グリオキサルのラット及びマウスを用いた経口投与によるがん原性予備試験(混水試験)報告書

試験番号

13 週間試験:ラット/0234;マウス/0235

APPENDIX

- APPENDIX B 1–1 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
- APPENDIX B 1–2 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY) RAT : FEMALE
- APPENDIX B 1-3 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: MALE
- APPENDIX B 1-4 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 2–1 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 2-2 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 2-3 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 2-4 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 3-1 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 RAT: MALE
- APPENDIX B 3-2 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 3-3 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: MALE
- APPENDIX B 3-4 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: FEMALE
- APPENDIX B 4–1 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
- APPENDIX B 4-2 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 4-3 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 4-4 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: FEMALE

APPENDIX B 5–1	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY, RAT: MALE
APPENDIX B 5-2	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 5-3	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
APPENDIX B 5-4	CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
APPENDIX B 6–1	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
APPENDIX B 6-2	HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 6-3	HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : MALE
APPENDIX B 6–4	HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : FEMALE
APPENDIX B 7-1	BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
APPENDIX B 7-2	BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 7-3	BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : MALE
APPENDIX B 7-4	BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : FEMALE
APPENDIX B 8-1	URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY) RAT : MALE
APPENDIX B 8-2	URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
APPENDIX B 8–3	URINALYSIS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE

APPENDIX B 8-4 URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE

- APPENDIX B 9-1 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE : SACRIFICED ANIMALS
- APPENDIX B 9–2 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE : SACRIFICED ANIMALS
- APPENDIX B 9-3 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE : DEAD AND MORIBUND ANIMALS
- APPENDIX B 9-4 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE : SACRIFICED ANIMALS
- APPENDIX B 9-5 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE : SACRIFICED ANIMALS
- APPENDIX B 10-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY),ABSOLUTE RAT : MALE
- APPENDIX B 10-2 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY),ABSOLUTE RAT : FEMALE
- APPENDIX B 10-3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), ABSOLUTE MOUSE : MALE
- APPENDIX B 10-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY),ABSOLUTE MOUSE : FEMALE
- APPENDIX B 11-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY),RELATIVE RAT : MALE
- APPENDIX B 11–2 ORGAN WEIGHT (THIRTEEN–WEEK STUDY : SUMMARY), RELATIVE RAT : FEMALE
- APPENDIX B 11–3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY),RELATIVE MOUSE : MALE
- APPENDIX B 11-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), RELATIVE MOUSE : FEMALE

- APPENDIX B 12–1 HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE : SACRIFICED ANIMALS
- APPENDIX B 12–2 HISTOLOGICAL FINDINGS : NON–NEOPLASTIC LESIONS (THIRTEEN–WEEK STUDY : SUMMARY)

 RAT : FEMALE : SACRIFICED ANIMALS
- APPENDIX B 12–3 HISTOLOGICAL FINDINGS : NON–NEOPLASTIC LESIONS (THIRTEEN–WEEK STUDY : SUMMARY)

 MOUSE : MALE : DEAD AND MORIBUND ANIMALS
- APPENDIX B 12-4 HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY : SUMMARY)

 MOUSE : MALE : SACRIFICED ANIMALS
- APPENDIX B 12–5 HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY : SUMMARY)

 MOUSE : FEMALE : SACRIFICED ANIMALS
- APPENDIX B 13-1 IDENTITY OF GLYOXAL (THIRTEEN-WEEK STUDIES)
- APPENDIX B 13-2 STABILITY OF GLYOXAL (THIRTEEN-WEEK STUDIES)
- APPENDIX B 13-3 CONCENTRATION GLYOXAL IN DRINKING WATER (THIRTEEN-WEEK STUDIES)
- APPENDIX B 13-4 STABILITY OF GLYOXAL IN DRINKING WATER (THIRTEEN-WEEK STUDIES)
- APPENDIX C 1 METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS
- APPENDIX C 2 UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

APPENDIX B 1-1

CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0234 ANIMAL : RAT F344 REPORT TYPE : A1 13 CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W	eek-day										· · · · · · · · · · · · · · · · · · ·	
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
LACRYMATION	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	
IMONTHINI TON	250 ppm	0	0	0	0	0	Ô	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2000 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	

(HAN190)

APPENDIX B 1-2

CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0234 ANIMAL: RAT F344 REPORT TYPE: A1 13 CLINICAL OBSERVATION (SUMMARY)
ALL, ANIMALS

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini:	stration We	ek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
		1	1	1	1	1	1	1	1	1	1	1	1	1
SOILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0
	1000 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	.0	0	0	0	0	0	0	0	0	0	0	0	0
M.PERI MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

APPENDIX B 1-3

CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1
REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration We	ek-day _											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
251999										•	•	•	•		
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	mqq 0008	0	0	0	0	0	0	0	0	0	0	0	0	0	
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	mqq 0008	0	0	0	0	0	0	0	0	0	0	0	0	0	
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
	2000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	mqq 0008	0	0	0	0	0	0	0	0	0	0	0	0	0	
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	
	4000 ppm	0	Õ	0	0	0	Ö	0	0	0	0	0	0	0	
	8000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	

(IIAN190)

APPENDIX B 1-4

CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1
REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini:	stration W	eek-day										
		1-7 1	2-7 1	3-7 1	4-7 1	5-7 1	67 1	7-7 1	8-7 1	9-7 1	10-7 1	11-7 1	12-7 1	13-7 1
										. <u>.</u>				
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	8000 ppm	0	1	1	1	1	1	1	1	1	4	6	5	6

(IIAN190)

APPENDIX B 2-1

BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO.: 0234
ANIMAL: RAT F344
UNIT: g
REPORT TYPE: A1 13

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 1

oup Name	Administ	tration	week-day											
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
Control	122±	4	145±	6	174±	8	195土	11	207±	9	222±	16	240±	17
250 ppm	122±	4	143±	5	169±	7	187±	12	201 ±	16	211±	20	226±	24
500 ppm	122±	4	144±	5	173±	7	194±	9	211±	11	222±	13	239±	14
maa 0001	122±	4	143±	6	168±	7	186±	11	202±	14	214±	16	230±	18
maa 000 2	122±	4	141±	6	165±	7*	185±	9	201±	12	214±	13	228±	13
4000 ppm	122±	4	126±	6**	144±	8**	159±	9**	172士	10**	183±	12**	195±	12**
Significant differen	nce; *:P≦0.0)5	** : P ≤ 0.0	1			Test of Dun	nett						

(IIAN260)

STUDY NO.: 0234 ANIMAL : RAT F344 UNIT : g
REPORT TYPE : A1 13 BODY WEIGHT CHANGES

ALL ANIMALS

SEX : MALE

PAGE: 2

Dup Name	Admini	stration	week-day											
	7-7		8-7		9-7		10-7		11-7		12-7		13-7	
Control	251±	20	260±	23	272±	25	281±	25	284±	25	285±	24	293±	23
250 ppm	237±	28	244土	31	257±	34	264±	35	266±	35	265±	33	273±	33
500 ppm	252±	16	260±	18	273±	20	279±	21	281±	22	281±	21	289±	22
1000 ppm	240±	20	248±	23	259±	25	266±	26	269±	25	269±	24	277±	26
2000 ppm	239±	12	246±	11	260±	11	268±	12	272±	13	271±	12	278±	14
4000 ppm	204土	12**	211±	12**	221±	12**	230±	12**	234±	12**	236士	11**	241 土	11**
							,			<u>.</u>				
Significant differe	nce; *:P≦	0.05	** : P ≦ 0.	01			Test of D	unnett						

(SUMMARY)

(HAN260)

APPENDIX B 2-2

BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0234 ANIMAL: RAT F344

UNIT : g REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES
ALL ANIMALS

ES (SUMMARY)

roup Name	Λdmini	stration	n week-day	.,									
	0-0		1-7		2-7	3-	7	4-7		5-7		6-7	
Control	104±	3	116±	4	129± 5	140±	6	150±	8	156±	10	163±	10
250 ppm	104士	3	117±	4	130± 5	142±	6	151±	7	157±	9	163±	9
500 ppm	104±	3	116±	3	131± 4	141±	5	149±	6	155±	7	162±	8
1000 ppm	104±	3	115±	4	129± 3	139±	5	147±	5	153±	7	159±	5
2000 ppm	101±	3	112±	4	125± 5	134±	6*	141±	7	145±	8**	152士	7**
4000 ppm	104±	3	103±	3**	115± 2*	125±	3**	133±	2**	137±	3**	143土	3**
Significant differe	ence; *:P≦0	.05	**: P ≦ 0.01			Test of	Dunnett						

(HAN260)

BAIS 2

PAGE: 3

STUDY NO.: 0234
ANIMAL: RAT F344
UNIT: g
REPORT TYPE: A1 13

BODY WEIGHT CHANGES

ALL ANIMALS

SEX : FEMALE

PAGE: 4

oup Name	Admini	stration	week-day											
	7-7		8-7		9-7		10-7		11-7		12-7		13-7	
Control	168±	10	171±	11	177±	10	181±	10	183±	11	181±	9	187±	11
250 ppm	168±	9	172±		176±	10	182±		183±	12	182±	10	188±	13
500 ppm	167±	8	168±	9	174±	8		8	178±	10	176±	9	180±	
1000 ppm	165±	8	167±	8	172±	8	176±	9	178±	10	. 177±	9	181±	11
2000 ppm	157±	8*	158±	8*	163±	9**	167±	8**	169±	8**	169±	9*	172士	9**
1000 maa 0001	147±	5**	150±	5**	154±	5**	158±	5**	159±	5**	158±	4**	160±	5**
Significant differer	nce; *:P≦(0.05	**: P ≦ 0.0	1			Test of Dur	onett		<u>.</u>				

(SUMMARY)

(11AN260)

APPENDIX B 2-3

BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1 UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

PAGE: 1

oup Name	Administratio	n week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	22.5± 0.6	22.9± 0.5	23.8± 0.5	24.7± 0.7	25.6± 0.9	26.4± 0.7	27.8± 0.8
500 ppm	22.5± 0.7	22.9± 0.9	23.8± 1.0	24.5± 1.6	25.6± 1.5	26.0± 1.5	27.5± 1.7
1000 ppm	22.5± 0.6	23.1± 0.7	24.2± 0.7	24.9± 0.9	25.8± 0.8	26.7± 0.8	27.6± 1.0
2000 ppm	22.5± 0.6	23.3± 0.8	24.0± 1.0	25.1± 1.1	25.5± 1.2	26.3± 1.4	27.3± 1.7
4000 ppm	22.5± 0.6	22.2± 0.7	22.6± 1.4*	23.6± 0.9	24.2± 0.8*	24.7± 0.8**	25.4± 0.8**
mqq 0008	22.5± 0.6	20.9± 0.7**	21.7± 0.8**	22.5± 1.0**	23.2± 0.9**	23.4± 1.1**	24.2± 0.9**
				·			
Significant differenc	e; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES

(SUMMARY)

ALL ANIMALS

OUP Name	Administration	week-day					
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
Control	28.4± 1.0	29.3± 1.1	29.8± 1.5	31.0± 1.5	31.4± 1.6	32.7± 1.6	33.5± 1.4
500 ppm	28.1± 1.9	29.1± 2.3	29.3± 2.6	30.1± 2.4	30.5± 2.6	31.5± 2.8	32.1± 2.8
1000 ppm	28.4± 1.0	29.2± 1.1	29.5± 1.4	30.8± 1.6	31.7± 1.7	32.2± 1.7	33.1± 1.7
2000 ppm	27.6± 2.0	28.2± 2.2	27.9± 3.3	29.9± 1.8	30.4± 1.9	31.1± 2.0	31.4± 2.5
4000 ppm	25.7± 0.9**	26.4± 0.9**	26.3± 0.9**	27.0± 1.2**	27.0生 1.1**	27.3± 1.2**	27.8± 1.3**
mqq 0008	24.8± 1.1**	25.1± 1.1**	24.8± 1.0**	25.3± 1.1**	25.3± 0.9**	25.6± 1.0**	25.6± 0.9**
Significant differ	rence; $*: P \leq 0.05$	** : P ≦ 0.01		Test of Dunnett			
HAN260)							

PAGE: 2

APPENDIX B 2-4

BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 3

roup Name	Administratio	on week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	18.1± 0.7	18.4± 1.0	19.1± 1.0	19.9± 0.8	20.1± 1.4	20.6± 1.4	21.5± 1.0
500 ppm	18.2± 0.7	18.2± 0.7	19.0± 0.7	19.5± 0.7	20.2± 0.6	20.9± 1.2	21.6± 0.9
1000 ppm	18.2± 0.6	18.4± 0.6	19.2± 0.8	19.8± 0.6	20.4± 0.8	20.9± 0.9	21.8± 1.0
2000 ppm	18.2± 0.6	18.3± 0.4	19.0± 0.7	19.6± 0.5	20.2± 0.5	20.7± 0.6	21.5± 0.7
4000 ppm	18.1± 0.7	18.3± 0.6	19.0± 0.8	19.3± 0.8	19.7± 0.6	20.6± 0.9	20.9± 0.7
mag 0008	18.2± 0.6	16.6± 0.7**	17.5± 1.1**	17.9± 1.5**	18.4± 1.4*	19.2± 1.1*	19.8± 1.4**
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			,

(HAN260)

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES

(SUMMARY)

ALL ANIMALS

PAGE: 4

roup Name	Administration week-day						
	7-7	8-7	9–7	10-7	11-7	12-7	13-7
Control	22.7± 1.0	22.2± 1.4	22.0± 1.2	23.3± 1.2	23.5± 1.2	23.4± 1.2	23.3± 1.5
500 ppm	22.3± 0.8	21.8± 0.6	22.2± 1.0	22.7± 0.9	23.6± 1.1	23.1± 0.9	23.5± 1.0
1000 ppm	22.6± 0.8	22.1± 0,7	22.6± 1.1	23.0± 0.9	23.4± 0.8	23.4± 1.2	23.5± 0.8
2000 ppm	22.2± 0.9	21.8± 0.7	21.9± 0.8	22.5± 1.3	23.4± 1.2	22.9± 0.9	23.3± 0.7
4000 ppm	21.2± 0.8**	21.3± 0.9	21.6± 0.9	21.9± 0.8**	22.8± 1.7	22.4± 0.7	22.2± 0.8
8000 ppm	20.3± 1.1**	20.6± 1.0**	20.5± 1.2**	21.2± 1.0**	21.1士 0.9**	21.5± 1.0**	21.8± 1.4*
Significant differenc	e; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 3-1

WATER CONSUMPTION CHANGES: SUMMARY, RAT: MALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0234
ANIMAL: RAT F344
UNIT: g

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

roup Name	Administration 1−7(4)	week-day(effective) 2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)
		·		· · · · · · · · · · · · · · · · · · ·			
Control	17.3± 0.8	18.5± 1.0	18.9± 1.8	19.0± 4.6	16.2± 2.4	17.6± 4.6	18.5± 4.1
250 ppm	16.7± 0.9	17.8± 1.0	17.6± 1.6	17.2± 2.1	14.5± 2.5	15.3± 2.5	16.4± 4.1
500 ppm	17.2± 0.8	18.5± 1.0	18.1± 1.0	18.1± 1.7	15.7± 1.7	16.3± 1.6	17.3± 2.4
1000 ppm	14.9± 0.8**	15.3± 0.7*	15.0± 1.4**	14.6± 1.1*	13.2± 1.3**	14.0± 1.4	14.1± 1.9*
2000 ppm	13.3± 0.7**	14.1± 1.0**	13.7士 1.2**	13.2± 1.0**	12.6± 1.1**	13.1± 1.0**	13.4± 1.2**
4000 ppm	11.0± 0.8**	13.3± 5.2**	11.4± 1.4**	10.6± 0.9**	9.7± 1.2**	10.2± 1.0**	10.5± 1.1**
Significant difference	; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0234 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

roup Name	Administration	week-day(effective)					
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	16.0± 1.7	17.5± 1.7	17.8± 1.8	16.4± 1.5	15.3± 1.5	15.1± 1.4	
250 ppm	15.0± 3.2	16.7± 3.5	16.3± 3.1	15.2± 2.9	14.2± 2.8	14.5± 2.2	
500 ppm	16.4± 3.5	19.7± 8.3	19.0± 8.8	16.1± 2.9	15.4± 4.4	15.8± 3.4	
1000 ppm	13.3± 1.8	14.8± 1.8	14.4± 2.0	13.5± 1.8*	12.6± 1.7	13.2± 1.9	
2000 ppm	12.6± 0.9*	14.0± 1.2*	13.4生 1.1**	13.3± 1.1*	12.1± 1.0*	12.7± 1.2*	
4000 ppm	9.5± 0.9**	10.8± 0.9**	10.4± 1.0**	10.4± 0.7**	9.5± 0.6**	10.1± 0.7**	
Significant difference	ce; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

