Summary of Drinking Water Carcinogenicity Study of 2-Hydroxyethyl Acrylate in BDF1 Mice

September 2003

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on September 24, 2003.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Drinking Water Carcinogenicity Study of 2-Hydroxyethyl Acrylate in BDF1 Mice

Purpose, materials and methods

2-Hydroxyethyl acrylate (HEA, CAS No. 818-61-1) is a transparent liquid with a boiling point of 82°C and is soluble in water.

The carcinogenicity and chronic toxicity of HEA were examined in groups of 50 Crj:BDF1 mice of both sexes administered HEA in drinking water for 2 years (104 weeks). The drinking water concentration of HEA was 0, 750, 1500 or 3000 ppm (w/w) for male mice and 0, 500, 1500 or 4500 ppm for female mice. The highest dose levels were chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13week toxicity study. HEA was analyzed for purity and stability by both infrared spectrometry and gas chromatography before and after its use. The concentrations of HEA in drinking water were determined by gas chromatography at the time of preparation, and on the 4th, 8th and 11th days after preparation, while stored at room temperature. The animals were observed daily for clinical signs and mortality. Body weight, water consumption and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year administration period underwent complete necropsy. Urinalysis was performed near the end of the 2-year administration period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of dose-response relationship for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, water consumption, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

Body weights, water consumption and food consumption were decreased dose-dependently. There was no difference in survival rate between any HEA-administered group of either sex and the respective control.

The incidence of neoplastic lesions was not increased in any HEA-administered group of either sex. On the contrary, the incidences of hepatocellular carcinomas in the HEA-administered males, and pituitary adenomas and adenocarcinomas in the HEA-administered females were decreased. As non-neoplastic lesions, the incidence of forestomach squamous cell hyperplasia was increased in the 3000 ppm-administered males and in all the HEA-administered female groups. The incidence of urothelial desquamation of pelvis was increased in the 3000 ppm-administered males and in the females administered 1500 ppm and above. Respiratory metaplasia in the nasal gland was observed in all the HEA-administered male groups and in the females administered 1500 ppm and above.

A lowest-observed-adverse-effect-level (LOAEL) for the endpoint of forestomach squamous cell hyperplasia was estimated at 500 ppm (equivalent to 0.048 to 0.093 g/kg/day). A lower confidence limit of the benchmark dose yielding a response with 10% extra risk (BMDL₁₀) for the same endpoint was determined at 489 ppm.

Conclusions

In mice, there was no evidence of carcinogenic activity of HEA in males or females. The incidences of hepatocellular tumors in the HEA -administered males and pituitary tumors in the HEA -administered females were decreased. As non-neoplastic lesions, forestomach squamous cell hyperplasia, desquamation of pelvis and respiratory metaplasia of the nasal gland were observed

TABLES

TABLE 1	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 2	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 3	WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 4	WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 5	FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 6	FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 7	INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 8	INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 9	HEMATOLOGY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

TABLES (Continued)

TABLE 10	HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 11	BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 12	BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 13	URINALYSIS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 14	URINALYSIS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 15	ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 16	ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
TABLE 17	NEOPLASTIC LESIONS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 18	NEOPLASTIC LESIONS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)
TABLE 19	NONNEOPLASTIC LESIONS OF MALE AND FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

TABLES (Continued)

TABLE 20	CAUSE OF DEATH OF MALE AND FEMALE MICE IN THE 2-YEAR
	DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
mant not	TITOMODICAL COMPOST DAMA OF CHIRDRED AMODIACING
TABLE 21	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC
	LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj. BDF_1
	MALE MICE
TABLE 22	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC
	LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj. BDF_1
	FEMALE MICE

