 : Moderate 4 : Severe <a>> a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100

(HPT150)

APPENDIX B 12-5

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: SACRIFICED ANIMALS

(IIPT150)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 1 Group Name Control 25 ppm 50 ppm 100 ppm No. of Animals on Study 10 10 10 10 Findings [Respiratory system] nasal cavit <10> eosinophilic change:respiratory epithelium 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) [Hematopoietic system] spleen 0 0 0 0 0 0 0 0 deposit of melanin 2 0 0 0 1 0 0 0 (20) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) [Digestive system] liver <10> <10> granulation 3 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 (30) (0) (0) (0) (10) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) [Urinary system] kidney <10> <10> <10> 0 0 0 0 0 0 0 0 1 0 0 infarct 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

BAIS2

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL : MOUSE BDF1 REPORT TYPE : A1

SEX : MALE

Organ	Group Name No. of Anima Grade Findings	150 ppm 10 10 10 10 10 10 10 10 10 10 10 10 10 1	200 ppm 9 1 2 3 4 (%) (%) (%)	
[Respiratory	y system]			
nasal cavit	eosinophilic change:respiratory epithelium	0 0 0 0 (0) (0) (0) (0)	(9) 1 0 0 0 (11) (0) (0) (0)	
[Hematopoiet	tic system]			
spleen	deposit of melanin	0 0 0 0 (0) (0) (0) (0)	(9) 1 0 0 0 (11) (0) (0) (0)	
[Digestive s	system]			
liver	granulation	1 0 0 0 (10) (0) (0) (0)	(9) 1 0 0 0 (11) (0) (0) (0)	
[Urinary sys	stem]			
kidney	infarct	0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0) (0)	
Grade <a> b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	4: Severe		
(IIPT150)				 BA1S2

(IIPT150)

HISTOLOGICAL F

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

SEX : MALE

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 3

BAIS2

Group Name Control 25 ppm mag 03 100 ppm No. of Animals on Study 10 10 10 10 Findings [Urinary system] kidney <10> <10> <10> <10> inflammatory polyp 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (0)(10)(0)(0) (0) (0) (0) (0) (0) (10) (0) (0) (0)(0)(0)(0) hydronephrosis 0 0 2 0 0 0 0 1 0 (0)(0)(20)(0) (0)(0)(0)(0) (0) (0) (10) (0) (0)(0)(0)(0) vacuolic change:proximal tubule 10 0 0 0 0 0 10 0 0 0 10 0 0 0 10 0 (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) [Endocrine system] pituitary < 9> <10> <10> <10> Rathke pouch 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) adrenal <10> <10> <10> accesory cortical nodule 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 (20) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) [Reproductive system] epididymis <10> mineralization 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (0) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe <a>> a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE SACRIFICED ANIMALS (14W)

PAGE: 4 Group Name 150 ppm 200 ppm No. of Animals on Study 10 9 2 3 Findings_ (%) (%) (%) (%) [Urinary system] kidney <10> < 9> inflammatory polyp 0 0 0 1 0 0 0 (0)(0)(0)(0) (11) (0) (0) (0) hydronephrosis (0)(0)(0)(0) (0)(0)(11)(0) vacuolic change:proximal tubule 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Endocrine system] pituitary <10> Rathke pouch 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) adrenal <10> < 9> accesory cortical nodule 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Reproductive system] epididymis mineralization 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1:Slight 2 : Moderate 3 : Marked 4 : Severe

<a>>

b

(c)

a: Number of animals examined at the site

b: Number of animals with lesion

c:b/a*100

APPENDIX B 12-6

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: FEMALE: SACRIFICED ANIMALS

(IIPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

: FEMALE

: A1

100 ppm 25 ppm 50 ppm Group Name Control 10 10 No. of Animals on Study 10 Grade Findings [Respiratory system] <10> <10> <10> nasal cavit 0 0 0 0 0 0 0 0 0 0 0 0 eosinophilic change:respiratory epithelium (22) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) < 9> <10> <10> lung 0 0 0 0 0 0 0 0 0 0 0 0 accumulation of foamy cells (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] < 9> <10> <10> <10> spleen 0 0 0 0 1 0 0 0 0 deposit of melanin (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) [Digestive system] < 9> <10> <10> stomach 0 0 0 0 0 0 0 0 inflammatory infiltration (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) < 9> <10> <10> <10> liver 2 0 0 0 2 0 0 0 2 0 0 0 1 1 0 0 granulation (22) (0) (0) (0) (20) (0) (0) (0) (20) (0) (0) (0) (10) (10) (0) (0) 2 : Moderate 3 : Marked 4 : Severe Grade 1 : Slight (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Group No. o Grade Findines	F Animals on Study 10	200 ppm 10 1 2 3 4 (%) (%) (%) (%)		
[Respiratory	system]				
nasal cavit	eosinophilic change:respiratory epithelium	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	,	
lung	accumulation of foamy cells	1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)		
[llematopoiet	ic system]				
spleen	deposit of melanin	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)		
[Digestive s	system]				
stomach	inflammatory infiltration	1 0 0 0 (10) (0) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)		
liver	granulation	1 0 0 0 (10) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)		
Grade <a>> b (c)	1: Slight 2: Moderate 3: Mar a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	ked 4 : Severe			
(HPT150)					BAIS2

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1 SEX : FEMALE

(IIPT150)

50 ppm 100 ppm 25 ppm Group Name Control 9 10 10 No. of Animals on Study 10 Grade (%) (%) (%) Findings [Urinary system] <10> < 9> kidney <10> 0 0 0 0 0 0 0 0 0 0 0 0 inflammatory polyp (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 ossification (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 hydronephrosis 0 0 0 0 (0)(0)(0)(0) (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) [Endocrine system] < 9> <10> <10> <10> pituitary 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 cyst (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) <10> 〈 9〉 <10> adrenal <10> 1 0 0 0 0 0 0 0 0 0 0 accesory cortical nodule 0 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (10) (0) (0) (0) (0) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c : b / a * 100

BAIS2

STUDY NO. : 0266

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL : MOUSE BDF1 REPORT TYPE : A1

SEX : FEMALE PAGE: 8

Organ		DIP Name 150 ppm of Animals on Study 10 le 1 2 3 4 (%) (%) (%) (%)	200 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sys	stem]			
kidney	inflammatory polyp	(0) (10) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	
	ossification	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (0) (0)	
	hydronephrasis	0 0 1 0 (0) (10) (0)	0 0 1 0 (0) (10) (0)	
(Endocrine s	system]			
pituitary	cyst	(0) (0) (0) (0)	(0) (0) (0) (0)	
adrenal	accesory cortical nodule	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
Grade <a> b (c)	1: Slight 2: Moderate 3: Ma: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	arked 4: Severe		
(HPT150)		· · · · · · · · · · · · · · · · · · ·		 BAIS2

IDENTITY OF HYDRAZINE MONOHYDRATE

(THIRTEEN-WEEK STUDIES)

IDENTITY OF HYDRAZINE MONOHYDRATE (THIRTEEN-WEEK STUDIES)

Test Substance Lot No. KCP7905

1. Spectral data

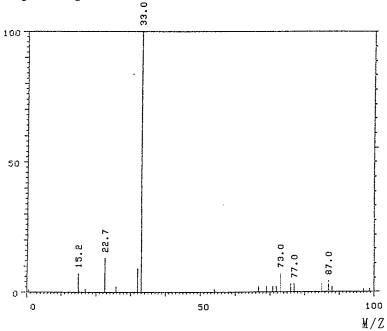
(1) Mass Spectrometry

Instrument

: Hitachi M-80B

Ionization

: SIMS(Secondary Ionization Mass Spectrometry)