(IIAN260)

APPENDIX B 3-2

WATER CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0234 ANIMAL : RAT F344 UNIT : g

ALL ANIMALS REPORT TYPE : A1 13

SEX: FEMALE

PAGE: 3 Group Name Administration week-day(effective) 1-7(4)2-7(4)3-7(4)4-7(4)5-7(4) 6-7(4)7 - 7(4)Control 17.6± 4.0 17.3 ± 3.5 16.6± 1.7 17.1± 2.5 15.0± 1.6 15.0± 2.3 14.8± 1.9 250 ppm 15.8± 1.1 15.6± 0.9 15.8± 0.9 15.4± 1.2 13.9± 1.0 14.2± 1.2 14.8± 1.2 500 ppm 16.6± 3.0 16.8± 3.0 15.8 ± 1.3 15.9± 1.6 15.4 ± 4.2 14.8± 2.7 17.5 ± 8.3 1000 ppm 13.1± 1.1** 12.7± 1.2** 13.9± 2.9 13.0± 1.6* 13.1 ± 3.3 12.1± 3.1 13.4± 4.7 2000 ppm 11.3± 0.8** 11.5± 0.7** 11.4生 0.7** 10.9生 0.8** 9.8± 0.8** 9.9主 0.9** 10.1生 0.8** 4000 ppm 10.0± 0.9** 9.8± 0.7** 9.5± 0.7** 9.1± 0,6** 8.3± 0.6** 8.7± 1.2** 8.7± 0.9** Significant difference; $*:P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

WATER CONSUMPTION CHANGES (SUMMARY)

(IIAN260)

STUDY NO. : 0234 ANIMAL : RAT F344 UNIT : g

WATER CONSUMPTION CHANGES (SUMMARY)
ALL ANIMALS

REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 4

OUP Name	Administration	week-day(effective)					
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	15.0± 3.9	14.5± 2.2	17.3± 6.4	16.8± 6.8	13.6± 2.4	14.1± 2.0	
250 ppm	13.8± 1.0	14.3± 1.0	15.1± 1.7	15.1± 2.4	13.4± 3.6	14.0± 1.2	
500 ppm	12.8± 1.2	17.0± 7.8	18.5± 8.2	15.4± 3.6	12.3± 1.6	14.1± 3.2	
1000 ppm	11.8± 2.9	13.0± 4.8	11.6± 1.7*	14.9± 5.9	12.9± 5.2	13.3± 4.9	
2000 ppm	9.2± 0.7**	9.9± 1.0**	10.0± 1.2**	9.9± 1.3**	8.9± 1.0**	9.5士 0.9**	
4000 ppm	7.9± 0.6**	8.6± 0.8**	8.5± 0.8**	8.2生 0.5**	7.5± 0.6**	7.9± 0.6**	
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 3-3

WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (THIRTEEN-WEEK STUDY)

ANIMAL : MOUSE BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

roup Name	Administration (1–7(4)	week-day(effecti∪e) 2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)
Control	4.1± 0.3	4.3± 0.5	4.0± 0.3	3.9± 0.3	4.0± 0.4	3.8± 0.4	3.8± 0.4
500 ppm	4.2± 0.6	4.3± 0.8	4.0± 0.8	3.7± 0.3	3.7± 0.8	3.7± 0.9	3.6± 1.0
1000 ppm	4.0± 0.5	4.1± 0.5	3.8± 0.6	3.7± 0.5	3.8± 0.8	3.4± 0.6	3.5± 0.8
2000 ppm	3.3± 0.4	2.9± 0.2*	2.9± 0.3*	3.0± 0.5*	2.9± 0.3*	2.7± 0.3*	2.6± 0.3*
4000 ppm	2.5± 0.2**	2.2士 0.5**	2.3± 0.5**	2.2± 0.5**	2.3± 0.5**	2.0± 0.5**	2.0± 0.2**
mqq 0008	1.9± 0.1**	1.6± 0.2**	1.6± 0.2**	1.6± 0.2**	1.6± 0.2**	1.5士 0.2**	1.6± 0.2**
Significant differe	nce; *:P≦0.05 *	*: P ≤ 0.01		Test of Dunnett			

(IIAN260)

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

roup Name	Administration	week-day(effective)					
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	3.8± 0.5	3.8± 0.3	3.8± 0.5	3.5± 0.3	3.5± 0.4	3.4± 0.3	
500 ppm	3.5± 0.4	3.3± 0.4	3.7± 1.1	3.5± 0.6	3.6± 0.6	3.6± 0.6	
1000 ppm	3.4± 0.5	3.5± 0.8	3.6± 0.9	3.5± 1.0	3.1± 0.3	3.2± 0.4	
2000 ppm	2.8± 0.6*	2.6± 0.3*	2.5± 0.2*	2.5± 0.3*	2.6± 0.3*	2.6± 0.3	
4000 ppm	2.0± 0.2**	1.9± 0.4**	1.8± 0.1**	1.8± 0.1**	1.8± 0.2**	2.1± 0.3**	
Mad 0008	1.6± 0.2**	1.4± 0.3**	1.4± 0.2**	1.4± 0.2**	1.5± 0.1**	1.5± 0.1**	
Significant differe	ence; *: P ≦ 0.05 *	$**: P \leq 0.01$		Test of Dunnett			

(HAN260)

APPENDIX 3-4

WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE
(THIRTEEN-WEEK STUDY)

ANINAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

oup Name	Administration u	week-day(effective)		• • • • • • • • • • • • • • • • • • • •			
	1-7(4)	2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)
-							
Control	4.0± 0.4	4.1± 0.5	4.1± 0.5	4.5± 0.8	4.4± 0.6	4.4± 0.8	4.7± 1.1
500 ppm	3.7± 0.5	4.4± 1.1	4.2± 1.0	4.4± 1.1	4.7± 1.3	3.9± 0.6	4.3± 1.0
1000 ppm	3.4± 0.3	3,5± 0.4	3.6± 0.4	3.9± 0.7	3.7± 0.3	3.5± 0.4	3.9± 0.6
2000 ppm	3.0± 0.4*	3.0± 0.5*	2.7± 0.3**	2.9± 0.5*	3.0± 0.4*	2.8± 0.3**	2.9± 0.4*
4000 ppm	2.5± 0.2**	2.4± 0.3**	2.1± 0.3**	2.1± 0.2**	2.3± 0.4**	2.3± 0.3**	2.6± 0.7**
mqq 0008	1.8± 0.1**	1.7± 0.3**	1.4± 0.2**	1.4± 0.2**	1.7± 0.5**	1.6± 0.4**	1.6± 0.3**
Significant differe	nce; *: P ≤ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0235

ANIMAL : MOUSE BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUNPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

TOUR Name	Administration	week-day(effective)				
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)
Control	4.3± 0.6	4.2± 0.7	4.7± 1.2	4.4± 0.6	4.1± 0.7	4.1± 0.9
500 ppm	3.9± 0.6	4.3± 0.7	4.0± 0.6	4.2± 0.6	4.3± 0.8	3.9± 0.4
1000 ppm	3.9± 0.6	3.7± 0.3	3.8± 0.4	3.6± 0.4*	3.6± 0.4	3.6± 0.3
mqq 000S	2.7± 0.4**	2.7± 0.3*	2,9± 0.3**	3.0± 0.6**	2.9± 0.8	2.8± 0.3*
4000 ppm	2.4± 0.5**	2.4± 0.5**	2.5± 0.8**	2.8± 0.7**	2.5± 0.7**	2.5± 0.4**
8000 ppm	1.6± 0.3**	1.7± 0.7**	1.8± 0.8**	1.8± 0.4**	1.7± 0.3**	1.7± 0.2**
Significant differer	nce; *: P ≤ 0.05 *	* : P ≤ 0,01		Test of Dunnett		

(HAN260)

APPENDIX B 4-1

FOOD CONSUMPTION CHANGES : SUMMARY, RAT : MALE (THIRTEEN-WEEK STUDY)

STUDY NO.: 0234 ANIMAL : RAT F344 UNIT : g

REPORT TYPE : A1 13

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 1

roup Name	Administration	week-day(effective)					
	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7(7)
Control	13.1± 0.7	14.4± 1.1	15.3± 1.1	14.6± 1.0	13.7± 2.3	14.5± 1.2	14.7± 1.9
250 ppm	12.7± 0.6	14.0± 0.7	14.6± 1.1	14.1± 1.2	12.3± 1.7	13.3± 2.2	13.8± 2.6
500 ppm	13.1± 0.7	14.6± 0.5	15.4± 0.9	15.3± 1.0	13.8± 1.3	14.8± 1.1	14.9± 1.4
1000 ppm	12.5± 0.6	14.2± 0.8	14.6± 1.1	14.6± 1.1	13.1± 1.4	13.8± 1.4	13.8± 1.7
2000 ppm	11.8± 0.6**	13.8± 0.7	14.7± 0.8	14.7± 1.0	13.5± 1.2	14.2± 0.9	14.3± 1.0
4000 ppm	9.5± 0.6**	12.4± 0.8**	13.0± 0.6**	12.7± 0.9**	11.4± 1.2**	12.1± 0.7**	12.4± 0.6**
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0234 ANIMAL : RAT F344

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

Group Name	Administratio	n week-day(effective)					
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	13.8± 1.7	13.6± 1.6	14.9± 1.9	13.7± 1.5	13.8± 1.5	13.9± 1.5	
250 ppm	12.7± 2.2	12.7± 2.2	13.5± 2.1	12.5± 1.8	12.6± 1.9	13.3± 1.8	
500 ppm	13.8± 1.2	14.3± 1.3	14.6± 1.4	13.5± 1.3	13.5± 1.3	14.0± 1.6	
1000 ppm	13.1± 1.8	13.1± 1.7	14.0± 1.8	13.1± 1.6	13.0± 1.5	13.2± 1.7	
2000 ppm	13.8± 0.8	13.9± 1.1	14.6± 0.9	14.0± 0.9	13.7± 1.0	13.8± 1.0	
4000 ppm	12.0± 0.5*	12.1± 0.7*	12.9士 0.8**	12.4± 0.7	12.5± 0.5	12.6± 0.6	
				·			
Significant difference;	*: P ≤ 0.05	** ; P ≤ 0.01		Test of Dunnett			

(IIAN260)

APPENDIX B 4-2

FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0234 ANIMAL : RAT F344
UNIT : g
REPORT TYPE : A1 13

ALL ANIMALS

FOOD CONSUMPTION CHANGES (SUMMARY)

SEX : FEMALE

PAGE: 3

TOUR Name	Administration	week-day(effective)					
	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7 (7)
Control	11.5± 0.5	11.8± 0.7	12.0± 0.8	12.3± 0.9	11.0± 0.7	11.3± 1.3	11.2± 0.9
250 ppm	11.2± 0.5	11.7± 0.6	11.9± 0.7	12.2± 0.9	11.0± 1.1	11.1± 1.2	11.2± 0.9
500 ppm	11.1± 0.6	11.7± 0.7	11.8± 0.8	11.9± 1.1	10.8± 0.8	10.9± 1.0	10.8± 1.0
1000 ppm	11.0± 0.5	11.7± 0.6	12.0± 0.7	12.0± 0.9	10.8± 0.8	10.8± 0.9	10.9± 0.8
2000 ppm	9.8± 0.3**	10.9生 0.5**	11.3± 0.7	11.3生 0.8	9.9± 0.8*	10.2± 0.8	10.3± 0.6
4000 ppm	7.6± 0.5**	10.3生 0.6**	10.8± 0.7**	10.5± 0.7**	9.4± 0.6**	9.7± 0.5**	9.9± 0.8**
Significant differenc	e; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO.: 0234 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administratio	n week-day(effective)		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	8-7(7)	9–7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)
Control	10.3± 1.1	10.5± 0.9	11.0± 0.9	10.6± 0.9	10.5± 0.4	10.8± 1.0
250 ppm	10.4± 1.2	10.7± 0.9	11.2± 0.9	10.6± 1.2	10.6± 0.9	10.7± 1.3
500 ppm	10.0± 1.2	10.3± 0.7	10.6± 0.7	10.0± 1.2	10.4± 0.6	10.1± 0.9
1000 ppm	10.3± 1.0	10.4± 1.0	10.7± 0.9	10.4± 1.1	11.1± 1.7	10.4± 1.3
2000 ppm	9.7± 0.7	9.6± 0.8	10,1± 0.7*	9.9± 0.9	10.1± 0.9	9.7± 0.8
4000 ppm	9.4± 0.6	9.0± 0.7**	9.8± 0.7**	9.3± 0.6*	9.7± 0.6	9.2± 0.5**
	-					
Significant difference :	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett		

(HAN260)

APPENDIX B 4-3

FOOD CONSUMPTION CHANGES: SUMMARY, MOSUE: MALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

-oup Name	Administration.	week-day(effective)					
	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7 (7)
Control	3.5± 0.2	3.6± 0.2	3.6± 0.2	3.7± 0.2	3.6± 0.2	3.9± 0.2	3.8± 0.4
500 ppm	3.4± 0.3	3.7± 0.3	3.6± 0.3	3.8± 0.2	3.6± 0.2	3.9± 0.3	3.8± 0.3
1000 ppm	3.5± 0.2	3.7± 0.2	3.8± 0.2	3.9± 0.3	3.7± 0.1	3.9± 0.2	3.8± 0.2
2000 ppm	3.4± 0.1	3.5± 0.2	3.6± 0.2	3.6± 0.2	3.6± 0.2	3.6± 0.4	3.6± 0.3
4000 ppm	3.1± 0,2**	3.2± 0.4**	3.3± 0.2*	3.4± 0.2*	3,4± 0.2	3.3± 0.2**	3.5± 0.9
mqq 0008	2.8± 0.2**	3.3± 0.2*	3.3± 0.3*	3.5± 0.2	3.3± 0.2*	3.4± 0.2**	3.5± 0.2
Significant differen	nce; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett	, , , , , , , , , , , , , , , , , , ,	77.WEITER-ALLE	

(IIAN260)

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

roup Name	Administration 8–7(7)	week-day(effective) 9-7(7)	10-7(7)	11-7(7)	12-7(7)	13–7(7)
Control	3.9± 0.2	3.6± 0.3	4.0± 0.2	4.0± 0.3	4.0± 0.3	4.0± 0.2
500 ppm	3.8± 0.3	3.4± 0.4	3.9± 0.2	3.8± 0.3	3.9± 0.2	3.9± 0.2
1000 ppm	3.9± 0.2	3.6± 0.2	3.9± 0.2	4.1± 0,2	4.0± 0.2	4.0± 0.2
2000 ppm	3.7± 0.3	3.2± 0.4	3.8± 0.3	3.7± 0.2	3.8± 0.2	3.8± 0.4
4000 ppm	3,4± 0.2**	3.1± 0.2*	3.4± 0.2**	3.4± 0.2**	3.3± 0.2**	3.4± 0.2**
8000 ppm	3.5± 0.2**	3.2± 0.2	3.5± 0.2**	3.5± 0.2**	3.4± 0.2**	3.4± 0.2**

(IIAN260)

APPENDIX B 4-4

FOOD CONSUMPTION CHANGES: SUMMARY, MOSUE: FEMALE
(THIRTEEN-WEEK STUDY)

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

roup Name	Administration (1–7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7(7)
				<u> </u>		.,	.,
Control	3.1± 0.3	3.2± 0.2	3.2± 0.2	3.3± 0.3	3.4± 0.2	3.5± 0.2	3.6± 0.3
500 ppm	2.9± 0.2	3.1± 0.2	3.1± 0.2	3.3± 0.2	3.3± 0.2	3.4± 0.2	3.5± 0.2
1000 ppm	2.9± 0.2	3.2± 0.2	3.2± 0.2	3.3± 0.1	3.3± 0.2	3.4± 0.2	3.5± 0.2
2000 ppm	2.9± 0.1	3.1± 0.2	3.2± 0.2	3.3± 0.2	3.3± 0.2	3.4± 0.2	3.4± 0.2
4000 ppm	2.8± 0.2**	3.0± 0.2*	3,0± 0.2*	3.1± 0.1	3.1± 0.2*	3.2± 0.1**	3.2± 0.3**
8000 ppm	2.3± 0.1**	2.9± 0.2**	2.9生 0.2**	3.0± 0.2*	3.1± 0.2*	3.1± 0.2**	3.2± 0.3**
Significant difference ;	*: P ≤ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0235