TABLE 1 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

		······································										
Group	Co	ontrol		750 g				1500 ppm			3000 ppm	
		50>	~	<50			a	<50>		a	<50>	
Week on Study	Survival No.	BW g	Survival No.	g	BW	%	Survival No.	BW g	%	Survival No.	BW g	%
	110.	, , , , , , , , , , , , , , , , , , ,		ъ								
0	50	23.0 (50)	50	23.0	(50)	100	50	23.0 (50)	100	50	23.0 (50)	100
1	50	23.6 (50)	50	23.4	(50)	99	50	23.4 (50)	99	50	22.8 (50)	97 **
2	50	24.6 (50)	50	24.6	(50)	100	50	24.6 (50)	100	50	23.8 (50)	97 **
3	50	25.2 (50)	49	25.0	(49)	99	50	25.2 (50)	100	50	24.3 (50)	96 **
4	50	25.8 (50)	49	26.0	(49)	101	50	25.6 (50)	99	50	24.8 (50)	96 **
5	50	26.9 (50)	49	26.7	(49)	99	50	26.1 (50)	97 **	50	25.3 (50)	94 **
6	50	27.6 (50)	49	27.2	(49)	99	50	26.2 (50)	95 **	50	25.1 (50)	91 **
7	50	28.6 (50)	49	28.0	(49)	98	50	27.2 (50)	95 **	50	26.0 (50)	91 **
8	50	29.2 (50)	49	28.7	(49)	98	50	27.6 (50)	95 **	50	26.3 (50)	90 **
9	50	29.8 (50)	49	29.2	(49)	98	50	28.4 (50)	95 **	50	26.9 (50)	90 **
10	50	30.8 (50)	49	30.4	(49)	99	50	29.1 (50)	94 **	50	27.3 (50)	89 **
11	50	32.1 (50)	49	31.3	(49)	98	49	30.0 (49)	93 **	50	27.9 (50)	87 **
12	50	32.3 (50)	49	31.5	(49)	98	49	30.1 (49)	93 **	50	28.1 (50)	87 **
13	50	33.2 (50)	49	32.4	(49)	98	49	31.1 (49)	94 **	50	29.1 (50)	88 **
14	50	33.4 (50)	49	32.5	(49)	97	49	31.2 (49)	93 **	50	29.1 (50)	87 **
18	50	36.2 (50)	49	35.4	(49)	98	49	33.5 (49)	93 **	50	30.9 (50)	85 **
22	50	38.1 (50)	49	36.7	(49)	96	49	34.5 (49)	91 **	50	31.7 (50)	83 **
26	50	40.1 (50)	49	38.5	(49)	96	49	35.8 (49)	89 **	50	32.7 (50)	82 **
30	50	41.9 (50)	49	40.0	(49)	95	49	36.9 (49)	88 **	50	33.5 (50)	80 **
34	50	42.7 (50)	49	41.0	(49)	96	49	37.5 (49)	88 **	50	33.9 (50)	79 **
38	50	44.2 (50)	49	42.2	(49)	95 *	49 .	38.4 (49)	87 **	50	34.7 (50)	79 **
42	50	44.9 (50)	49	43.3	(49)	96	49	39.4 (49)	88 **	50	35.6 (50)	79 **
46	50	46.5 (50)	49	44.7	(49)	96	49	40.3 (49)	87 **	50	36.4 (50)	78 **
50	50	47.4 (50)	49	45.6	(49)	96	49	40.8 (49)	86 **	50	37.0 (50)	78 **
54	50	48.1 (50)	49	46.3	(49)	96	49	41.7 (49)	87 **	49	37.9 (49)	79 **
58	49	48.5 (49)	49	46.4	(49)	96	49	41.4 (49)	85 **	49	38.3 (49)	79 **
62	49	49.4 (49)	48	48.0	(48)	97	49	42.5 (49)	86 **	49	39.3 (49)	80 **
66	49	50.5 (49)	47	48.7	(47)	96	49	42.6 (49)	84 **	49	39.3 (49)	78 **
70	49	51.1 (49)	47	49.1	(47)	96	48	42.9 (48)	84 **	47	39.5 (47)	77 **
74	49	51.1 (49)	47	48.4	(47)	95 *	47	42.8 (47)	84 **	46	39.2 (46)	77 **
78	47	51.2 (47)	46	48.8	(46)	95	46	42.9 (46)	84 **	45	$39.0 \left(\ 45 \ \right)$	76 **
82	46	51.4 (46)	46	48.8	(46)	95 *	46	43.0 (46)	84 **	44	39.0 (44)	76 **
86	46	51.2 (46)	44	47.9	(44)	94 *	45	42.0 (45)	82 **	44	38.3 (44)	75 **
90	45	51.8 (45)	43	47.8	(43)	92 **	44	42.0 (44)	81 **	44	38.6 (44)	75 **
94	43	52.0 (43)	40	47.3	(40)	91 **	43	41.4 (43)	80 **	44	38.0 (44)	73 **
98	43	50.7 (43)	36	47.1	(36)	93	41	41.3 (41)	81 **	44	37.7 (44)	74 **
102	38	51.0 (38)	36	45.9	(36)	90	41	40.8 (41)	80 **	44	37.5 (44)	74 **
104	37	51.1 (37)	36	45.8	(36)	90 **	38	40.4 (38)	79 **	43	37.4 (43)	73 **