Matrix

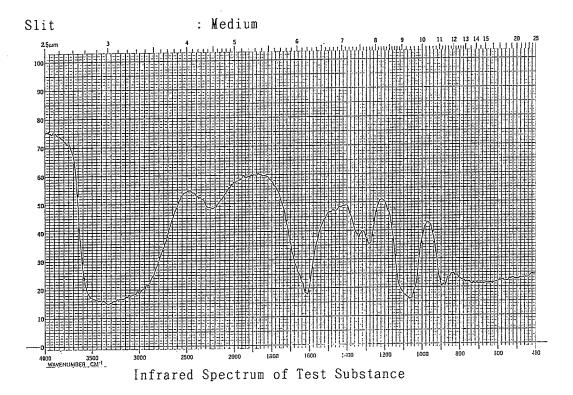
: Glycerol

Primary Ion

: Xenone⁺

Accelerating Voltage : 8kv

Mass Spectrum of Test Substance


Result: The mass spectrum was consistent with calculated spectrum.

	Quasi Mo	lecule Ion
Calculated Value	33.0	
$(NH_2 \cdot NH_2 + H^+)$		
Determined Value	33.0	

(2) Infrared Spectrometry

Instrument : Hitachi 270-30 Infrared Spectrometer

Cell : KBr Liquid Cell

Results: The infrared spectrum was consistent with literature spectrum.

<u>Determined Values</u>	<u>Literature Values*</u>
Wave Number(cm ⁻¹)	Wave Number(cm ⁻¹)
850~ 970	850~ 970
970~1220	970~1220
$1220 \sim 1400$	$1220 \sim 1400$
$1500 \sim 1800$	$1500 \sim 1800$
$2000 \sim 2500$	2000~2500
$2500 \sim 3750$	$2500 \sim 3750$
	(*Performed by WAKO PURE
	CHEMICAL INSUSTRIES, LTD.)

2. Conclusions: The test substance was identified as Hydrazine monohydrate, by the mass spectrum and infrared spectrum.

STABILITY OF HYDRAZINE MONOHYDRATE (THIRTEEN-WEEK STUDIES)

STABILITY OF HYDRAZINE MONOHYDRATE (THIRTEEN-WEEK STUDIES)

Test Substance Lot No. KCP7905

1. Sample: This lot was used form 1994.5.24 to 1994.9.1. The test substance was stored in the dark at room temperature.

2. Infrared Spectrometry

Instrument

: Hitachi 270-30 Infrared Spectrometer

Cell

: KBr Liquid Cell

Slit

: Medium

Results: Infrared spectrum of the test substance agreed with before use and after use.

1994.09.06(date analyzed)
Wave Number(cm ⁻¹)
850~ 970
$970 \sim 1220$
$1220 \sim 1400$
$1500 \sim 1800$
$2000 \sim 2500$
2500~3750

3. High Performance Liquid Chromatography

Instrument

: Shimadzu LC-10AD(Pump)

Esa Coulochem II (Detector)

Column

: TSK GEL ODS-80TM(4.6mm $\phi \times 15$ cm)

Column Temperature : 50°C

Flow Rate

: lml/min

Mobile Phase

: Water (pH. 7.0 Phosphate Buffer Powder + 0. 2mol/1 Sodium Perchlorate Monohydrate)

Oxidation Voltage : 600mV(Analytical Cell)

650mV(Guard Cell)

Detector

: ECD(Electrochemical Detector)

Injection Volume : $10 \mu 1$

Results: Chromatogram indicated one major peak analyzed at 1994.4.14 and one major peak analyzed at 1994.9.6. The new trace impurity peak in the test substance analyzed at 1994.9.6 was not detected.

Date	Retention Time(min)	AREA	
1994.04.14 (date analyzed)	2. 358	353748	
1994.09.06 (date analyzed)	2. 360	352574	

^{4.} Conclusions: The test substance was stable for about 5 months in the dark at room temperature.