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administration	week-day(effective)	· · · · · · · · · · · · · · · · · · ·				***************************************
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	3.6± 0.2	3.3± 0.3	3.8± 0.3	3.8± 0.2	3.6± 0.2	3.7± 0.2	
500 ppm	3.6± 0.2	3.4± 0.2	3.7± 0.2	3.7± 0.2	3.4± 0.2	3.6± 0.1	
1000 ppm	3.6± 0.2	3.4± 0.2	3.6± 0.1	3.7± 0.2	3.6± 0.2	3.7± 0.2	
2000 ppm	3.5± 0.2	3.2± 0.2	3.5± 0.3*	3.6± 0.3	3.4± 0.3	3.6± 0.1	
4000 ppm	3,3± 0.2*	3.2± 0.2	3.4± 0.1**	3.6± 0.3	3.3± 0.2	3.5± 0.2*	
8000 ppm	3.3± 0.2**	3.0± 0.2**	3.3士 0.2**	3.3± 0.2**	3.2± 0.3*	3.4± 0.2**	
Significant differer	nce; *:P≦0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 5-1

CHEMICAL INTAKE CHANGES: SUMMARY, RAT: MALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0234 ANIMAL: RAT F344

UNIT : mg/kg/day

REPORT TYPE : A1 13 SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 1

iroup Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
250 ppm	29.150± 1.119	26.419± 1.054	23.535± 1.117	21.306± 1.374	17.151± 1.439	16.769± 1.216	17.096± 2.554
500 ppm	59.701± 2.732	53.441± 2.694	46.844± 2.626	43.021± 4.715	35.201± 3.314	34.131± 2.486	34.422± 4.540
1000 ppm	104.536± 5.227	91.088± 3.574	80.389± 6.155	72.537± 3.483	61.283± 3.282	60.898± 2.749	58.542± 4.182
2000 ppm	188.522± 7.098	170.895± 9.109	148.199± 8.019	131.313± 5.542	118.372± 6.930	114.708± 6.265	111.988± 6.903
4000 ppm	349.262± 20.815	370,395±152.712	286.273± 29.222	245.082± 13.472	212.302± 16.198	207.931± 9.651	205.923± 11.676

(IIAN300)

STUDY NO. : 0234

CHEMICAL INTAKE CHENGES (SUMMARY)
ALL ANIMALS

1344

ANIMAL : RAT F344
UNIT : mg/kg/day
REPORT TYPE : A1 13

SEX: MALE

PAGE: 2

MONITING GET OFF	Administration (weeks)							
8	9	10	11	12	13			
0.000± 0.000	0.000± 0.000	0.000土 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000			
15.209± 1.546	16.057± 1.472	15.311± 1.082	14.189± 1.192	13.334± 1.091	13.254± 0.659			
31.626± 6.901	36.023± 15.497	34.155± 15.913	28.616± 4.476	27.322± 7.528	27.171± 5.189			
53.484± 3.450	57.051± 4.390	53.981± 3.943	50.199± 3.292	46.625± 3.243	47.508± 3.705			
102.558± 6.080	108.111± 7.191	99.697± 6.722	98.107± 5.771	89.604± 6.084	91.489± 6.114			
181.158± 13.909	196.324± 16.817	180.914± 13.177	176.661± 9.198	161.639± 7.834	167.627± 10.604			
-	0.000 ± 0.000 15.209 ± 1.546 31.626 ± 6.901 53.484 ± 3.450 102.558 ± 6.080	0.000 ± 0.000 0.000 ± 0.000 15.209 ± 1.546 16.057 ± 1.472 31.626 ± 6.901 36.023 ± 15.497 53.484 ± 3.450 57.051 ± 4.390 102.558 ± 6.080 108.111 ± 7.191	0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 15.209 ± 1.546 16.057 ± 1.472 15.311 ± 1.082 16.020 ± 6.901 36.023 ± 15.497 34.155 ± 15.913 $16.020\pm 3.484\pm 3.450$ $16.020\pm 3.484\pm 3.484$ 16.020 ± 3.484	$0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $15.209\pm\ 1.546$ $16.057\pm\ 1.472$ $15.311\pm\ 1.082$ $14.189\pm\ 1.192$ $31.626\pm\ 6.901$ $36.023\pm\ 15.497$ $34.155\pm\ 15.913$ $28.616\pm\ 4.476$ $53.484\pm\ 3.450$ $57.051\pm\ 4.390$ $53.981\pm\ 3.943$ $50.199\pm\ 3.292$ $102.558\pm\ 6.080$ $108.111\pm\ 7.191$ $99.697\pm\ 6.722$ $98.107\pm\ 5.771$	0.000± 0.000	$0.000\pm\ 0.000$ $0.000\pm\ 0.00$		

(IIAN300)

APPENDIX B 5-2

CHEMICAL INTAKE CHANGES: SUMMARY, RAT: FEMALE

(THIRTEEN-WEEK STUDY)

STUDY NO. : 0234 ANIMAL : RAT F344

CHEMICAL INTAKE CHENGES (SUMMARY)

UNIT : mg/kg/day
REPORT TYPE : A1 13

ALL ANIMALS

SEX : FEMALE

PAGE: 3

roup Name	Administration	(nieeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
250 ppm	33.849± 2.630	29.962± 1.996	27.867± 1.660	25.514± 1.449	22.183± 1.195	21.772± 1.210	22.022± 1.661
500 ppm	71.281± 13.414	64.260± 11.746	56.283± 3.943	53.239± 4.246	49.421± 12.225	53.556± 24.202	44.931± 8.521
1000 ppm	113.391± 7.593	108.354± 22.845	91.802± 7.543	87.956± 10.082	85.449± 20.706	75.432± 18.317	81.000± 27.290
2000 ppm	202.299± 9.107	183.884± 6.842	170.090± 8.064	154.101± 6.628	135.269± 5.934	129.874± 8.913	128.729± 7.107
4000 ppm	388.958± 29.544	339.921± 22.107	302.356± 20.673	273.600± 17.003	243.136± 17.724	243.693± 30.198	235.129± 18.117

(IIAN300)

STUDY NO. : 0234 ANIMAL : RAT F344

UNIT : mg/kg/day
REPORT TYPE : A1 13
SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY) ALL ANIMALS

Group Name	Administration	(weeks)					
ar sup Numo	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
250 ppm	20.044± 1.502	20.252± 0.830	20.845± 2.759	20.725± 3.627	18.377± 5.161	18.607± 1.109	
500 ppm	38.546± 3.955	48.824± 21.803	52.149± 22.770	43.163± 8.181	35.122± 4.283	38.919± 7.808	
1000 ppm	70.894± 16.282	75.521± 26.160	66.151± 7,396	83.143± 32.249	72.580± 28.200	72.861± 26.007	
2000 ppm	116.207± 6.874	121.183± 9.677	120.057± 12.353	117.091± 11.925	105.955± 8.445	110.731± 7.714	
4000 ppm	211.471± 14.729	222.493± 18.908	213.913± 15.465	207.716± 9.877	189.438± 12.760	198.163± 14.484	

(IIAN300)

APPENDIX B 5-3

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: MALE

(THIRTEEN-WEEK STUDY)

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

UNIT : mg/kg/day
REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
500 ppm	92.325± 12.654	90.609± 15.145	80.705± 16.126	73.291± 7.135	71.412± 15.979	67.629± 17.164	63,958± 19.866
1000 ppm	170.961± 20.442	167.086± 17.843	153.255± 21.500	144.250± 17.457	143.931± 30.322	123.990± 21.473	124.526± 30.894
2000 ppm	280.421± 42.743	244.263± 24.376	234.547± 27.620	233.937± 48.061	219.452± 27.938	195.855± 23.723	192.889± 31.080
4000 ppm	444.173± 31.674	380.851± 84.336	388.993± 89.016	368.951± 86.788	364.027± 70.186	320.876± 73.056	314.149± 33.194
8000 ppm	732.041± 42.736	582.895± 64.994	572.889± 62.073	559.070± 82.671	540.218± 51.531	489.381± 62.058	523.428± 58.042

(IIAN300)

BAIS 2

PAGE: 1

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Group Name	Administration	(weeks)				······································
	8	9	10	11	12	13
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
500 ppm	60.576± 9.562	55.371± 7.471	62.817± 21.108	57.612± 14.256	57.762± 14.181	57.095± 12.569
1000 ppm	115.064± 17.693	116.101± 28.450	116.763± 33.702	109.736± 34.390	96.111± 10.660	96.291± 13.402
2000 ppm	200.290± 56.514	193.381± 46.156	170.625± 15.494	166.044± 23.430	164.722± 16.104	168.870± 18.039
4000 ppm	297.353± 34.774	288.787± 58.112	269.856± 16.105	259.351± 17.372	260.449± 22.901	307.618± 42.145
Maa 0008	511.139± 57.105	454.184± 83.730	455.650± 51.711	439.215± 54.282	456.658± 34.558	480.891± 44.009

(HAN300)

APPENDIX B 5-4

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE (THIRTEEN-WEEK STUDY)

STUDY NO. : 0235

ANIMAL : MOUSE BDF1 UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 3

iroup Name	Administration	(weeks)			, , , , , , , , , , , , , , , , , , ,		
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000士 0.000	0.000± 0.000	0.000 보 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
500 ppm	100.173± 12.554	115.911± 30.422	108.418± 28.021	109.232± 28.665	113.935± 32.682	90.402± 13.216	95.508± 20.235
1000 ppm	184.743± 18.933	183.883± 18.880	183.144± 20.286	190.168± 31.161	177.275± 17.229	161.426± 20.750	170.080± 22.739
2000 ppm	324.127± 47.386	318.969± 47.299	277.116± 29.254	289,293± 47.128	289.803± 40.759	265.189± 28.102	260.936± 34.532
4000 ppm	539.071± 50.712	497.131± 61.884	439.728± 62.536	434.870± 49.324	451.120± 79.761	442.135± 68.809	484.549±130.351
mqq 0008	844.813± 71.827	761.623±109.704	608.361± 69.416	591.269± 62.778	701.599±171.090	631.258±130.738	638.413±107.647

(IIAN300)

STUDY NO. : 0235

ANIMAL : MOUSE BDF1

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 4

∆dministration	(weeks)					
8	9	10	11	12	13	
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000	0.000± 0.000	0.000± 0.000	
89.753± 13.224	97.779± 18.295	87.949± 14.892	88.463± 13.189	93.952± 19.651	82.103± 9.121	
178.250± 22.904	162.148± 15.043	165.595± 17.689	154.026± 18.978	152.991± 18.842	151.687± 13.032	
250.229± 32.493	248.039± 26.209	255.616± 24.813	252.853± 54.988	256.820± 65.840	240.078± 25.625	
457.712± 95.511	444.109± 93.416	448.740±150.003	489.565±119.915	449.157±130.555	445.006± 77,176	
634.401±105.151	664,368±257,193	672.196±289.526	679.814±123.889	646.586± 85.192	629.202± 42.825	
	8 0.000 ± 0.000 89.753 ± 13.224 178.250 ± 22.904 250.229 ± 32.493 457.712 ± 95.511	8 9 0.000 ± 0.000 0.000 ± 0.000 89.753 ± 13.224 97.779 ± 18.295 178.250 ± 22.904 162.148 ± 15.043 250.229 ± 32.493 248.039 ± 26.209 457.712 ± 95.511 444.109 ± 93.416	8 9 10 $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $89.753\pm\ 13.224$ $97.779\pm\ 18.295$ $87.949\pm\ 14.892$ $178.250\pm\ 22.904$ $162.148\pm\ 15.043$ $165.595\pm\ 17.689$ $250.229\pm\ 32.493$ $248.039\pm\ 26.209$ $255.616\pm\ 24.813$ $457.712\pm\ 95.511$ $444.109\pm\ 93.416$ $448.740\pm\ 150.003$	8 9 10 11 0.000 \pm 0.000 89.753 \pm 13.224 97.779 \pm 18.295 87.949 \pm 14.892 88.463 \pm 13.189 178.250 \pm 22.904 162.148 \pm 15.043 165.595 \pm 17.689 154.026 \pm 18.978 250.229 \pm 32.493 248.039 \pm 26.209 255.616 \pm 24.813 252.853 \pm 54.988 457.712 \pm 95.511 444.109 \pm 93.416 448.740 \pm 150.003 489.565 \pm 119.915	8 9 10 11 12 $0.000\pm\ 0.000$	8 9 10 11 12 13 0.000 \pm 0.000 0.000 0.000 \pm 0.000 0.0

(IIAN300)

APPENDIX B 6-1

HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: MALE

STUDY NO.: 0234 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	RED BLOOD CELL 1 06/µl	∏EMOGLOBIN g∕≀Ω	HEMATOCRIT %	MCV f €	MCH pg	MCHC g∕dl	PLATELET 1 O³/μg
Control	9	9.23± 0.26	16.1± 0.5	43.3± 1.0	46.9± 0.7	17.4± 0.3	37.1± 0.3	696± 50
250 ppm	10	9.25± 0.28	16.2± 0.4	43.7± 0.9	47.2± 0.8	17.5± 0.3	37.2± 0.5	708± 41
500 ppm	10	9.23± 0.30	15.9± 0.2	42.9± 1.6	46.4± 0.5	17.3± 0.6	37.2± 1.6	694± 32
1000 ppm	9	9.23± 0.26	16.1± 0.3	43.2± 1.2	46.8± 1.1	17.5± 0.4	37.3± 0.6	685± 32
2000 ppm	10	9.35± 0.23	16.0± 0.4	43.6± 1.0	46.7± 0.4	17.1± 0.3	36.6± 0.7	720± 26
4000 ppm	10	9.43± 0.20	16.4± 0.5	44.4± 0.7	47.1± 0.7	17.4± 0.5	36.8± 0.9	695± 43
Significan	t difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(IICL070)

STUDY NO.: 0234 ANIMAL : RAT F344 REPORT TYPE : A1

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

SEX : MALE

roup Name	NO. of Animals	RETICULO %	ОСУТЕ	PROTIIRO s e c	MBIN TIME	APTT sec					
Control	9	24±	5	14.3±	0.9	24.3±	1.1				
250 ppm	10	24±	4	13.9±	1.1	23.4±	2.4				
500 ppm	10	26±	5	13.8±	1.5	23.5±	2.6				
1000 ppm	9	25±	5	13.3±	1.6	22.4±	1.4		•		
2000 ppm	10	25±	5	14.0±	1.8	24.0±	2.0				
4000 ppm	10	25±	7	13.6±	1.2	23.4±	1.7				
Significant	difference;	*: P ≤ 0.	.05	**: P ≤ 0.0	1			Test of Dunnett			