< >: No.of effective animals, (): No.of measured animals %:% of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 2 SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	C	ontrol		500 ppm			1500 ppm			4500 ppm	
-	· · · · · · · · · · · · · · · · · · ·	<50>	<50>				<49>			<50>	
Week	Surviva	l BW	Survival	BW	r	Survival	BW		Survival	BW	
on Study	No.	g	No.	g	<u></u> %	No.	g	% 	No.	g	%
0	50	18.9 (50)	50	18.9 (50) 100	49	18.9 (49)	100	50	18.9 (50)	100
1	50	19.4 (50)	50	18.9 (50) 97	49	19.3 (49)	99	50	18.5 (50)	95 **
2	50	19.8 (50)	50	20.0 (50) 101	49	19.8 (49)	100	50	19.2 (50)	97 **
3	50	20.2 (50)	50	20.2 (50) 100	49	20.2 (49)	100	50	19.7 (50)	98 **
4	50	21.0 (50)	50	21.2 (50) 101	49	21.1 (49)	100	50	20.1 (50)	96 **
5	50	21.4 (50)	50	21.5 (50) 100	49	21.3 (49)	100	50	20.6 (50)	96 **
6	50	21.9 (50)	50	21.9 (50) 100	49	21.9 (49)	100	50	21.1 (50)	96 **
7	50	22.4 (50)	50	22.5 (50) 100	49	22.4 (49)	100	50	21.6 (50)	96 **
. 8	50	22.8 (50)	50	22.7 (50) 100	49	22.6 (49)	99	50	21.8 (50)	96 **
9	50	23.3 (50)	50	23.2 (50) 100	49	23.1 (49)	99	50	22.5 (50)	97 **
10	50	23.4 (50)	50	23.4 (50) 100	49	23.1 (49)	99	50	22.4 (50)	96 **
11	50	24.0 (50)	50	24.0 (50) 100	49	23.6 (49)	98	50	23.0 (50)	96 **
12	50	24.0 (50)	50	24.0 (50) 100	49	23.5 (49)	98	50	23.0 (50)	96 **
13	50	24.4 (50)	50	24.3 (50) 100	49	24.0 (49)	98	50	23.2 (50)	95 **
14	50	24.6 (50)	50	24.4 (50) 99	49	23.9 (49)	97 *	50	23.3 (50)	95 **
18	50	26.0 (50)	50	25.6 (50) 98	49	24.6 (49)	95 **	50	23.9 (50)	92 **
22	50	26.6 (50)	50	26.5 (50) 100	49	25.4 (49)	95 **	50	24.5 (50)	92 **
26	49	27.9 (49)	50	27.6 (50) 99	49	26.4 (49)	95 **	50	25.0 (50)	90 **
30	49	29.0 (49)	50	28.4 (50) 98	49	26.6 (49)	92 **	50	25.2 (50)	87 **
34	49	29.4 (49)	50	28.8 (50) 98	49	26.7 (49)	91 **	50	25.5 (50)	87 **
38	49	29.8 (49)	50	29.7 (50) 100	49	27.1 (49)	91 **	50	25.8 (50)	87 **
42	49	30.6 (49)	50	30.1 (50) 98	49	27.7 (49)	91 **	49	25.9 (49)	85 **
46	49	31.3 (49)	50	30.9 (50) 99	49	28.3 (49)	90 **	49	26.2 (49)	84 **
50	49	32.1 (49)	50	31.5 (50) 98	49	28.5 (49)	89 **	49	26.4 (49)	82 **
54	49	32.6 (49)	50	31.7 (50) 97	49	28.5 (49)	87 **	49	26.7 (49)	82 **
58	49	32.8 (49)	49	32.5 (49) 99	48	29.1 (48)	89 **	49	26.6 (49)	81 **
62	48	33.6 (48)	49	32.9 (49) 98	48	29.2 (48)	87 **	49	27.0 (49)	80 **
66	48	34.5 (48)	48	33.1 (48) 96	48	29.6 (48)	86 **	49	27.1 (49)	79 **
70	47	35.1 (47)	47	33.5 (47) 95	48	29.7 (48)	85 **	47	27.2 (47)	77 **
74	46	35.2 (46)	47	33.2 (47) 94	48	29.4 (48)	84 **	46	27.1 (46)	77 **
78	45	35.5 (45)	45	33.8 (45		48	30.1 (48)	85 **	46	27.2 (46)	77 **
82	44	36.1 (44)	45	34.1 (45) 94	47	29.6 (47)	82 **	45	27.5 (45)	76 **
86	43	34.8 (43)	43	33.7 (43		46	29.7 (46)	85 **	44	27.1 (44)	78 **
90	41	35.7 (41)	40	34.1 (40		43	30.1 (43)	84 **	42	27.0 (42)	76 **
94	39	36.0 (39)	35	33.6 (35) 93	39	30.3 (39)	84 **	41	27.2 (41)	76 **
98	38	36.5 (38)	30	33.6 (30		36	30.1 (36)	82 **	40	27.1 (40)	74 **
102	33	34.4 (33)	25	32.9 (25		27	29.6 (27)	86 **	38	26.8 (38)	78 **
104	31	34.6 (31)	24	33.3 (24		27	29.6 (27)	86 **	36	26.7 (36)	77 **