CONCENTRATION HYDRAZINE MONOHYDRATE IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

CONCENTRATION OF HYDRAZINE MONOHYDRATE IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

(Rat)

		Target Concentra	tion(ppm)		
Date analyzed	25	5 0	100	150	200
1994.05.31	26.4(105.6)*	49.5(99.0)	99.6(99.6)	152.4(101.6)	194.2(97.1)
(Mouse)					
		Target Concentra	tion(ppm)		
Date analyzed	25	50	100	150	200
1994.05.24	21.9(87.6)	43.5(87.0)	89.1(89.1)	138.9(92.6)	191.1(95.6)

^{(*) %} of target concentration

Analytical method: The sample were analyzed by the HPLC.

Instrument : Shimadzu LC-10AD(Pump)

Esa Coulochem II (Detector)

: TSK GEL ODS-80TM(4.6mm $\phi \times 15$ cm)

Column Temperature: 50°C

Column

Flow Rate

: lml/min

Mobile Phase

: Water(pll7. 0 Phosphate Buffer Powder +

0.2mol/l Sodium Perchlorate Monohydrate) Oxidation Voltage : 600mv(Analytical Cell)

650mv(Guard Cell)

Detector

: ECD(Electrochemical Detector)

Injection Volume $: 10 \mu 1$

STABILITY OF HYDRAZINE MONOHYDRATE IN DRINKING WATER (THIRTEEN—WEEK STUDIES)

STABILITY OF HYDRAZINE MONOHYDRATE IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

(Rat)

	Target Concentration(ppm)		
Date analyzed	25	200	
1994.05.23(a)	24.6(98.4)*	200.0(100.0)	
1994.05.27(b)	21.9(87.6)	156.8(78.4)	

(Mouse)

	Target Concentration(ppm)		
Date analyzed	25	200	
1994.05.23(a)	24.6(98.4)	200.0(100.0)	
1994.05.27(b)	21.3(85.2)	170.7(85.4)	

⁽a) Date of preparation

Analytical method: The sample were analyzed by the HPLC.

Instrument : Shimadzu LC-10AD(Pump)

Esa Coulochem II (Detector)

Column : TSK GEL ODS-80TM(4.6mm $\phi \times 15$ cm)

Column Temperature: 50°C

Flow Rate : lml/min

Mobile Phase

: Water(pH7.0 Phosphate Buffer Powder +

0.2mol/1 Sodium Perchlorate Monohydrate)

Oxidation Voltage : 600mv(Analytical Cell)

650mv(Guard Cell)

Detector : ECD(Electrochemical Detector)

Injection Volume : $10 \mu 1$

⁽b) The stability of Hydrazine monohydrate in drinking water was established for 4 days when stored at room temperature.

^{(*) %} of target concentration

APPENDIX C 1

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALSYS (TOW-WEEK STUDIES)

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)
Hematocrit (Hct)	Calculated as RBC × MCV/10 1)
Mean corpuscular volume (MCV)	Light scattering method 1)
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC $ imes$ 10 $^{1)}$
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct × 100 1)
Platelet	Light scattering method 1)
Reticulocyte	Pattern recognition method 3)
	(New methyleneblue staining)
Prothrombin time	Quick one stage method ²⁾
Activated partial thromboplastin time (APTT)	Ellagic acid activated method 2)
White blood cell (WBC)	Light scattering method ()
Differential WBC	Pattern recognition method 3)
	(May-Grunwald-Giemsa staining)
Biochemistry	
Total protein (TP)	Biuret method 4)
Albumin (Alb)	BCG method 4)
A/G ratio	Calculated as Alb/(TP-Alb) 4)
T-bilirubin	Michaelson method 4)
Glucose	Enzymatic method (HK·G-6-PDH) 4)
T-cholesterol	Enzymatic method (CEH·COD·POD) 4)
Phospholipid	Enzymatic method (PLD·COD·POD) 4)
Glutamic oxaloacetic transaminase (GOT)	UV-Rate method 4)
Glutamic pyruvic transaminase (GPT)	UV·Rate method 4)
Lactate dehydrogenase (LDH)	UV-Rate method 4)
γ -Glutamyl transpeptidase (γ -GTP)	L- γ -Glutamyl-p-nitroanilide method ⁴⁾
Creatine phosphokinase (CPK)	UV-Rate method 4)
Urea nitrogen	Enzymatic method (Urease-GLDH) 4)
Creatinine	Jaffe method 4)
Sodium	Flame photometry 5)
Potassium	Flame photometry 5)
Chloride	Coulometric titration 5)
Calcium	OCPC method 4)
Inorganic phosphorus	Enzymatic method (SPL·PGM·G-6-PDH) 4)