STUDY NO.: 0234
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: MALE

HEMATOLOGY(2) (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 1

	1.12	0±	0	25±	3	2±									
6.27±	1.25					44	1	0±	0	4±	2	69±	2	0 ±	0
		0±	0	26±	4	2±	1	0±	0	3±	2	69±	3	0 ±	0
6.13±	1.36	0±	0	23±	6	2±	1	0±	0	3±	1	72±	6	0±	0
5.97±	0.57	0±	0	22±	3	1±	1	0±	0	2±	1	74±	3	0 ±	0
6.24±	1.59	0±	0	23±	4	1±	1	0±	0	3±	1	73±	5	0 ±	0
7.17±	1.81	0±	0	24±	3	1±	1	0±	0	3±	1	72±	4	0±	0
	5.97± 6.24± 7.17±	5.97± 0.57 6.24± 1.59 7.17± 1.81	5.97± 0.57 0± 6.24± 1.59 0± 7.17± 1.81 0±	5.97 ± 0.57 0 ± 0 6.24 ± 1.59 0 ± 0 7.17 ± 1.81 0 ± 0	5.97 ± 0.57 0 ± 0 $22\pm$ 6.24 ± 1.59 0 ± 0 $23\pm$ 7.17 ± 1.81 0 ± 0 $24\pm$	5.97 ± 0.57 0 ± 0 22 ± 3 6.24 ± 1.59 0 ± 0 23 ± 4 7.17 ± 1.81 0 ± 0 24 ± 3	5.97 ± 0.57 0 ± 0 22 ± 3 $1\pm$ 6.24 ± 1.59 0 ± 0 23 ± 4 $1\pm$ 7.17 ± 1.81 0 ± 0 24 ± 3 $1\pm$	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 $0\pm 6.24\pm 1.59$ 0 ± 0 23 ± 4 1 ± 1 $0\pm 7.17\pm 1.81$ 0 ± 0 24 ± 3 1 ± 1 0 ± 1	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 0 ± 0 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1 0 ± 0	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 $2\pm$ 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 0 ± 0 $3\pm$ 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1 0 ± 0 $3\pm$	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 2 ± 1 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 0 ± 0 3 ± 1 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1 0 ± 0 3 ± 1	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 2 ± 1 $74\pm$ 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 0 ± 0 3 ± 1 $73\pm$ 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1 0 ± 0 3 ± 1 $72\pm$	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 2 ± 1 74 ± 3 6.24 ± 1.59 0 ± 0 23 ± 4 1 ± 1 0 ± 0 3 ± 1 73 ± 5 7.17 ± 1.81 0 ± 0 24 ± 3 1 ± 1 0 ± 0 3 ± 1 72 ± 4	5.97 ± 0.57 0 ± 0 22 ± 3 1 ± 1 0 ± 0 2 ± 1 74 ± 3 $0\pm 6.24\pm 1.59$ 0 ± 0 23 ± 4 1 ± 1 0 ± 0 3 ± 1 73 ± 5 $0\pm 7.17\pm 1.81$ 0 ± 0 24 ± 3 1 ± 1 0 ± 0 3 ± 1 72 ± 4 0 ± 0

(HCL071)

APPENDIX B 6-2

HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: FEMALE

STUDY NO.: 0234 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

roup Name	NO. of Animals	RED BLOOD (1 O ⁶ /µl	CELL	HEMOGLO g∕dl	BIN	HEMATOC %	CRIT	MCV f e		MCII pg		MCHC g∕dl		PLATELE: 1 0³/ju	
Control	10	8.77± 0.5	24	16.4±	0.5	43.7±	1.5	49.8±	0.6	18.7±	0.4	37.5±	1.0	804±	32
250 ppm	10	8.60± 0.3	39	16.1±	0.4	42.5±	1.9	49.5±	0.5	18.8±	0.9	38.0±	1.7	804±	65
500 ppm	10	8.74± 0.5	28	16.2±	0.6	43.2±	1.1	49.4±	0.5	18.5±	0,3	37.4±	0.6	847±	31
1000 ppm	9	8.60± 0.3	35	15.9±	0.6	42.5±	1.7	49.5±	0.4	18.6±	0.5	37.5±	1.2	799±	42
2000 ppm	10	8.49± 0.9	54	16.1±	0.5	41.9±	2.6	49.4±	0.5	19.0±	1.4	38.5±	2.7	792±	70
4000 ppm	10	8.75± 0.5	26	15.9±	0.5	42.8±	1.3	49.0±	0.4**	18.2±	0.3	37.1±	0.7	760±	27
Significant	difference;	*: P ≤ 0.05	*:	* : P ≤ 0.0	1			Test of Dur	nnett		*******				
(IICL070)		<u> </u>													

STUDY NO. : 0234
ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

HEMATOLOGY(1) (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	RETICULO ‰	CYTE	PROTHRO sec	MBIN TIME	APTT sec		
Control	10	28土	6	12.4±	0.4	17.4±	1.3	
250 ppm	10	25±	5	12.4±	0.5	16.4±	1.2	
500 ppm	10	25±	5	12.3±	0.2	17.5±	2.0	
1000 ppm	9	31±	7	12.2±	0.2	17.4士	1.8	
2000 ppm	10	24±	5	12.1±	0.2	18.3±	2.0	
4000 ppm	10	23±	3	12.0±	0.2*	19.4±	1.8*	
Significan	t difference;	*: P ≤ 0.	. 05	**: P ≤ 0.0	1			Test of Dunnett

(HCL070)

STUDY NO. : 0234
ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	WBC 1 O ^a	; - / μ2		ferentia MAND	L WBC (% N-S		EOS	SINO	BAS	50	MOM	10	I.Y	MPHO	0.1	THERS
Control	10	3.36±	1.25	0±	0	24±	5	2±	1	0±	0	3±	1	70±	4	0±	0
250 ppm	10	3.00±	1.26	0 ±	0	26±	5	1±	1	0±	0	4±	2	69±	5	0±	0
500 ppm	10	3.79±	1.44	0 ±	1	23±	6	1±	1	0±	0	4±	2	71±	6	0±	0
1000 ppm	9	3.16±	1.31	0±	0	25±	9	1±	1	0±	0	3±	2	71±	10	0 ±	0
2000 ppm	10	4.02±	2.25	0±	0	23±	6	1±	1	0±	0	4±	2	72±	7	0 ±	0
4000 ppm	10	4.55±	1.77	0±	1	19±	6	1±	1	0±	0	3±	2	77±	7	0±	0
Significan	nt difference ;	* : P <u>\$</u>	≦ 0.05	**: P ≦	0.01			Test	of Dunne	tt		• …					

(IICL071)

APPENDIX B 6-3

HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE

STUDY NO.: 0235

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	RED BLO	OD CELL	HEMOGLO g/dl	DBIN	HEMATOC %	RIT	MCV fe		MCII pg		MCHC g∕al		PLATELE 1 Ο³ / μ.	
Control	10	10.77±	0.21	15.7±	0.5	48.9±	1.0	45.5±	0.5	14.6±	0.3	32.2士	0.7	1554±	77
500 ppm	9	10.48±	0.33	15.4±	0.4	47.8±	1.4	45.6±	0.5	14.7±	0.4	32.3±	0.8	1504±	85
1000 ppm	10	10.49±	0.30	15.4±	0.3	47.9±	1.3	45.7±	0.6	14.7±	0.2	32.1±	0.5	1506±	96
2000 ppm	9	10.63±	0.25	15.6±	0.4	48.2±	1.4	45.3±	0.9	14.7±	0.1	32.4±	0.7	1563±	43
4000 ppm	10	10.52±	0.35	15.4±	0.5	47.6±	1.9	45.3±	0.6	14.6±	0.1	32.3±	0.3	1514±	85
8000 ppm	10	10.15±	0.58**	15.2±	0.7	45.7±	2.6**	45.1±	0.7	15.0±	0.7	33.2±	1.3	1354±	105**

(IICL070)

STUDY NO. : 0235 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name Control	NO. of Animals	WBC 1 O³/us					SEG	EOSINO		BASO		MONO		LYMPIIO		OTHERS	
		1.49± 0	0.75	0±	0	16±	3	2±	1	0±	0	4±	1	79±	3	0±	0
500 ppm	9	1.16± 0	0.73	0±	0	14±	3	1±	1	0±	0	4±	2	81 ±	4	0 ±	0
1000 ppm	10	1.12± 0	0.51	0±	0	16±	4	1±	1	0±	0	3±	2	79±	. 4	ο±	0
2000 ppm	9	1.08± 0	0.69	0±	0	16±	5	1±	1	0±	0	3±	2	79±	5	0±	0
4000 ppm	10	1.01± 0	0.51	0±	0	17±	6	1±	1	0±	0	3±	1	79±	7	0±	0
mag 0008	10	0.98± 0	0.84	0±	0	19±	6	0 ±	1	0±	0	3±	1	78±	7	0±	0
Significan	t difference ;	*: P ≤ 0	0.05	** : P ≦	0.01			Test	of Dunne	tt							_

(IICL071)

APPENDIX B 6-4

HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

roup Name	NO. of Animals	RED BLOOD CEL	I. NEMOGL g∕dl		HEMATOC %	RIT	MCV f e		MCII Pg		MCHC g∕dl		PLATELE 1 O³∕µ	
Control	10	10.59± 0.20	16.0±	0.5	48.3±	1.3	45.6±	0.5	15.1±	0.3	33.0±	0.4	1293±	84
500 ppm	9	10.44± 0.31	15.7±	0.4	47.1±	1.4	45.1±	0.4	15.1±	0.2	33.4±	0.5	1331±	51
1000 ppm	10	10.46± 0.36	15.7±	0.4	47.4±	1.9	45.3±	0.7	15.0±	0.4	33.1±	1.0	1302±	93
2000 ppm	10	10.37± 0.24	15.4±	0.4	46.9±	1.2	45.2±	0.4	14.9±	0.1	32.9±	0.4	1282±	52
4000 ppm	10	10.23± 0.34	15.2±	0.5**	46.6±	1.8	45.5±	0.3	14.9±	0.1	32.7±	0.3	1267±	64
mag 0008	10	10.32± 0.48	15.4±	0.7*	46.8±	2.1	45.4±	0.8	14.9±	0.3	32.8±	0.4	1212士	129

(IICL070)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	WBC 1 O ³	; β / μ¢		ferentia AND	L WBC (% N-S		EO:	SINO	BAS	50	MOI	10	1.41	MPIIO	70	THERS
Control	10	1.17±	1.10	0±	0	19±	7	1±	1	0±	0	3±	1	77±	6	0±	0
500 ppm	9	1.09±	0.71	0±	0	17±	6	0±	1	0±	0	2±	1	80±	6	0±	0
1000 ppm	10	1.45±	1,32	0±	0	15±	5	1±	1	0±	0	3±	1	81±	5	0±	0
mqq 000S	10	1.04±	0.85	0±	0	20±	6	1±	1	0 ±	0	3±	1	76±	6	0±	0
4000 ppm	10	1.05±	0.60	0±	0	20±	5	1 ±	1	0±	0	3土	2	77±	4	0±	0
8000 ppm	10	1.11±	1.05	0±	0	20±	5	1±	1	0±	0	3±	1	77±	5	0±	0
Significan	nt difference ;	*: P ≦	≦ 0.05	** : P ≦	0.01			Test	af Dunne	tt							
(HCL071)						···	· · · · · · · · · · · · · · · · · · ·										BAIS 2

APPENDIX B 7-1

BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: MALE

STUDY NO. : 0234 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

iroup Name	NO. of Animals	g/dl g/dl	PROTEIN	ALBUMIN g∕d¢	1	A/G RAT	10	T-BILI mg∕d¢		GLUCOSE mg∕⊲ll		T−CHOLES mg/dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	9	6.7±	0.3	3.9±	0.1	1.4±	0.1	0.22±	0.05	186±	12	62±	6	88±	22
250 ppm	10	6.7±	0.3	3.9±	0.1	1.4±	0.1	0.23±	0.07	190土	21	61±	8	94±	32
500 ppm	10	6.6±	0.3	3.9±	0.1	1.4±	0.1	0.24±	0.13	186±	14	61±	7	100土	20
1000 ppm	9	6.5±	0.3	3.8±	0.1	1.4±	0.1	0.21±	0.07	185±	19	63±	11	87±	19
2000 ppm	10	6.2±	0.2**	3.7±	0.1*	1.5土	0.1*	0.22±	0.05	184±	13	54土	6	98土	15
4000 ppm	10	6.0±	0.3**	3.6±	0.1**	1.5±	0.1*	0.25±	0.09	176±	15	50±	7**	83±	22

(IICL074)

STUDY NO. : 0234
ANIMAL : RAT F344
REPORT TYPE : A1
SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	GOT IU/e)	GPT IU∕ℓ		LDII IU/(1	ALP IU/0	,	G-GTP IU/0		CPK I U / é	
Control	9	119±	11	79±	12	27±	4	172±	42	287±	27	1±	1	87±	11
250 ppm	10	122±	15	71±	9	20±	2	177±	48	286±	25	1士	1	88±	14
500 ppm	10	119±	11	68±	9	18±	3	175±	55	256±	20*	1±	0	84±	21
1000 ppm	9	120±	17	66±	8	16±	3**	194±	40	249±	17**	2±	1	88±	9
2000 ppm	10	106±	7	61±	4**	14±	2**	165士	35	246±	28**	1±	0	83±	8
4000 ppm	10	97±	12**	58士	4**	12±	[**	182±	67	238±	22**	1±	1	90±	11

(IICL074)

STUDY NO. : 0234 ANIMAL : RAT F344 REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

REPORT TYPE : A1
SEX : MALE

Group Name	NO. of Animals	UREA NI mg∕dl	TROGEN	CREATIN mg∕dl	INE	SODIUM mEq∕ℓ		POTASSI mEq/6		CIILORI DE mEq/l		CALCIUI mg∕dશ		INORGAN mg∕dl	IC PHOSPHORU
Control	9	17.2±	1.0	0.5±	0.0	144±	1	3.7±	0.2	107土	1	10.2±	0.2	5.0±	0.9
250 ppm	10	16.9±	1.5	0.5±	0.0	143±	2	$3.7\pm$	0.2	108±	1	10.1±	0.2	5.2±	0.9
500 ppm	10	17.3±	0.8	0.5±	0.0	143±	1	3.7±	0.2	107±	1	10.2±	0.1	5.5±	1.0
1000 ppm	9	17.7±	1.4	0.5±	0.1	143±	2	3.5±	0.3	106±	1	10.2±	0.2	5.6±	0.7
2000 ppm	10	19.4±	1.3**	0.5±	0.0	143±	1	3.7±	0.2	106±	2	10.2±	0.3	6.2±	0.9*
4000 ppm	10	21.9±	2.0**	0.5±	0.1	143±	1	3.8±	0.4	106±	1	10.0±	0.2	6.6±	0.6**
Significan	t difference;	*: P ≤ 0	.05 *	*: P ≤ 0.0	1			Test of Dun	nett						
(HCL074)															BAIC

BAIS 2

PAGE: 3

APPENDIX B 7-2

BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: FEMALE

STUDY NO.: 0234
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	TOTAL F g∕dl	PROTEIN	g∕dl g∕dl		A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg∕dl		T-CHOLES mg∕dl	TEROL	TRIGLYCI mg/dl	ERIDE
Control	10	6.9±	0.3	4.0±	0.1	1.4± ·	0.1	0.28±	0.10	153±	14	82±	7	42±	6
250 ppm	10	6.6±	0.3	3.8±	0.1*	1.4±	0.1	0.31±	0.12	145±	17	74±	5	38±	6
500 ppm	10	6.6±	0.4	3,9±	0.2*	1.4±	0.1	0.28±	0.09	145±	12	73±	9*	38±	4
1000 ppm	9	6.3±	0.4**	3.7±	0.1**	1.5±	0.1	0.37±	0.14	154±	18	69±	8**	39±	5
2000 ppm	10	6.0±	0.4**	3.6±	0.1**	1.5±	0.1*	0.45±	0.21	143±	20	60±	4**	37±	3
4000 ppm	10	5.6±	0.2**	3.5±	0.1**	1.6±	0.1**	0.34±	0.06	143±	17	41±	6**	36±	8

(IICL074)

STUDY NO.: 0234
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 5

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	GOT IU/6		GPT IU/e		LDII IU/	e	ALP IU/6		G-GTP IU/e		CPK IU/0	
Control	10	155±	12	72±	11	21±	3	253±	81	217±	27	2±	1	116士	21
250 ppm	10	141±	14	73±	10	19±	4	311±	136	188±	31	1±	1	121±	35
500 ppm	10	137±	19	76±	18	18士	8	254±	83	186±	35*	1±	1	100±	19
1000 ppm	9	131±	11	70±	16	15±	6	287±	112	172±	15**	1±	0*	102±	22
2000 ppm	10	117±	7**	66±	10	11土	2**	320±	169	168±	17**	1±	0*	112±	30
4000 ppm	10	86±	8**	68±	9	11±	1**	308±	199	179±	20**	ī±	0	115±	50

(IICL074)

STUDY NO.: 0234
ANIMAL: RAT F344
REPORT TYPE: A1
SEX: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 6

Group Name	NO. of Animals	UREA NI mg/dl	TROGEN	CREATIN mg/dl		SODIUM mEq/l		POTASSI mEq/6		CHLORIDI mEq/l		CALCIUN mg/dx		INORGAN mg/dl	HC PHOSPHORUS
Control	10	19.5±	1.9	0.5±	0.0	145±	1	3.4±	0.2	109±	1	10.1±	0.3	4.9±	1.0
250 ppm	10	18.4±	2.2	0.5±	0.1	145±	1	3.5±	0.3	109±	1	10.0±	0.2	4.7±	1.1
500 ppm	10	19.2±	2.0	0.5±	0.1	145±	2	3.4±	0.2	110±	2	10.1±	0.2	4.7±	1.0
1000 ppm	9	19.9±	1.9	0.5±	0.1	143±	1	3.6±	0.2	109±	1	9.8±	0.3	5.0±	1.3
2000 ppm	10	20.5±	1.5	0.5±	0.1	143±	2*	3.7±	0.3*	108±	1	9.7±	0.3*	5.1±	0.7
4000 ppm	10	24.7±	2.8**	0.4±	0.1	143±	2*	3.9±	0.3**	109±	1	9.8±	0.6*	5.8±	1.1
Significant	t difference;	*: P ≤ 0	.05 *	*: P ≤ 0.0	1			Test of Dun	nett						

(IICL074)

APPENDIX B 7-3

BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE

ANIMAL : MOUSE BDF1

.