< >: No.of effective animals, (): No.of measured animals %: % of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 3 WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Cor	ntrol		750 ppm			:	1500 ppm			3000 ppm			
Week		<50>		<50>				<50>				<50>		
on Study	Survival	WC	Survival	WC			Survival	WC			Survival	WC		
	No.	g	No.	g 	<u></u> %		No.	g 	%		No.	g 	%	
1	50	4.5 (49)	50	3.6 (50)	80	**	50	3.1 (50)	69	**	50	2.5 (50)	56	**
2	50	4.4 (48)	50	3.5 (49)	80	**	50	2.8 (50)	64	**	50	2.2 (50)	50	**
3	50	4.4 (48)	49	3.6 (49)	82	**	50	2.8 (50)	64	**	50	2.3 (50)	52	**
4	50	4.4 (49)	49	3.5 (49)	80	**	50	2.8 (50)	64	**	50	2.3 (50)	52	**
5	50	4.5 (48)	49	3.5 (49)	78	**	50	2.9 (50)	64	**	50	2.4 (50)	53	**
6	50	4.3 (48)	49	3.6 (49)	84	**	50	3.0 (50)	70	**	50	2.3 (50)	53	**
7	50	4.4 (49)	49	3.7 (49)	84	**	50	2.9 (50)	66	**	50	2.5 (50)	57	**
8	50	4.3 (50)	49	3.4 (49)	79	**	50	2.7 (50)	63	**	50	2.3 (50)	53	**
9	50	4.2 (50)	49	3.3 (49)	79	**	50	2.6 (50)	62	**	50	2.3 (50)	55	**
10	50	4.1 (50)	49	3.2 (49)	78	**	50	2.5 (50)	61	**	50	2.3 (50)	56	**
11	50	4.0 (50)	49	3.2 (49)	80	**	49	2.6 (49)	65	**	50	2.2 (50)	55	**
12	50	3.9 (50)	49	3.1 (49)	79	**	49	2.6 (49)	67	**	50	2.2 (50)	56	**
13	50	3.7 (50)	49	3.1 (49)	84	**	49	2.6 (49)	70	**	50	2.2 (50)	59	**
14	50	3.8 (50)	49	3.1 (49)	82	**	49	2.5 (49)	66	**	50	2.2 (50)	58	**
18	50	3.5 (50)	49	3.0 (49)	86	**	49	2.4 (49)	69	**	50	2.1 (50)	60	**
22	50	3.3 (50)	49	2.8 (49)	85	**	49	2.4 (49)	73	**	50	2.1 (50)	64	**
26	50	3.6 (50)	49	3.0 (49)	83	**	49	2.5 (49)	69	**	50	2.1 (50)	58	**
30	50	3.6 (50)	49	3.1 (49)	86	**	49	2.6 (49)	72	**	50	2.1 (50)	58	**
34	50	3.6 (50)	49	3.1 (49)	86	**	49	2.5 (49)	69	**	50	2.2 (50)	61	**
38	50	3.7 (50)	49	3.1 (49)	84	**	49	2.6 (49)	70	**	50	2.2 (50)	59	**
42	50	3.8 (50)	49	3.3 (49)	87	**	49	2.8 (49)	74	**	50	2.3 (50)	61	**
46	50	3.9 (50)	49	3.4 (49)	87	**	49	2.8 (49)	72	**	50	2.4 (49)	62	**
50	50	3.8 (50)	49	3.3 (49)	87	**	49	2.7 (49)	71	**	50	2.3 (49)	61	**
54	50	3.9 (50)	49	3.5 (49)	90	**	49	2.8 (49)	72	**	49	2.4 (49)	62	**
58	49	4.1 (49)	49	3.4 (49)	83	**	49	2.8 (49)	68	**	49	2.4 (49)	59	**
62	49	4.1 (49)	48	3.6 (48)	88	**	49	2.9 (49)	71	**	49	2.5 (49)	61	**
66	49	4.3 (49)	47	3.6 (47)	84	**	49	3.0 (49)	70	**	49	2.6 (49)	60	**
70	49	4.4 (49)	47	3.6 (47)	82	**	48	3.0 (48)	68	**	47	2.6 (47)	59	**
74	49	4.2 (49)	47	3.6 (47)	86	**	47	3.0 (47)	71	**	46	2.6 (46)	62	**
78	47	4.3 (47)	46	3.6 (45)	84	**	46	3.1 (46)	72	**	45	2.7 (45)	63	**
82	46	4.3 (46)	46	3.5 (46)	81	**	46	3.0 (46)	70	**	44	2.5 (44)	58	**
86	46	4.5 (46)	44	3.7 (44)	82	**	45	3.0 (45)	67	**	44	2.6 (44)	58	**
90	45	4.7 (45)	43	4.0 (43)	85	**	44	3.2 (44)	68	**	44	2.7 (44)	57	**
94	43	4.6 (43)	40	3.9 (39)	85	**	43	3.2 (43)	70	**	44	2.8 (44)	61	**
98	43	4.8 (43)	36	4.0 (36)	83	*	41	3.3 (41)	69	**	44	2.8 (44)	58	**
102	38	4.9 (38)	36	4.0 (36)	82	**	41	3.4 (41)	69	**	44	2.8 (44)	57	**
104	37	4.7 (37)	36	4.0 (36)	85	*	38	3.3 (38)	70	**	43	2.7 (43)	57	**