- 1) Automatic blood cell analyzer (Technicon H-1: Technicon Instruments Corporation, USA)
- 2) Automatic coagulometer (Amelung KC-10: Heinrich Amelung GmbH, Germany)
- 3) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi,Ltd.,Japan)
- 4) Automatic analyzer (Hitachi 705 : Hitachi, Ltd., Japan)
- 5) Flame photometer (Hitachi 750 : Hitachi, Ltd., Japan)

APPENDIX C 2

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALSYS (THIRTEEN-WEEK STUDIES)

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)
Hematocrit (Hct)	Calculated as RBC \times MCV/10 1)
Mean corpuscular volume (MCV)	Light scattering method 1)
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC × 10 1)
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct × 100 1)
Platelet	Light scattering method 1)
Reticulocyte	Pattern recognition method 3)
	(New methyleneblue staining)
Prothrombin time	Quick one stage method 2)
Activated partial thromboplastin time (APTT)	Ellagic acid activated method 2)
White blood cell (WBC)	Light scattering method 1)
Differential WBC	Pattern recognition method 3)
	(May-Grunwald-Giemsa staining)
Biochemistry	
Total protein (TP)	Biuret method 4)
Albumin (Alb)	BCG method 4)
A/G ratio	Calculated as Alb/(TP-Alb) 4)
T– bilirubin	Alkaline azobilirubin method 4)
Glucose	Enzymatic method (GLK·G-6-PDH) 4)
T-cholesterol	Enzymatic method (CE-COD-POD) 4)
Triglyceride	Enzymatic method (LPL·GK·GPO·POD) 4)
Phospholipid	Enzymatic method (PLD-COD-POD) 4)
Glutamic oxaloacetic transaminase (GOT)	UV·Rate method 4)
Glutamic pyruvic transaminase (GPT)	UV·Rate method 4)
Lactate dehydrogenase (LDH)	UV-Rate method 4)
Alkaline phosphatase (ALP)	p-Nitrophenylphosphate method 4)
γ -Glutamyl transpeptidase (γ -GTP)	L- γ -Glutamyl-p-nitroanilide method 4)
Creatine phosphokinase (CPK)	UV·Rate method 4)
Urea nitrogen	Enzymatic method (Urease-GLDH) 4)
Creatinine	Jaffe method 4)
Sodium	Ion selective electrode method 4)
Potassium	Ion selective electrode method 4)
Chloride	Ion selective electrode method 4)
Calcium	OCPC method 4)
Inorganic phosphorus	Enzymatic method (PNP·XOD·POD) 4)
Urinalysis	
pH,Protein,Glucose,Ketone body,Bilirubin,Occult Blood,	Urinalysis reagent paper method 5)
Urobilinogen	Tarray and a support purpor mountain

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation, USA)
- 2) Automatic coagulometer (Sysmex CA-5000 : Toa Medical Electronics Co.,Ltd.,Japan)
- 3) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi, Ltd., Japan)
- 4) Automatic analyzer (Hitachi 7070 : Hitachi, Ltd., Japan)
- 5) Ames reagent strips for urinalysis (Multistix, Uro-Labstix : Bayer-Sankyo Co., Ltd., Japan)

APPENDIX C 3

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	× 10 °/μ L	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Reticulocyte	%0	0
Prothrombin time	sec	1
Activated partial thromboplastin time (APTT)	sec	1
Platelet	\times 10 3 / μ L	0
White blood cell (WBC)	\times 10 $^{3}/\mu$ L	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Triglyceride	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
ALkaline phosphatase (ALP)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Creatinine	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1