REPORT TYPE : A1
SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

iroup Name	NO. of Animals	g/dl g/dl		ALBUMIN g∕dø		A/G RAT	10	T-BILI mg∕dl		GLUCOS mg∕dl		T-CHOLE mg∕dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	10	5.5±	0.2	3.0±	0.1	1.2±	0.1	0.33±	0.08	204±	25	93±	7	74±	12
500 ppm	9	5.6±	0.3	3.0±	0.1	1.2±	0.1	0.30±	0.08	186±	38	86±	13	63±	14
1000 ppm	10	5.4±	0.3	2.9±	0.1	1.2±	0.0	0.29±	0.07	171±	31	79±	9	68士	16
2000 ppm	9	5.4±	0.3	3.0±	0.2	1.2±	0.1	0.32±	0.09	185±	37	78±	11	56±	14
4000 ppm	10	5.2±	0.2**	2.9±	0.1	1.3±	0.0	0.32±	0.09	168士	25*	74±	7**	54±	10*
8000 ppm	10	4.7±	0.2**	2.7±	0.1**	1.3±	0.0**	0.28±	0.05	139±	20**	58±	4**	41 ±	4**

(IICL074)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	GOT IU/4	?	GPT IU/e		LDII IU/0	?	ALP IU/0		CPK IU/0	7	UREA NI	TROGEN	SODIUM mEq/@	
Control	10	49±	5	16±	2	231±	36	185±	12	44±	15	27.5±	2.8	154士	2
500 ppm	9	50±	9	15±	6	220 ±	34	184±	9	36±	10	27.9±	5.0	154±	1
1000 ppm	10	52±	10	14±	2	229土	37	183±	12	47±	11	26.0±	2.7	154±	1
2000 ppm	9	50±	8	15±	4	249±	48	187±	15	62±	33	26.0±	8.8	154±	2
4000 ppm	10	50±	9	13±	3	266士	65	196±	9	58±	28	24.4±	4.0	154±	2
mqq 0008	10	. 50±	12	12±	3**	241±	57	190±	16	57±	24	25.3±	2.5	154土	1
Significant	t difference;	*: P ≦ 0	.05	** : P ≤ 0.01				Test of Dunr	nett						
ICL074)															R

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	POTASSI mEq/	e	CHLORIDE mEq∕ℓ		CALCIUM mg/dl		I NORGAN mg∕dl	TC PHOSPHORUS		
Control	10	4.4±	0.3	122±	3	9.1±	0.3	6.8±	1.3		
500 ppm	9	4.4±	0.1	123±	2	9.0±	0.3	6.7±	0.8		
1000 ppm	10	4.5±	0.4	122±	3	8.9±	0.3	6.9±	1.1		
2000 ppm	9	4.7±	0.4	121±	4	8.9±	0.3	6.9±	1.7		
4000 ppm	10	4.6±	0.5	122±	2	8.8±	0.2	7.6±	1.9		
Mqq 0008	10	4.4±	0.3	123±	1	8.4±	0.3**	6.7±	0.8		
Significan	t difference;	* : P ≦ ().05	** : P ≤ 0.01				Test of Dun	nett	 , , , , , ,	
IIC1.074)					******					 	BAIS

APPENDIX B 7-4

BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE

STUDY NO. : 0235
ANIMAL : MOUSE BDF1
REPORT TYPE : A1
SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

roup Name	NO. of Animals	TOTAL F		ALBUMII g∕al		A/G RA	r10	T-BILI mg∕d£		GLUCOSE mg∕ell		T−CHOLE mg∕∈1ℓ	STEROL	TRIGLYC mg/dl	ERIDE
Control	10	5.6±	0.3	3.3±	0.1	1.5±	0.1	0.34±	0.10	148±	25	76±	10	44士	11
500 ppm	9	5.5±	0.3	3.2±	0.2	1.5±	0.1	0.30±	0.09	136±	20	72±	7	42±	7
1000 ppm	10	5.4±	0.2	3.2±	0.2	1.4±	0.1	0.33±	0.06	144±	22	68±	11	42±	11
2000 ppm	10	5.3±	0.3	3.2±	0.2	1.5±	0.1	0.30±	0.08	140±	21	68±	9	44±	11
4000 ppm	10	5.1±	0.3**	3.0±	0.2**	1.5±	0.1	0.33±	0.09	136士	16	66±	10	45±	8
8000 ppm	10	5.0±	0.2**	3.0±	0.1**	1.5±	0.1	0.30±	0.13	133±	16	64±	9	45土	7
	t difference ;	*: P ≦ 0	.05 *	* : P ≤ 0.0)1			Test of Du	nnett						
ICL074)															E

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 5

roup Name	NO. of Animals	GOT IU/e		GPT IU∕ℓ		I U / (e	ALP IU/0		CPK I U / 0		UREA N mg/ds	TROGEN	SODIUM mEq∕ℓ	
Control	10	64±	22	21±	5	299±	103	325±	40	71士	43	21.8±	3.7	155±	2
500 ppm	9	57±	10	17±	4	244±	48	298士	25	55±	18	20.9士	2.7	154±	2
1000 ppm	10	55±	9	17±	4	258±	38	302±	29	77±	37	21.0±	1.5	154±	1
2000 ppm	10	59±	16	15±	4*	279士	97	301±	31	76士	41	21.2±	2.8	154±	2
4000 ppm	10	54±	7	13±	2**	246士	46	291 ±	23	69±	45	21.9±	2.4	154±	1
mqq 0008	10	56±	14	13±	3**	272±	95	288±	35	89±	53	24.8±	5.0	154±	2

(HCL074)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 6

Group Name	NO. of Animals	POTASS:		CHLORIDE mEq/0		CALCIUM mg/dl	ſ	INORGAN mg∕dl	C PHOSPHORUS	
Control	10	4.9±	0.3	122±	2	9.0±	0.4	6.2±	1.0	
500 ppm	9	4.6±	0.2	122±	1	9,0±	0.3	5.8±	1.0	
1000 ppm	10	4.8±	0.4	122±	1	8.9±	0.4	5.8±	0.9	
2000 ppm	10	4.7±	0.3	123±	2	8.9±	0.4	6.4±	0.5	
4000 ppm	10	4.6±	0.5	123±	1	8.8±	0.3	7.2±	1.1	
8000 ppm	10	4.3±	0.3**	121±	2	8.7±	0.3	7.6±	0,7**	

(IICL074)

APPENDIX B 8-1

URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: MALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE : 013-6

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of	pll							Protein	Glucose	Ketane bady	Bilirubin
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5 CIII	- ± + 2+ 3+ 4+ Cill	- ± + 2+ 3+ 4+ CIII	- ± + 2+ 3+ 4+ CHI	- + 2+ 3+ CIII
Control	10	0	0	0	0	2	6	2	0 0 2 8 0 0	10 0 0 0 0 0	0 10 0 0 0 0	10 0 0 0
250 ppm	10	0	0	0	0	1	5	4	0 0 0 10 0 0	10 0 0 0 0 0	1 9 0 0 0 0	10 0 0 0
500 ppm	10	0	0	0	0	0	8	2	0 0 0 10 0 0	10 0 0 0 0 0	0 9 1 0 0 0	10 0 0 0
1000 ppm	10	0	0	0	0	2	6	2	0 0 2 8 0 0	10 0 0 0 0 0	0 9 1 0 0 0	10 0 0 0
2000 ppm	10	0	0	0	0	1	5	4	0 0 0 10 0 0	10 0 0 0 0 0	0 10 0 0 0 0	10 0 0 0
4000 ppm	10	0	0	0	0	0	5	5	0 0 0 9 1 0	10 0 0 0 0 0	0 10 0 0 0 0	10 0 0 0

(JCL101)

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6

SEX : MALE

REPORT TYPE: A1

Group Name NO. of Occult blood Urabilinagen Animals $-\pm + 2 + 3 + CIII$ ± + 2+ 3+ 4+ CIII Control 10 10 0 0 0 0 10 0 0 0 0 250 ppm 10 10 0 0 0 0 10 0 0 0 0 500 ppm 10 10 0 0 0 0 10 0 0 0 0 1000 ppm 10 10 0 0 0 0 10 0 0 0 0 2000 ppm 10 10 0 0 0 0 10 0 0 0 0 4000 ppm 10 10 0 0 0 0 10 0 0 0 0

Significent difference ; $*: P \leq 0.05$

 $** : P \leq 0.01$

Test of CHI SQUARE

(JCL101)

BAIS 2

PAGE: 2

APPENDIX B 8-2

URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: FEMALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6 SEX: FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of	pil							Prote	ein					G	Luch	58				Ketor	ne ho	dv			R	Biliru	hin		
	Animals	5.0	6.0	6,5	7.0	7.5	8.0	8.5 CHI	- ±			+ 3+	4+	CHI					3+ 4+	CHI		: + :			CHI				+ CIII	
Control	10	0	0	0	0	0	9	1	0 ()	9 :	1 0	0		1	0 0	0	0	0 0		5 8	5 0	0 (0 0		1	0 0	0)	
250 ppm	10	0	0	0	0	0	7	3	0 () 1	0 (0 0	0		1	0 0	0	0	0 0		4 (6 0	0 (0 0		1	0 0	0)	
500 ppm	10	0	0	0	0	0	8	2	0 ()	8 2	2 0	0		1	0 0	0	0	0 0		3	7 0	0 (0 0		1	0 0	0)	
1000 ppm	10	0	0	0	0	1	9	0	0 ()	6 4	1 0	0		1	0 0	0	0	0 0		2 8	3 ()	0 (0 0		1	0 0	0)	
2000 ppm	10	0	0	0	1	0	7	2	0 ()	3 ′	7 0	0	**	1	0 0	0	0	0 0		1 9	3 0	0 (0 0		1	0 0	0)	
4000 ppm	10	0	0	0	0	0	6	4	0 6)	3 7	7 0	0	**	1	0 0	0	0	0 0		0 10	0	0 (0 0	**	1	0 0	0)	
						.																								
Significen	t difference	; *:	P ≦	0.0	5	** ;	Ρ ≦	0.01						Tes	t of	CHI	SQU	ARE												
(JCL101)							***										-													 DATO

(JCL101)

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-6

SEX : FEMALE

REPORT TYPE : A1

SEX : FEMALE	REPORT	TYPE : A1			PAGE: 4
Group Name	NO. of Animals	Occult blood — ± + 2+ 3+ CIII	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0	10 0 0 0 0		
250 ppm	10	10 0 0 0 0	10 0 0 0 0		
500 ppm	10	10 0 0 0 0	10 0 0 0 0		
1000 ppm	10	10 0 0 0 0	10 0 0 0 0		
2000 ppm	10	10 0 0 0 0	10 0 0 0 0		
4000 ppm	10	10 0 0 0 0	10 0 0 0 0		
Significent	difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(JCL101)					BAIS 2

APPENDIX B 8-3

URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE

ANIMAL : MOUSE BDF1

SAMPLING DATE: 013-6

SEX : NALE

REPORT TYPE : A1

URINALYSIS

																																PAGE	
TOUR Name	NO. of Animals	pll_ 5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	Prote — ±			3+ 4	- + CH:		Glu			+ 3+	4+	CHI				3+ 4		:HI			lood 2+ 3	3+ (CHI	
																																	
Control	10	0	0	0	0	2	8	0		0 () 6	4	0	0		10	0	0 (0	0		0 1	10	0 0	0	0		10	0 (0	0		
500 ppm	10	0	0	0	0	4	6	0		0 (3	7	0	0		10	0	0 (0	0		0 1	10	0 0	0	0		10	0 (0	0		
1000 ppm	10	0	0	0	0	6	4	0		0 () 2	8	0	0		10	0	0 (0	0		0	9	1 0	0	0		10	0 (0	0		
2000 ppm	9	0	0	0	1	6	2	0	*	0 (0 0	9	0	0 **		9	0	0 (0	0		0	9	0 0	0	0		9	0 (0	0		
4000 ppm	10	0	0	2	6	2	0	0	**	0 (0 0	9	1	0 *		10	0	0 (0	0		0	9	1 0	0	0		10	0 (0	0		
8000 ppm	10	0	2	5	2	1	. 0	0	**	0 (0 0	8	2	0 **		10	0	0 (0	0		0 1	10	0 0	0	0		10	0 (0	0		

Significen	t difference	; *	: P :	≦ 0.0	5	**	: P ≦	0.01						Te	st of	: CII	I SÇ	UARI	Ē														
JCL101)										·																							B

ANIMAL : MOUSE BDF1

SAMPLING DATE: 013-6

SEX : MALE

REPORT TYPE : A1

URINALYSIS

SEX: MALE	REPORT	TYPE: A1		PAGE: 2
Group Name	NO, of Animals	Urobilinogen ± + 2+ 3+ 4+ CNI		
Control	10	10 0 0 0 0		
500 ppm	10	10 0 0 0 0		
1000 ppm	10	10 0 0 0 0		
2000 ppm	9	9 0 0 0 0		
4000 ppm	10	10 0 0 0 0		
mqq 0008	10	10 0 0 0 0	•	
Significen	t difference	$*: P \le 0.05$ $**: P \le 0.01$	Test of CIII SQUARE	
(JCL101)				BAIS 2

APPENDIX B 8-4

URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6

SEX : FEMALE

REPORT TYPE : A1

Group Name NO. of Protein_ Glucase Ketane body__ Occult blood Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CIII $-\pm + 2 + 3 + 4 + CIII$ $-\pm +2+3+4+$ CIII $-\pm + 2 + 3 + 4 + CIII$ - ± + 2+ 3+ CIII Control 10 0 0 1 1 5 3 0 0 1 9 0 0 0 10 0 0 0 0 0 1 9 0 0 0 0 10 0 0 0 0 500 ppm 10 0 1 2 4 2 1 0 0 10 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 1000 ppm 10 0 0 3 4 1 2 0 1 8 1 0 0 10 0 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 2000 ppm 10 0 0 2 2 5 1 0 0 2 8 0 0 ** 10 0 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 4000 ppm 10 3 1 2 4 0 0 0 3 7 0 0 ** 10 0 0 0 0 0 0 9 1 0 0 0 10 0 0 0 0 Mqq 0008 10 0 4 2 1 3 0 0 0 0 2 6 2 0 ** 10 0 0 0 0 0 0 6 4 0 0 0 10 0 0 0 0 Significent difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CIII SQUARE

(JCL101)

BAIS 2

PAGE: 3

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-6

SEX : FEMALE

SEX : FEMALE	REPORT	TYPE: AI		PAGE: 4
Group Name	NO. of Animals	Urabilinagen ± + 2+ 3+ 4+ CNII		
Control	10	10 0 0 0 0		
500 ppm	10	10 0 0 0 0		
1000 ppm	10	10 0 0 0 0		
2000 ppm	10	10 0 0 0 0		
4000 ppm	10	10 0 0 0 0		
8000 ppm	10	10 0 0 0 0		
Significent	difference	$*: P \leq 0.05$ $**: P \leq 0.01$	Test of CHI SQUARE	
(JCL101)				PAIC 2

APPENDIX B 9-1

GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344

REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	250 ppm 10 (%)	900 maja (%) 01	1000 pm 10 (%)
hymus	red zone		1 (10)	1 (10)	0 (0)	2 (20)
iver	nodule		0 (0)	0 (0)	0 (0)	1 (10)
	herniation		0 (0)	0 (0)	1 (10)	1 (10)