TABLE 4 WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Con	Control		500 ppm			I	1500 ppm			4	4500 ppm		
Week	•	<50>	<50>			<49>				<50>				
on Study	Survival	WC	Survival	WC			Survival	WC			Survival	WC		
	No.	g	No.	g	%		No.	g 	%		No.	g	%	
1	50	4.3 (50)	50	3.4 (50)	79	**	49	3.0 (49)	70	**	50	2.0 (50)	47	**
2	50	4.7 (48)	50	3.7 (50)	79	**	49	2.9 (49)	62	**	50	1.9 (50)	40	**
3	50	4.3 (48)	50	3.5 (50)	81	**	49	2.9 (49)	67	**	50	2.0 (50)	47	**
4	50	4.0 (50)	50	3.2 (50)	80	**	49	2.7 (49)	68	**	50	1.8 (50)	45	**
5	50	4.3 (50)	50	3.3 (50)	77	**	49	2.7 (49)	63	**	50	1.9 (50)	44	**
6	50	4.2 (50)	50	3.3 (50)	79	**	49	2.7 (49)	64	**	50	2.0 (50)	48	**
7	50	4.3 (50)	50	3.4 (50)	79	**	49	2.9 (49)	67	**	50	2.1 (50)	49	**
8	50	4.3 (50)	50	3.4 (50)	79	**	49	2.7 (49)	63	**	50	2.0 (50)	47	**
9	50	4.2 (50)	50	3.3 (50)	79	**	49	2.7 (49)	64	**	50	2.1 (50)	50	**
10	50	4.3 (50)	50	3.3 (50)	77	**	49	2.7 (49)	63	**	50	2.1 (50)	49	**
11	50	4.4 (50)	50	3.4 (50)	77	**	49	2.8 (49)	64	**	50	2.1 (50)	48	**
12	50	4.3 (50)	50	3.4 (50)	79	**	49	2.7 (49)	63	**	50	2.1 (50)	49	**
13	50	4.2 (50)	50	3.3 (50)	79	**	49	2.8 (49)	67	**	50	2.1 (50)	50	**
14	50	4.1 (50)	50	3.3 (50)	80	**	49	2.7 (49)	66	**	50	2.1 (50)	51	**
18	50	3.9 (50)	50	3.2 (50)	82	**	49	2.5 (49)	64	**	50	2.0 (50)	51	**
22	50	3.9 (50)	50	3.1 (50)	79	**	49	2.4 (49)	62	**	50	1.8 (50)	46	**
26	49	3.8 (49)	50	3.0 (50)	79	**	49	2.6 (49)	68	**	50	1.5 (49)	39	**
30	49	3.9 (49)	50	3.1 (50)	79	**	49	2.6 (49)	67	**	50	1.9 (50)	49	**
34	49	4.0 (49)	50	3.2 (50)	80	**	49	2.6 (49)	65	**	50	2.1 (50)	53	**
38	49	3.9 (49)	50	3.2 (50)	82	**	49	2.4 (49)	62	**	50	1.9 (50)	49	**
42	49	4.0 (49)	50	3.2 (50)	80	**	49	2.5 (49)	63	**	49	2.0 (49)	50	**
46	49	3.9 (49)	50	3.1 (50)	79	**	49	2.5 (49)	64	**	49	2.0 (49)	51	**
50	49	4.1 (49)	50	3.2 (50)	78	**	49	2.5 (49)	61	**	49	2.0 (49)	49	**
54	49	4.0 (49)	50	3.2 (50)	80	**	49	2.5 (49)	63	**	49	2.1 (49)	53	**
58	49	4.1 (49)	49	3.2 (49)	78	**	48	2.6 (48)	63	**	49	2.2 (49)	54	**
62	48	4.1 (48)	49	3.1 (49)	76	**	48	2.5 (48)	61	**	49	2.1 (49)	51	**
66	48	4.4 (48)	48	3.4 (48)	77	**	48	2.7 (48)	61	**	49	2.2 (49)	50	**
70	47	4.1 (47)	47	3.2 (47)	78	**	48	2.7 (47)	66	**	47	2.1 (47)	51	**
74	46	4.2 (46)	47	3.2 (47)	76	**	48	2.6 (48)	62	**	46	2.1 (46)	50	**
78	45	4.1 (45)	45	3.3 (45)	80	**	48	2.6 (48)	63	**	46	2.2 (46)	54	**
82	44	4.1 (44)	45	3.2 (45)	78	**	47	2.9 (47)	71	**	45	2.1 (45)	51	**
86	43	4.1 (43)	43	3.6 (43)			46	2.9 (45)			44	2.2 (44)		
90	41	4.1 (41)	40	3.6 (40)			43	3.0 (42)			42	2.4 (42)		
94	39	4.4 (39)	35	3.5 (34)			39	3.1 (39)	70	**	41	2.6 (41)		
98	38	4.5 (38)	30	3.8 (30)			36	2.9 (36)	64	**	40	2.6 (40)		
102	33	4.8 (33)	25	3.5 (25)			27	3.1 (27)			38	2.6 (38)		
104	31	4.4 (31)	24	3.7 (24)			27	3.0 (27)			36	2.6 (36)		