STUDY NO. : 0234 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE: 2

Organ	Findings	Group Name NO. of Animals	2000 ppm 10 (%)	4000 ppm 10 (%)	

thymus	red zone		1 (10)	0 (0)	
liver	nadule		0 (0)	0 (0)	
	herniation		0 (0)	0 (0)	
		•			
(HPT080)					BAIS 2

APPENDIX B 9-2

GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

RAT: FEMALE: SACRIFICED ANIMALS

ANIMAL : RAT F344 REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

: FEMALE SEX

Control 250 ppm 500 ppm Group Name 1000 ppm Findings_ 10 (%) 10 (%) 10 (%) Organ___ NO. of Animals 10 (%) subcutis 0 (0) 0 (0) 0 (0) mass 1 (10) liver nodule 0 (0) 0 (0) 0 (0) 1 (10) herniation 3 (30) 0 (0) 0 (0) 0 (0) (HPT080)

BAIS 2

PAGE: 3

STUDY NO. : 0234 ANIMAL : RAT F344

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 4

0rgan	Findings	Group Name NO. of Animals	2000 ppm 10 (%)	4000 ppm 10 (%)	
subcutis	mass		0 (0)	0 (0)	
liver	nodule		1 (10)	0 (0)	
	herniation		0 (0)	0 (0)	
(IIPT080)					BAIS2

APPENDIX B 9-3

GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE: DWAD AND MORIBUND ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE: A1 SEX : MALE GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

1000 ppm 0 (%) 2000 ppm 1 (%) Group Name Control 500 ppm Organ___ 0 (%) 0 (%) Findings_ NO. of Animals kidney atrophic - (-) ~ (-) - (-) 1 (100) hydronephrosis - (-) - (-) - (-) 1 (100) ureter di lated - (-) - (-) - (-) 1 (100) (IIPT080)

BAIS 2

PAGE: 1

ANIMAL, : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

mag 0008 Group Name 4000 ppm Organ____ Findings 0 (%) 0 (%) NO. of Animals kidney atrophic - (-) - (-) hydronephrosis - (-) - (-) - (-) ureter di lated - (-) (HPT080)

BAIS 2

PAGE: 2

APPENDIX B 9-4

GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

SEX : MALE

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	500 ppm 10 (%)	1000 ppm 10 (%)	9 (%) 9 (%)
spleen	black zone		0 (0)	2 (20)	0 (0)	0 (0)
idney	hydronephrosis		1 (10)	2 (20)	0 (0)	1 (11)
testis	absence		0 (0)	1 (10)	0 (0)	0 (0)

ANIMAL : MOUSE BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1
SEX : MALE

PAGE: 2

Organ	Findings	Group Name NO. of Animals	4000 ppm 10 (%)	8000 ppm 10 (%)	
spleen	black zone		0 (0)	0 (0)	
			0 (0)	0 (0)	
kidney	hydronephrosis		1 (10)	0 (0)	
testis	absence		0 (0)	0 (0)	
(HPT080)			~~···		BAIS 2

APPENDIX B 9-5

GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 3

Organ	Findings	Graup Name NO. of Animals	Control 10 (%)	500 ppm 10 (%)	1000 ppm 10 (%)	2000 ppm 10 (%)
spleen	black zone		0 (0)	0 (0)	1 (10)	0 (0)
idney	malposition		0 (0)	0 (0)	0 (0)	0 (0)
	hydronephrosis		0 (0)	0 (0)	0 (0)	0 (0)
terus	deformed		0 (0)	0 (0)	0 (0)	0 (0)
	dilated lumen		0 (0)	0 (0)	0 (0)	0 (0)

(IIPT080)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 4

Organ	Findings	Group Name NO. of Animals	4000 ppm 10 (%)	8000 ppm 10 (%)	
spleen	black zone		0 (0)	0 (0)	
idney	malposition		0 (0)	1 (10)	
	hydronephrosis		0 (0)	1 (10)	
terus	deformed		0 (0)	1 (10)	
	dilated lumen		0 (0)	1 (10)	

(HPT080)

APPENDIX B 10-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: MALE

STUDY NO.: 0234 ANIMAL : RAT F344
REPORT TYPE : A1

SEX : MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	Body W	Veight	THYM	US	ADRE	NALS	TEST	ES	HEAR'	ľ	LUNG	S	
Control	10	277±	22	0.240±	0.040	0.052±	0.011	2.725±	0.119	0.849±	0.064	1.012±	0.139	
250 ppm	10	258±	31	0.222±	0.034	0.054±	0.010	2.679±	0.203	0.800±	0.075	0.928±	0.107	
500 ppm	10	274土	21	0.239±	0.046	0.051±	0.009	2.751土	0.109	0.841士	0.066	0.955±	0.066	
1000 ppm	10	262±	23	0,234±	0.021	0.053±	0.010	2.672±	0.112	0.791±	0.067	0.893±	0.074	
2000 ppm	10	263±	11	0.234±	0.025	0.053±	0.010	2.732±	0.087	0.783±	0.034	0.901±	0.030	
4000 ppm	10	228±	1]**	0.189±	0.027**	0.053生	0.011	2.658±	0.075	0.707±	0.029**	0.824士	0.046**	
Significan	nt difference ;	* : P ≤ 0.0	5 **	: P ≤ 0.01			Test	of Dunnett						
HCL040)							·							DA

ANIMAL : RAT F344 REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	KIDNEYS		SPLEEN		LIVER		BRA	IN	 			***************************************
Control	10	1,714生	0.081	0.469±	0.021	6.800±	0.549	1.879±	0.066				
250 ppm	10	1.622±	0.160	0.450±	0.052	6.369±	0.882	1.875±	0.060				
500 ppm	10	1.722±	0.154	0.485±	0.028	6.727±	0.518	1.882±	0.034				
1000 ppm	10	1.654±	0.189	0.460±	0.047	6.396±	0.744	1.874±	0.064				
2000 ppm	10	1.718±	0.065	0.479±	0.025	6.617±	0.393	1,874±	0.036			٠	
4000 ppm	10	1.547±	0.083**	0.419±	0.021**	5.815±	0.272**	1.831±	0.043				
Significan	it difference ;	*: P ≦ 0.05	**:	P ≤ 0.01			Tes	t of Dunnet	<u></u>	 	· · · · · · · · · · · · · · · · · · ·		-
HCL040)										 			

(HCL040)

APPENDIX B 10-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: FEMALE

STUDY NO.: 0234 ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Body	Weight	THYM	US	ADRE	NALS	OVAR	IES	HEAR	Γ	LUNG	SS
Control	10	175±	11	0.213±	0.013	0.066±	0.014	0.110±	0.015	0.605±	0.029	0.738±	0.041
250 ppm	10	176±	12	0.197±	0.018	0.062±	0.012	0.109±	0.010	0.625±	0.053	0.765±	0.047
mag 002	10	170±	8	0.201±	0.016	0.056±	0.012	0.107±	0.013	0.605±	0.052	0.753±	0.033
1000 ppm	10	172±	11	0.203±	0.028	0,057±	0.013	0.104±	0.013	0.595±	0.050	0.778±	0.153
2000 ppm	10	164±	8*	0.190±	0.018*	0.052±	0.007*	0.101±	0.014	0.562±	0.035	0.702±	0.030
4000 ppm	10	153±	4**	0.179±	0.016**	0.054±	0.005	0.106±	0.020	0.543±	0.037*	0.685±	0.029**
Significan	t difference ;	* : P ≤ 0,0	05 **	: P ≤ 0.01			Test	of Dunnett				-	

(HCL040)

STUDY NO.: 0234 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

		K1DNEYS		SPLEEN		LIVER			
10	1.160±	0.063	0.353±	0.024	4.040±	0.334	1.770±	0.028	
10	1.173±	0.071	0.364±	0.029	4.090±	0,408	1.776±	0.033	
10	1.167±	0.054	0.367±	0.026	3.977±	0.274	1.771±	0.032	
10	1.219±	0.131	0.386±	0.054	4.141±	0.824	1.728±	0.062	
10	1.175±	0.061	0.366±	0.021	3,864±	0.192	1.741±	0.029	
10	1.215±	0.037	0.356±	0.027	3.798±	0.142	1.726±	0.043	
	10 10 10	10 1.173± 10 1.167± 10 1.219± 10 1.175±	10 1.173± 0.071 10 1.167± 0.054 10 1.219± 0.131 10 1.175± 0.061	10 1.173± 0.071 0.364± 10 1.167± 0.054 0.367± 10 1.219± 0.131 0.386± 10 1.175± 0.061 0.366±	10 1.173± 0.071 0.364± 0.029 10 1.167± 0.054 0.367± 0.026 10 1.219± 0.131 0.386± 0.054 10 1.175± 0.061 0.366± 0.021	10	10	10	10

(HCL040)

APPENDIX B 10-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	29.9± 1.4	0.043± 0.009	0.013± 0.003	0.200± 0.028	0.138± 0.008	0.155± 0.009	
500 ppm	10	28.8± 2.6	0.038± 0.008	0.010± 0.003	0.210± 0.018	0.145± 0.007	0.160± 0.008	
1000 ppm	10	29.5± 1.8	0.036± 0.006	0.012± 0.002	0.208± 0.018	0.149± 0.006	0.162± 0.009	
2000 ppm	9	28.2± 2.2	0.035± 0.005	0.012± 0.003	0.220± 0.021	0.147± 0.013	0.164± 0.016	
4000 ppm	10	25.6± 1.3**	0.033± 0.006**	0.011± 0.002	0.216± 0.020	0.139± 0.016	0.151± 0.011	
Mag 0008	10	24.0± 0.9**	0.026± 0.006**	0.009± 0.002	0.221± 0.028	0.128± 0.007	0.153± 0.008	
Significar	nt difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Tes	t of Dunnett			DA

(IICL040)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

roup Name	NO. of Animals	KIDNE	YS	SPLI	EEN	LIV	ER	BRA		
Control	10	0.429± (0.035	0.047±	0.004	1.109±	0.056	0.445±	0.011	
500 ppm	10	0.562±	0.326	0.047±	0.010	1.108±	0.074	0.440±	0.016	
1000 ppm	10	0.425±	0.022	0.046±	0.007	1.128±	0.065	0.448±	0.015	
2000 ppm	9	0.555±	0,377	0.045±	0.009	1.090±	0.085	0.442±	0.017	
4000 ppm	10	0.410±	0.025	0.042±	0.006	0.996±	0.057**	0.447±	0.011	
mag 0008	10	0.412±	0.020	0.038±	0.006*	0.937±	0.057**	0.448±	0.012	

(HCL040)

APPENDIX B 10-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

iroup Name	NO. of Animals	Body Weight	THYMU	JS	ADRE	NALS	OVAR	IES	HEAR	r	LUNG	S	
Control	10	20.3± 1.4	0.036±	0.006	0.012±	0.003	0.031±	0.010	0.117±	0.012	0.150±	0.010	
500 ppm	10	20.4± 0.8	0.038±	0.004	0.012±	0.003	0.035±	0.007	0.112±	0.009	0.155±	0.009	
1000 ppm	10	20.4± 0.8	0.039±	0.004	0.011±	0.003	0.035±	0.005	0.117±	0.011	0.149±	0.010	
2000 ppm	10	20.4± 0.9	0.037±	0.008	0.012±	0.003	0.031±	0.006	0.114±	0.011	0.150±	0.007	
4000 ppm	10	20.3主 0.6	0.036±	0.003	0.010±	0.002	0.030±	0.004	0.112±	0.010	0.142±	0.012	
mqq 0008	10	20.4± 1.1	0.035±	0.006	0.011±	0.003	0.027±	0.006	0.104±	0.011	0.138±	0.015	
Significan	nt difference;	*: P ≤ 0,05	**: P ≤ 0.01			Test	of Dunnett						
IICL040)													В

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX: FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	KIDi	NEYS	SPL	EEN	LIV	ER	BRA	IN			
Control	10	0.270±	0.027	0.047±	0.011	0.824±	0.075	0.457±	0.014			
500 ppm	10	0.274±	0.019	0.052±	0.008	0.834±	0.052	0.457±	0.010			
1000 ppm	10	0.283±	0.018	0.048±	0.005	0.845±	0.060	0.458±	0.017			
2000 ppm	10	0.293±	0.021	0.042±	0.006	0.825±	0.034	0.455±	0.015			
mqq 0004	10	0.316±	0.014**	0.046±	0.008	0.832±	0.034	0.452±	0.014		•	
mag 0008	10	0.364±	0.144**	0.047±	0.011	0.813±	0.072	0.441±	0.015			
Significan	t difference ;	* : P ≤ 0.0)5 ** :	P ≤ 0.01			Τe	est of Dunnet	t			

(HCL040)

APPENDIX B 11-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: MALE

STUDY NO. : 0234 ANIMAL : RAT F344 REPORT TYPE : A1 ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

SEX: MALE UNIT: %

PAGE: 1

Group Name	NO. of Animals	Bady Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	277± 22	0.086± 0.012	0.019± 0.005	0.989± 0.080	0.308± 0.025	0.368± 0.066	
250 ppm	10	258± 31	0.086± 0.009	0.021± 0.004	1.044± 0.071	0.311± 0.011	0.361± 0.028	
500 ppm	10	274土 21	0.087± 0.012	0.019± 0.003	1.005± 0.050	0.307± 0.017	0.349± 0.017	
1000 ppm	10	262士 23	0.090± 0.010	0.020± 0.003	1.026± 0.099	0.302± 0.013	0.341± 0.015	
2000 ppm	10	263± 11	0.089± 0.009	0.020± 0.004	1.042± 0.055	0.298± 0.011	0.343± 0.015	
4000 ppm	10	228± 11**	0.083± 0.010	0.024± 0.005	1.168± 0.050**	0.310± 0.010	0.362± 0.011	
Significal	nt difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			r
(IICI 042)						, ,		RAICS

(IICL042)

STUDY NO. : 0234 ANIMAL : RAT F344

REPORT TYPE: A1
SEX: MALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 2

	NO. of Animals	KIDNEYS	SPLEUN	LIVER	BRAIN	
Control	10	0.621± 0.037	0.170± 0.009	2.463± 0.196	0.682± 0.045	
250 ppm	10	0.630± 0.015	0.175± 0.009	2.462± 0.095	0.735± 0.084	
500 ppm	10	0.628± 0.028	0.177± 0.007	2.452± 0.060	0.689± 0.047	
1000 ppm	10	0.630± 0.031	0.176± 0.009	2.434± 0.131	0.717± 0.044	
2000 ppm	10	0.655± 0.030	0.182± 0.010**	2.518± 0.066	0.715± 0.037	
4000 ppm	10	0.678± 0.015**	0.184± 0.005**	2.552± 0.073*	0.804± 0.032**	

(HCL042)

APPENDIX B 11-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: FEMALE

STUDY NO.: 0234 ANIMAL: RAT F344 REPORT TYPE: A1

SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 3

10	175±	11	0.122± 0.008	0.038± 0.007	0.063± 0.007	0.347± 0.014	0.423± 0.022	
10	176±	12	0.112± 0.009	0.036± 0.007	0.062± 0.003	0.355± 0.016	0.436± 0.022	
10	170±	8	0.118± 0.011	0.033± 0.006	0.063± 0.008	0.355± 0.018	0.443± 0.019	
10	172±	11	0.118± 0.013	0.033± 0.007	0.060± 0.007	0.345± 0.012	0.450± 0.064	
10	164±	8*	0.116± 0.013	0.032± 0.005	0.062± 0.009	0.344± 0.014	0.430± 0.017	
10	153±	4**	0.118± 0.010	0.035± 0.003	0.069± 0.013	0.355± 0.020	0.449± 0.012	
	10 10 10 10	10 176± 10 170± 10 172± 10 164±	10 176± 12 10 170± 8 10 172± 11 10 164± 8*	10	10	10	10	10

(IICI.042)

STUDY NO. : 0234 ANIMAL : RAT F344

REPORT TYPE: A1 SEX: FEMALE UNIT: % ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.665± 0.031	0.202± 0.008	2.311± 0.092	1.016± 0.049	
250 ppm	10	0.668± 0.015	0.207± 0.010	2.322± 0.089	1.014± 0.067	
500 ppm	10	0.686± 0.030	0.216± 0.013	2.336± 0.099	1.042± 0.043	
1000 ppm	10	0.707± 0.043	0.224± 0.019**	2.395± 0.344	1.006± 0.051	
2000 ppm	10	0.719± 0.022*	0.224± 0.012**	2.364± 0.047	1.067± 0.048	
4000 ppm	10	0.796± 0.017**	0.233± 0.013**	2.490± 0.099**	1.131± 0.032**	