< > : No.of effective animals, () : No.of measured animals % : % of control group
Significant Difference, *: $p \le 0.05$, ** : $p \le 0.01$, Test of Dunnett

TABLE 5 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Con	Control		750 ppm		1500 ppm	:	3000 ppm	
•		<50>		<50>		<50>		<50>	
Week	Survival	FC	Survival	FC	Survival	FC	Survival	FC	
on Study	No.	g	No.	g %	No.	g %	No.	g	%
1	50	3.8 (50)	50	3.7 (50) 9	7 50	3.7 (50) 97 *	50	3.5 (50)	92 **
2	50	3.7 (50)	50	3.6 (50) 9	7 50	3.6 (50) 97	50	3.5 (50)	95 **
3	50	3.8 (50)	49	3.8 (49) 10	0 50	3.6 (50) 95	50	3.4 (50)	89 **
4	50	3.8 (50)	49	3.8 (49) 10	0 50	3.7 (50) 97	50	3.6 (50)	95 **
5	50	4.0 (50)	49	4.0 (49) 10	0 50	3.6 (50) 90 **	50	3.5 (49)	88 **
6	50	3.9 (50)	49	3.7 (49) 9	5 * 50	3.5 (50) 90 **	50	3.4 (50)	87 **
7	50	3.9 (50)	49	3.8 (49) 9	7 50	3.7 (50) 95 *	50	3.5 (50)	90 **
8	50	4.1 (50)	49	4.0 (48) 9	8 50	3.8 (50) 93 **	50	3.6 (50)	88 **
9	50	4.0 (50)	49	3.9 (49) 9	8 50	3.8 (50) 95	50	3.6 (50)	90 **
10	50	4.1 (50)	49	4.2 (49) 10	2 50	3.9 (50) 95 **	50	3.7 (50)	90 **
11	50	4.1 (50)	49	4.0 (49) 9	8 49	3.9 (48) 95 **	50	3.7 (50)	90 **
12	50	4.1 (50)	49	4.0 (49) 9	8 49	3.9 (49) 95 **	50	3.6 (50)	88 **
13	50	4.0 (50)	49	4.1 (49) 10	3 49	4.0 (49) 100	50	3.8 (50)	95 **
14	50	4.2 (50)	49	4.1 (49) 9	8 49	3.9 (49) 93 **	50	3.7 (50)	88 **
18	50	4.1 (50)	49	4.1 (49) 10	0 49	3.9 (49) 95 **	50	3.7 (50)	90 **
22	50	4.2 (50)	49	4.1 (49) 9	8 49	3.9 (49) 93 **	50	3.9 (50)	93 **