(IICL042)

APPENDIX B 11-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : AI

SEX: MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	Body Weight (g)	TIIYMUS	ADRENALS	TESTES	HEART	LUNGS
Contral	10	29.9± 1.4	0.143± 0.026	0.042± 0.011	0.670± 0.093	0.462± 0.037	0.520± 0.041
500 ppm	10	28.8± 2.6	0.132± 0.025	0.037± 0.012	0.727± 0.098	0.505± 0.035	0.560± 0.062
1000 ppm	10	29.5± 1.8	0.123± 0.018	0.039± 0.008	0.708± 0.078	0.507± 0.034	0.551± 0.045
2000 ppm	9	28.2± 2.2	0.125± 0.012	0.043± 0.013	0.783± 0.077*	0.525± 0.048**	0.584± 0.069*
4000 ppm	10	25.6± 1.3**	0.129± 0.019	0.041± 0.009	0.844± 0.076**	0.542士 0.052**	0.593± 0.060*
mqq 0008	10	24.0± 0.9**	0.110± 0.023**	0.038± 0.010	0.922± 0.104**	0.532± 0.025**	0.636± 0.028**
Significan	nt difference;	*: P ≤ 0.05 **:	: P ≤ 0.01	Tes	t of Dunnett		

(IICL042)

ANIMAL : MOUSE BDF1

REPORT TYPE: A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.439± 0.143	0.157± 0.014	3.709± 0.127	1.493± 0.098	
500 ppm	10	1.964± 1.149	0.165± 0.033	3.861± 0.243	1.539± 0.146	
1000 ppm	10	1.441± 0.065	0.154± 0.016	3.826± 0.172	1.522± 0.097	
2000 ppm	9	2.040± 1.603	0.160± 0.040	3.873± 0.095	1.581± 0.164	
4000 ppm	10	1.604± 0.086*	0.165± 0.022	3.895± 0.103	1.752± 0.085**	
mqq 0008	10	1.720± 0.052**	0.156± 0.019	3.906士 0.189	1.868± 0.065**	

APPENDIX B 11-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	20.3± 1.4	0.178± 0.021	0.058± 0.011	0.152± 0.046	0.574± 0.037	0.741± 0.070	
500 ppm	10	20.4± 0.8	0.186± 0.017	0.057± 0.015	0.169± 0.033	0.549士 0.041	0.759± 0.050	
1000 ppm	10	20.4± 0.8	0.192± 0.016	0.055± 0.011	0.172± 0.024	0.575± 0.051	0.734± 0.057	
2000 ppm	10	20.4± 0.9	0.179± 0.037	0.058± 0.017	0.151± 0.031	0.560± 0.046	0.737± 0.035	
4000 ppm	10	20.3± 0.6	0.175± 0.015	0.047± 0.012	0.149± 0.016	0.551± 0.048	0.698± 0.051	
maq 0008	10	20.4± 1.1	0.170± 0.023	0.053± 0.017	0.131± 0.028	0.510± 0.039**	0.673± 0.051*	
Significar	nt difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			
(IICL042)								

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.332± 0.067	0.229± 0.047	4.059± 0.172	2.263± 0.160	
500 ppm	10	1.341± 0.074	0.252± 0.038	4.087± 0.170	2.241± 0.079	
1000 ppm	10	1.392± 0.087	0.237± 0.024	4.147± 0.165	2.253± 0.088	
2000 ppm	10	1.438± 0.081	0.205± 0.025	4.043± 0.180	2.233± 0.102	
4000 ppm	10	1.552± 0.064**	0.226± 0.038	4.093± 0.132	2.222± 0.036	
8000 ppm	10	1.799± 0.796**	0.227± 0.043	3.977± 0.217	2.160± 0.092	

(IICL042)

APPENDIX B 12-1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

STUDY NO. : 0234 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : MALE

ALL ANIMALS (0- 14W)

Group Name 250 ppm 500 ppm 1000 ppm Control No. of Animals on Study 10 10 10 10 (%) (%) (%) (%) (%) Findings (%) (%) [Respiratory system] nasal cavit <10> <10> <10> <10> 0 0 0 0 1 0 0 0 inflammation:squamous epithelium 0 0 0 0 0 0 0 0 (0) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] thymus <10> <10> <10> <10> 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 congestion (10) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) [Circulatory system] heart <10> <10> <10> <10> 2 0 0 0 4 0 0 0 2 0 0 0 3 0 0 0 granulation (40) (0) (0) (0) (20) (0) (0) (0) (30) (0) (0) (0) (20) (0) (0) (0) [Digestive system] liver <10> <10> <10> 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 herniation (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (10) (0) (0) (0) <10> pancreas <10> <10> 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 atrophy (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Ma rked 4 : Severe

(a)

b

(c)

a: Number of animals examined at the site

Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square

b: Number of animals with lesion

c: a / b * 100

PAGE: 1

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE

PAGE: 2

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	2000 ppm 10 2 3 4 (%) (%) (%)	1000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Respiratory	system]				
nasal cavit	inflammation:squamous epithelium	0 (0)	<10> 0 0 0 (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	
[Hematopoieti	c system]				
thymus	congestion	(0)	<10> 0 0 0 (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
[Circulatory	system]				
heart	granulation	2 (20)	<10> 0 0 0 (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	
[Digestive sy	vstem]				
liver	herniation	0 (0)		(10) 0 0 0 0 (0) (0) (0) (0)	
pancreas	atrophy	0 (0)	<10> 0 0 0 (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	
Grade <a> > b <a> c > c	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c:a/b*100 difference: *: P ≤ 0.05 **: P				

(HPT150)

STUDY NO. : 0234 ANIMAL : RAT F344

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE : 3

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

Group Name Control 250 ppm 500 ppm 1000 ppm No. of Animals on Study 10 10 10 10 Findings [Urinary system] kidney <10> <10> <10> <10> basophilic change 1 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (10) (0) (0) (0) (10) (0) (0) (0) easinaphilic body 10 (90) (10) (0) (0) (60) (30) (0) (0) (100) (0) (0) (0) (60) (30) (0) (0) ossification (0)(0)(0)(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) [Endocrine system] thyroid <10> <10> <10> <10> ultimibranchial body remanet 0 0 0 0 0 0 0 0 0 1 0 0 0 (30) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) [Reproductive system] prostate <10> inflammation 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) [Special sense organs/appandage] Harder gl <10> <10> lymphocytic infiltration 0 0 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) (0)(0)(0)(0) Grade 3 : Ma rked 1 : Slight 2 : Moderate 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:a/b*100Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

STUDY NO. : 0234 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL, ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

PAGE: 4

Organ	No	Oup Name 2000 ppm . of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sys	tem]			
kidney	basophilic change	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	
	easinophilic body	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	
	ossification	0 0 0 0 0	1 0 0 0 0 (10) (10) (10)	
[Endocrine s	system]			
thyroid	ultimibranchial body remanet	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
[Reproduction	ve system]			
prostate	inflammation	0 0 0 0 (0) (0) (0) (0)	(10) 0 1 0 0 (0) (10) (0) (0)	
[Special ser	nse organs/appandage]			
Narder gl	lymphocytic infiltration	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	
Grade (a> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: a / b * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$			

APPENDIX B 12-2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0234 ANIMAL : RAT F344

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 5

OLA .	PENALE				rwer +
Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	250 ppm 10 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 1 2 3 4 (%) (%) (%) (%)
(Respiratory	system]				
nasal cavit	inflammation:squamous epithelium	(10) 4 1 0 0 (40) (10) (0) (0)	5 1 0 0 (50) (10) (0) (0)	1 0 0 0 (10) (0) (0) (0)	4 0 0 0 (40)(0)(0)(0)
	inflammation:respiratory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)
lung	bronchiolar-alveolar cell hyperplasia	(0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Hematopoiet	ic system]				
bone marrow	granulation	2 1 0 0 (20) (10) (0) (0)	3 0 0 0 (30) (0) (0) (0)	<10> 1 1 0 0 (10) (10) (0) (0)	3 3 0 0 (30) (30) (0) (0)
[Circulatory	system]				
heart	granulation	2 0 0 0 (20) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0
[Digestive s	ystem]				
liver	herniation	2 0 0 0 (20) (0) (0) (0)	(10) (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
Grade	1: Slight 2: Moderate	3 : Marked 4 : Severe			

<a>> a: Number of animals examined at the site

b b : Number of animals with lesion

(c)

c:a/b*100

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE: A1

ALL ANIMALS (0- 14W)

: FEMALE PAGE: 6 Group Name 2000 ppm 4000 ppm No. of Animals on Study 10 10 Findings_ [Respiratory system] nasal cavit <10> <10> inflammation: squamous epithelium 0 0 0 0 * 4 0 0 0 (0)(0)(0)(0) (40) (0) (0) (0) inflammation:respiratory epithelium 2 1 0 0 (20) (10) (0) (0) (0)(0)(0)(0) lung <10> <10> 0 0 0 0 bronchiolar-alveolar cell hyperplasia 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] bone marrow <10> 1 1 0 0 1 2 0 0 granulation (10) (20) (0) (0) (10) (10) (0) (0) [Circulatory system] heart <10> 0 0 0 0 granulation 1 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) [Digestive system] Liver <10> <10> 0 0 0 0 herniation 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Ma rked 4 : Severe <a>> a: Number of animals examined at the site b b: Number of animals with lesion

(c) c:a/b*100Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square STUDY NO. : 0234 ANIMAL : RAT F344

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 7

0rgan	Group Na No. of M Grade Findings	me Control nimals on Study 10 1 2 3 4 (%) (%) (%) (%)	250 ppm 10 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%)	1000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Digestive s	system]				
liver	granulation	3 0 0 0 (30) (0) (0) (0)		(10) 1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Endocrine s	system]				
thyroid	ultimibranchial body remanet	1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Special ser	nse organs/appandage]				
Marder gl	lymphocytic infiltration	1 0 0 0 (10) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	3 1 0 0 (30) (10) (0) (0)
Grade <a> b (c) Significant	1: Slight 2: Moderate 3: Marke a: Number of animals examined at the site b: Number of animals with lesion c: a / b * 100 difference; $*: P \le 0.05$ **: $P \le 0.01$				

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAI.: RAT F344
REPORT TYPE: A1

SEX : FEMALE

ALL ANIMALS (0- 14W)

PAGE: 8

Organ	M	roup Name 2000 ppm to. of Animals on Study 10 trade 1 2 3 4 (%) (%) (%) (%)	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Digestive s	cycton			
	sys temj			
liver	granulation	0 0 0 0 (0) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	
(Endocrine s	system]			
thyroid	ultimibranchial body remanet	0 0 0 0 (0) (0) (0) (0)	<10> 1 1 0 0 (10) (10) (0) (0)	
(Special ser	nse organs/appandage]			
Harder gl	lymphocytic infiltration	<10> 2 1 0 0 (20) (10) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	
Grade < a > b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: a / b * 100 difference; *: P ≤ 0.05 **: P ≤			
(HPT150)				 BAIS

APPENDIX B 12-3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: DEAD AND MORIBUND ANIMALS

STUDY NO. : 0235 ANIMAL.

: MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

PAGE: 1

Organ		oup Name Control of Animals on Study 0 ade 1 2 3 4 (%) (%) (%) (%)	500 ppm 0 1 2 3 4 (%) (%) (%) (%)	1000 ppm 0 1 2 3 4 (%) (%) (%) (%)	2000 ppm 1 1 2 3 4 (%) (%) (%) (%)
[Nematopoi	etic system]				
spleen	deposit of hemosiderin	(-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	0 i 0 0 (0) (100) (0) (0)
(Circulato	ry system]		Ą		·
heart	necrosis:focal	< 0> (-) (-) (-) (-)	(-) (-) (-)	(-) (-) (-)	0 1 0 0 (0) (100) (0) (0)
(Urinary s	ystem]				
kidney	inflammatory polyp	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	0 1 0 0 (0) (100) (0) (0)
	hydronephrasis	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	0 0 1 0 (0) (100) (0)
Grade (a> b (c)	1: Slight 2: Moderate 3: Namber of animals examined at the site b: Number of animals with lesion c: a/b*100	Marked 4 : Severe			

F ...

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : NALE

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0- 14W)

PAGE: 2

Group Name 4000 ppm mag 0008 No. of Animals on Study 0 0 Findings____ [Hematopoietic system] spleen < 0> deposit of hemosiderin (-) (-) (-) (-) (-) (-) (-) [Circulatory system] heart necrosis:focal (-) (--) (--) (-) (-) (-) [Urinary system] kidney < 0> < 0> inflammatory polyp (-) (-) (-) (-) (-) (-) (-) hydronephrosis (-) (-) (-) (-) (-) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a : Number of animals examined at the site b b: Number of animals with lesion (c) c:a/b*100(HPT150) BAIS2

d .

APPENDIX B 12-4

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: SACRIFICED ANIMALS

STUDY NO. : 0235 REPORT TYPE : A1

SEX

ANIMAL : MOUSE BDF1

: MALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 1

		Group Name Control No. of Animals on Study 10 Grade 1 2 3 4	500 ppm 10 1 2 3 4	1000 ppm 10 1 2 3 4	2000 ppm 9 1 2 3 4
)rgan	Findings	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
Hematopoietic	: system]				
pleen	deposit of melanin	(10) 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0)
Digestive sys	rtem]				
liver	necrosis: focal	(10> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	granulation	4 0 0 0 0 (40) (40) (60)	3 0 0 0 0 (30) (0) (0)	3 0 0 0 0 (30) (0) (0)	2 0 0 0 0 (22) (0) (0) (0)
pancreas	granulation	(10) 1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (·0)	(0) (0) (0) (0)
(Urinary syste	om]				
idney	inflammatory polyp	(10> 0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0)
	vacuolization of proximal tubule	10 0 0 0 (100) (0) (0) (0)	8 0 0 0 0 (80) (80) (0) (0)	7 0 0 0 (70) (0) (0) (0)	7 0 0 0 (78) (0) (0) (0)

 $A^{(i)} = A^{(i)}$

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

PAGE: 2

Organ		Group Name 4000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	8000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Hematopoiet	ic system]			
spleen	deposit of melanin	(0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	
[Digestive s	ystem]		¥	
liver	necrosis:focal	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	
	granulation	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
pancreas	granulation	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
[Urinary sys	tem]			
kidney	inflammatory polyp	(0) (0) (10) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	vacuolization of proximal tubule	2 0 0 0 ** (20) (0) (0) (0)	0 0 0 0 **	
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: a / b * 100 difference; *: P ≤ 0.05 **: P ≤			

(IIPT150)

STUDY NO. : 0235 ANIMAL : MOUSE BDF1

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : MALE

PAGE: 3

Organ	No	roup Name	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 10 (%) (%) (%) (%)	2000 ppm 9 1 2 3 4 (%) (%) (%) (%)
[Urinary syste	em]				
kidney	hydronephrosis	<10> 0 0 1 0 0 0 (0) (10) (0)	<10> 0 0 2 0 (0) (0) (20) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
urin bladd	inflammation	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8) ; 0 1 0 0 (0) (13) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
[Endocrine sy:	stem]				
pituitary	Rathke pouch	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(11) (0) (0) (0)
parathyroid	cyst	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
adrenal	accesory cortical nodule	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(0)(0)(0)(0)
[Reproductive	system]				•
testis	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant d	1 : Slight 2 : Moderate 3 : a : Number of animals examined at the sit b : Number of animals with lesion c : a / b * 100 lifference ; * : $P \le 0.05$ ** : $P \le 0.05$				

(IIPT150)

BA1S2

ANIMAL : MOUSE BDF1 REPORT TYPE : A1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

SEX : MALE PAGE: 4 4000 ppm maa 0008 Group Name No. of Animals on Study 10 10 Organ____ Findings [Urinary system] kidney <10> 0 0 0 0 hydronephrosis 0 0 1 0 (0) (0) (10) (0) (0)(0)(0)(0) urin bladd 0 0 0 0 <10> inflammation 0 0 0 0 (0)(0)(0)(0) (0) (0) (0) (0) [Endocrine system] pituitary <10> <10> 0 0 0 0 0 0 0 0 Rathke pouch (0)(0)(0)(0) (0)(0)(0)(0) parathyroid <10> 0 0 0 0 0 0 0 0 cyst (0)(0)(0)(0) (0)(0)(0)(0) adrena l <10> <10> 1 0 0 0 0 0 0 0 accesory cortical nodule (10) (0) (0) (0) (0)(0)(0)(0) [Reproductive system] testis <10>

0 0 0 0

(0)(0)(0)(0)

4 : Severe

1 0 0 0

(10) (0) (0) (0)

1 : Slight Grade 2 : Moderate (a)

atrophy

a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:a/b*100

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

3 : Na rked

(HPT150)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

SEX : MALE PAGE: 5

[Body cavities] adipose mineralization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Organ		up Name of Animals on Study de <u>1</u>	Control 10 2 3 (%) (%) (%)	<u>4</u> (%)	1 (%)	500 ppm 10 2 3 (%) (%		<u>1</u> (%)	1000 pr 10 2 (%)	3 4 (%) (%)	_1	000 ppm 9 2 3 (%) (%)	<u>4</u> (%)
dipose mineralization	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
mineralization	Body cauiti	es]												
(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(edipose			<10>			<10>			<102	>		< 9>	
(a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:a/b*100		mineralization			-							(11) ((0)
	(a) b	a: Number of animals examined at the siteb: Number of animals with lesion	arked 4: Sec	jere				મા						
Mantinoant difference : * • 1 = 0.00 ** • 1 = 0.01 lest of old addate			Al Toot of Chi Sa	ioro										
) AHIII I COHIL	difference, * \cdot r \geq 0.00 ** \cdot r \geq 0.	or rest at cut adr	аге										

(HPT150)

ANIMAL : MOUSE BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

REPORT TYPE : A1
SEX : MALE

SEX	: MALE			PAGE: 6
Organ	Findings	Group Name 4000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	8000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Body caviti	ies]			
adipose	mineralization	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at th b: Number of animals with lesion c: a / b * 100 difference; *: P ≤ 0.05 **:		ą	
(IIPT150)				BAIS2

1 .