26	50	4.3 (50)	49	4.2 (49) 9	8 49	4.1 (49) 95 *	50	3.9 (50)	91 **
30	50	4.4 (50)	49	4.4 (49) 10	0 49	4.1 (49) 93 **	50	3.9 (50)	89 **
34	50	4.4 (50)	49	4.4 (49) 10	0 49	4.2 (49) 95 **	50	4.0 (50)	91 **
38	50	4.5 (50)	49	4.4 (49) 9	8 49	4.3 (49) 96 **	50	4.0 (50)	89 **
42	50	4.5 (50)	49	4.5 (48) 10	0 49	4.4 (49) 98	50	4.2 (50)	93 **
46	50	4.6 (50)	49	4.6 (49) 10	0 49	4.4 (49) 96 **	50	4.2 (50)	91 **
50	50	4.5 (50)	49	4.5 (49) 10	0 49	4.3 (49) 96 **	50	4.2 (50)	93 **
54	50	4.6 (50)	49	4.5 (49) 9	8 49	4.2 (49) 91 **	49	4.1 (49)	89 **
58	49	4.6 (49)	49	4.5 (49) 9	8 49	4.1 (49) 89 **	49	4.1 (49)	89 **
62	49	4.7 (49)	48	4.6 (48) 9	8 49	4.4 (49) 94 **	49	4.3 (49)	91 **
66	49	4.9 (49)	47	4.7 (47) 9	6 49	4.4 (49) 90 **	49	4.2 (49)	86 **
70	49	4.8 (49)	47	4.7 (47) 9	8 48	4.4 (48) 92 **	47	4.2 (47)	88 **
74	49	4.8 (49)	47	4.7 (47) 9	8 47	4.4 (47) 92 **	46	4.3 (46)	90 **
78	47	4.8 (47)	46	4.7 (46) 9	8 46	4.4 (46) 92 **	45	4.2~(~45~)	88 **
82	46	4.9 (46)	46	4.8 (46) 9	8 46	4.5 (46) 92 **	44	4.3 (44)	88 **
86	46	4.8 (46)	44	4.6 (44) 9	6 45	4.3 (45) 90 **	44	4.2 (44)	88 **
90	45	5.0 (45)	43	5.0 (43) 10	0 44	4.6 (44) 92 **	44	4.4 (44)	88 **
94	43	5.1 (43)	40	5.0 (40) 9		4.6 (43) 90 **	44	4.4 (44)	86 **
98	43	4.9 (43)	36	4.9 (36) 10	0 41	4.6 (41) 94 **	44	4.4 (44)	90 **
102	38	5.1 (38)	36	4.8 (36) 9	4 41	4.7 (41) 92 **	44	4.5 (44)	88 **
104	37	4.9 (37)	36	4.7 (36) 9	6 38	4.5 (38) 92 **	43	4.2 (42)	86 **