APPENDIX B 12-5

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: FEMALE: SACRIFICED ANIMALS

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL : MOUSE BDF1 REPORT TYPE : A1 SEX

: FEMALE

PAGE: 7

Organ	Group Nam No. of An Grade Findings	Control imals on Study 10 10 10 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 10 (%) (%) (%) (%)	2000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Nematopoiet	ic system]				
spleen	deposit of melanin	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 1 0 0 (0) (10) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)
[Digestive s	ystem]				
salivary gl	mineralization	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
liver	granulation	5 0 0 0 (50) (0) (0) (0)	3 1 0 0 (30) (10) (0) (0)	7 0 0 0 (70) (0) (0) (0)	4 0 0 0 (40) (0) (0) (0)
pancreas	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
[Urinary sys	stem]				
kidney	hydranephrasis	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: a / b * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01				

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL. : MOUSE BDF1 REPORT TYPE : A1

SEX : FEMALE

PAGE: 8

Organ	No	roup Name 4000 ppm b. of Animals on Study 10 rade 1 2 3 4 (%) (%) (%) (%)	8000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Hematopoieti	ic systeml			
spleen	deposit of melanin	1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	extramedullary hematopoiesis	2 0 0 0 (20) (0) (0) (0)	(10) (0) (0) (0)	
[Digestive sy	ystem]			
salivary gl	mineralization	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
liver	granulation	<10> 2 0 0 0 (20) (0) (0) (0)	<10> 4 0 0 0 (40) (0) (0) (0)	
pancreas	atrophy	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
[Urinary syst	tem]			
kidney	hydronephrosis	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 1 0 (0) (0) (10) (0)	
Grade <a> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: a / b * 100 difference; $*: P \le 0.05$ **: $P \le$			
(HPT150)			('	R

(HPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

EEMALE

PAGE: 9

1

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 10 (%) (%) (%) (%)	2000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Urinary syste	em]				
urin bladd	inflammation	<10> 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
(Endacrine sys	stem]		¥		
adrena l	spindle-cell hyperplasia	<10> 8 0 0 0 (80) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	7 0 0 0 (70) (0) (0) (0)	7 0 0 0 (70) (0) (0) (0)
	accesory cortical nodule	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)
Nervous syste	em]				
spinal cord	epidermal cyst	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
[Special sense	e organs/appandage]				
еуе	keratitis	<10> 0 1 0 0 (0) (10) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
<a>> b (c)	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: a / b * 100 ifference; *: P ≤ 0.05 **: P				

(IIPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
SACRIFICED ANIMALS (14W)

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

SEX : FEMALE

PAGE: 10

7

Organ	Group Nam No. of Ar Grade Findings	1000 ppm 10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
[Urinary syst	tem]			
urin bladd	inflammation	<10> 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (10) (0) (0) (0)	
(Endocrine s	ystem]		٨	
adrenal	spindle-cell hyperplasia	10 0 0 0 (100) (0) (0) (0)	<10> 5 0 0 0 (50) (0) (0) (0)	
	accesory cortical nodule	1 0 0 0 0 (10) (10) (10)	1 0 0 0 0 (10) (10) (10)	
(Nervous syst	tem]			
spinal cord	epidermal cyst	(0) (0) (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
[Special sens	se organs/appandage]			
еуе	keratitis	(0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade (a) b (c) Significant	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: a / b * 100 difference; $*: P \le 0.05$ **: $P \le 0.01$		· · · · · · · · · · · · · · · · · · ·	

(HPT150)

APPENDIX B 13-1

IDENTITY OF GLYOXAL

(THIRTEEN-WEEK STUDIES)

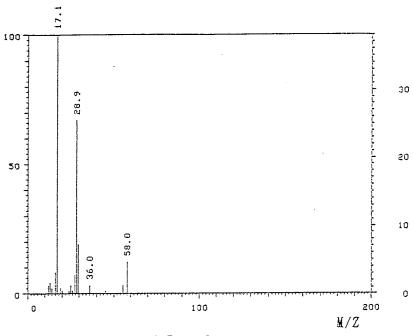
IDENTITY OF GLYOXAL (THIRTEEN-WEEK STUDIES)

Test Substance Lot No.: WDL5585

1. Spectral data

Mass Spectrometry

Instrument:


Hitachi M-80B Mass Spectrometer

Ionization:

EI(Electron Ionization)

Ionization Voltage:

70eV

Mass Spectrum of Test Substance

Results:	Determined	<u>Literature Value*</u>
	Molecular and Fragment Peak(M/Z)	Molecular and Fragment Peak(M/Z)
	58.0	58.0
	28. 9	29.0
	17. 1	17.0
		(*EPA/NIH Mass Spectral
		Data Base (1978) V. 1,
•		p. 7.)

2. Conclusions: The result of the mass spectrum agreed with the literature value. Consequently, the test substance was identified as glyoxal.

APPENDIX B 13-2

STABILITY OF GLYOXAL

(THIRTEEN-WEEK STUDIES)

STABILITY OF GLYOXAL (THIRTEEN-WEEK STUDIES)

Test Substance Lot No.: \DL5585

1. Sample storage: This lot was used from 1993.3.9 to 1993.6.23. Test substance

was stored at room temperature.

2. Gas Chromatography

Instrument:

Hewlett Packard 5890A Gass Chromatograph

Column:

Wethyl Silicone(0.2mm $\phi \times 50$ m)

Column Temperature:

200°C

Flow Rate:

1 ml/min

Detector:

FID(Flame Ionization Detector)

Injection Volume:

 $1 \mu 1$

Pre-Treatment:

Glyoxal was allowed to react with quinoxaline, and analyzed. First, 50% hydroxylammonium chloride(0.02ml). 36% hydrochloric acid(0.1ml), 4% o-phenylene diamine dihydrochloride(0.05ml) were added to a glyoxal solution (1ml). This mixture was stirred at 75°C for 0.5 hr. Then, this solution was extracted with ethyl acetate(2ml) and

analyzed.

Results:

Chromatogram indicated one major peak(peak No. 2) and solvent peak(peak No. 1) analyzed at 1993. 3. 1 and one major peak(peak No. 2) and solvent peak(peak No. 1) analyzed at 1993.6.24. The new treace impurity peak in

the test substance analyzed at 1993.6.24 was not

detected.

Date	Peak No.	Retention Time(min)	Retention Time Relative to Major Peak	Area (percent of Major peak)
1993.3.1 (date analyzed)	1 2	2.822(Solvent peak) 3.533	1.00	100
1993.6.24 (date analyzed)	1 2	2.82(Solvent peak) 3.532	1.00	100

3. Conclusions: The results indicated that the test sabstance did not change when stored in the dark at 5°C during this period(for about 15 weeks).

APPENDIX B 13-3 CONCENTRATION GLYOXAL IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

CONCENTRATION OF GLYOXAL IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

(Rat)

		Target Concentration(ppm)			
Date analyzed	250	500	1000	2000	4000
1993. 3. 23	257.0(102.8)*	518.4(103.7)	1064. 9(106. 5)	2134.0(106.7)	4286.0(107.2)

(Mouse)

		Target Concentration(ppm)			
Date analyzed	500	1000	2000	4000	8000
1993. 3. 9	496.8(99.4)*	996.3(99.6)	2034.2(101.7)	4020.1(100.5)	8007.6(100.1)

(*) % of target concentration

Analytical method: The sample were analyzed by the gas chromatography.

Instrument

: Hewlett Packard 5890A

Flow Rate

: lml/min

Column

Carrier

: METHYL SILICONE(0.2mm $\phi \times 50$ m)

Detector

: FID(Flame Ionization Detector)

Column Temperature: 200°C

: lle

Injection Volume

 $: 1 \mu 1$

Pre-Treatment

: Glyoxal was allowed to react with quinoxaline, and analyzed. First, 50% hydroxylammonium chloride(0.02ml), 36% hydrochloric acid(0.1ml), 4% o-phenylene diamine dihydrochloride(0.05ml) were added to a glyoxal solution(1ml). This mixture was stirred at 75°C for 0.5 hr. Then, this solution was extracted with ethyl acetate(2ml) and analyzed.

APPENDIX B 13-4 STABILITY OF GLYOXAL IN DRINKING WATER (THIRTEEN-WEEK STUDIES)

(Rat)

Target Concentration(ppm)				
Date analyzed	250	4000		
1993. 3. 1(a)	252.1	4107.0		
1993.3.8(b)	246.7	3986.6		
(OUSE)				
	Target Concentra	tion(ppm)		
Date analyzed	500	8000		
1993.3.1(a)	505.9	8186.2		
1993. 3. 8(b)	497.8	8086.0		

⁽a) Date of preparation

Analytical method: The sample were analyzed by the gas chromatography.

Instrument

: Hewlett Packard 5890A

Flow Rate

: 1ml/min

Column

: METHYL SILICONE(0.2mm $\phi \times 50$ m)

Detector

: FID(Flame Ionization Detector)

Column Temperature: 200°C

Injection Volume

 $: 1 \mu 1$

Carrier : lle

Pre-Treatment

: Glyoxal was allowed to react with quinoxaline, and analyzed. First, 50% hydroxylammonium chloride(0.02ml), 36% hydrochloric acid(0.1ml), 4% o-phenylene diamine dihydrochloride(0.05ml) were added to a glyoxal solution(1ml). This mixture was stirred at 75°C for 0.5 hr. Then, this solution was extracted with ethyl acetate(2ml) and analyzed.

⁽b) The stability of glyoxal in drinking water was established for 7 days when stored at 25°C.

${\bf APPENDIX} \ {\bf C} \ {\bf 1}$ ${\bf METHODS} \ {\bf FOR} \ {\bf HEMATOLOGY, BIOCHEMISTRY, AND} \ {\bf URINALYSIS}$

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS

Item	Method	Unit
Hematology		
Red blood cell (RBC)	Light scattering method 1)	$ imes 10^6 / \mu$ 1
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)	g/dl
Hematocrit (Hct)	Calculated as RBC×MCV/10 1)	%
Mean corpuscular volume (MCV)	Light scattering method 1)	fl
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC×10 1)	pg
Mean corpuscular hemoglobin		10
concentration (MCHC)	Calculated as Hgb/Hct×100 1)	g/dl
Platelet	Light scattering method 1)	$\times 10^3/\mu 1$
White blood cell (WBC)	Light scattering method 1)	$\times 10^3/\mu 1$
Differential WBC	Pattern recognition method ²⁾	%
	(May-Grunwald-Giemsa staining)	,-
Reticulocyte	Pattern recognition method 2)	‰
, a	(New methyleneblue staining)	, 55
Prothrombin time	Quick one stage method 3)	sec
Activated partial thromboplastin time	Ellagic acid activated method ³⁾	sec
(APTT)		
Biochemistry		
Total protein (TP)	Biuret method ⁴⁾	g/dl
Albumin (Alb)	BCG method ⁴⁾	g/dl
A/G ratio	Calculated as Alb/(TP-Alb) 4)	gui
T-bilirubin	Michaelson method 4)	mg/đl
Glucose	Enzymatic method (HK·G-6-PDH) 4)	mg/di
T-cholesterol	Enzymatic method (CEH·COD·POD) 4)	mg/dl
Triglyceride	Enzymatic method (GK·GPO·POD) 4)	mg/dl mg/dl
Phospholipid	Enzymatic method (PLD·COD·POD) 4)	mg/dl
Glutamic oxaloacetic transaminase (GOT)	1	IU/I
Glutamic pyruvic transaminase (GPT)	Karmen method ⁴⁾	IU/I
Lactate dehydrogenase (LDH)	Wroblewski-LaDue method 4)	IU/I
Alkaline phosphatase (ALP)	GSCC method ⁴⁾	IU/I
γ-Glutamyl transpeptidase (G-GTP)	L-γ-Glutamyl-p-nitroanilide substrate method 4)	IU/I
Creatine phosphokinase (CPK)	GSCC method 4)	IU/1
Urea nitrogen	Enzymatic method (Urease ·GLDH) 4)	mg/dl
Creatinine	Jaffe metod ⁴⁾	mg/dl
Sodium	Flame photometry 5)	mEq/l
Potassium	Flame photometry 5)	mEq/1
Chloride	Coulometric titration 5)	mEq/1 mEq/1
Calcium	OCPC method 4)	meq/i mg/dl
	Enzymatic method (SPL·PGM·G-6-PDH) 4)	_
Inorganic phosphorus	Enzymatic method (SrL-rGW-G-0-rDn)	mg/dl
Urinalysis		
pH,Protein,Glucose,Ketone	Urinalysis reagent paper metod 6)	
body,Bilirubin,		
Occult Blood, Urobilinogen		

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation, USA)
- 2) Automatic blood cell differntial analyzer (Hitachi 8200 : Hitachi ,Ltd.,Japan)
- 3) Automatic coagulometer (Amelung KC-10: Heinrich Amelung GmbH, Germany)
- 4) Automatic analyzer (Hitachi 705: Hitachi ,Ltd.,Japan)
- 5) Flame photometer (Hitachi 750 : Hitachi ,Ltd.,Japan)
- 6) Ames reagent strips for urinalysis (Multistix, Uro-Labstix: Miles Sankyo Co., Ltd., Japan)

${\it APPENDIX~C~2}$ UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

	TEST ITEM	DECIMAL PLACE	UNIT
HEMATOLOGY	Red blood cell	2	× 10 ⁶ / μ 1
	Hemoglobin	1	g/dl
	Hematocrit	1	%
	MCV	1	fi
	MCH	1	pg
	MCHC	1	g/dl
	Platelet	0	\times 10 ³ / μ 1
	Prothorombin time	1	sec.
	APTT	1	sec.
	White blood cell	2	× 10 ³ / μ 1
	Differential WBC	0	%
	Reticulocyte	1	%
BIOCHEMISTRY	Total protein	1	g/dl
	Albumin	1	g/dl
	A/G ratio	1	
	T-bilirubin	2	mg/dl
	Glucose	0	mg/dl
	T-cholesterol	0	mg/dl
	Triglyceride	0	mg/dl
	Phospholipid	0	mg/dl
	GOT	0	IU/1
	GPT	0	IU/1
	LDH	0	IU/I
	ALP	0	IU/I
	γ -GTP	0	IU/I
	CPK	0	IU/I
	Urea nitrogen	1	mg/dl
	Creatinine	1	mg/dl
	Sodium	0	mEq/l
	Potassium	1	mEq/l
	Chloride	0	mEq/l
	Calcium	1	mg/dl
	Inorganic phosphorus	1	mg/dl

}