< >: No.of effective animals, (): No.of measured animals %: % of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 6 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Control			500 ppm		1500 j	ppm		4	1500 ppm	
-		<50>		<50>		<49				<50>	****
Week on Study	Survival No.	FC g	Survival No.	FC g 9	Surv % N	vival o. g	FC	%	Survival No.	FC g	%
1	50	3.3 (50)	50	3.3 (50) 1	00 4	9 3.3	(49)	100	50	3.0 (50)	91 **
2	50	3.3 (50)	50	3.4 (50) 1	03 4	9 3.2	(49)	97	50	3.1 (50)	94 **
3	50	3.4 (50)	50	3.3 (50)	97 4	9 3.3	(49)	97	50	3.2 (50)	94 **
4	50	3.6 (50)	50	3.5 (50)	97 4	9 3.4	(49)	94 *	50	3.2 (50)	89 *
5	50	3.5 (50)	50	3.5 (50) 1	00 4	9 3.4	(49)	97	50	3.2 (50)	91 *
6	50	3.4 (50)	50	3.4 (50) 1	00 4	9 3.4	(49)	100	50	3.3 (49)	97 *
7	50	3.6 (50)	50	3.6 (50) 1	00 4	9 3.5	(49)	97 *	50	3.4 (50)	94 **
8	50	3.7 (50)	50	3.7 (50) 1	00 4	9 3.6	(49)	97 *	50	3.5 (50)	95 **
9	50	3.8 (50)	50	3.6 (50)	95 * 4	9 3.6	(49)	95 *	50	3.5 (50)	92 *
10	50	3.8 (50)	50	3.7 (50)	97 4	9 3.7	(49)	97	50	3.5 (50)	92 **
11	50	3.8 (50)	50	3.7 (50)	97 4	9 3.7	(49)	97 *	50	3.6 (50)	95 *
12	50	3.8 (50)	50	3.7 (50)	97 4	9 3.6	(49)	95 *	50	3.5 (50)	92 *
13	50	3.9 (50)	50	3.8 (50)	97 4	9 3.7	(49)	95 *	50	3.6 (50)	92 *
14	50	3.8 (50)	50	3.8 (50) 1	00 4	9 3.7	(49)	97	50	3.5 (50)	92 *
18	50	3.9 (50)	50	3.7 (50)	95 * 4	9 3.6	(49)	92 **	50	3.4 (50)	87 *
22	50	3.9 (50)	50	3.8 (50)	97 4	9 3.8	(49)	97	50	3.4 (50)	87 *
26	49	3.9 (49)	50	3.9 (50) 1	00 4	9 3.9	(49)	100	50	3.6 (50)	92 *
30	49	4.0 (49)	50	3.9 (50)	98 4	9 3.8	(49)	95 **	50	3.5 (50)	88 *
34	49	4.0 (49)	50	4.1 (50) 1	03 4	9 3.9	(49)	98	50	3.7 (50)	92 *
38	49	4.1 (49)	50	4.1 (50) 1	00 4	9 3.9	(49)	95	50	3.8 (50)	93 *
42	49	3.9 (49)	50	3.8 (50)	97 4	9 3.7	(49)	95 *	49	3.6 (49)	92 *
46	49	4.0 (49)	50	4.0 (50) 1	00 4	9 3.9	(49)	98	49	3.6 (48)	90 *
50	49	4.2 (49)	50	4.0 (50)	95 4	9 3.9	(49)	93 *	49	3.7 (49)	88 *
54	49	4.1 (49)	50	4.0 (50)	98 4	9 3.7	(49)	90 **	49	3.6 (49)	88 *
58	49	4.0 (49)	49	4.0 (49) 1	00 4	8 3.8	(48)	95 *	49	3.6 (49)	90 *
62	48	4.4 (48)	49	4.0 (49)	91 ** 4	8 4.0	(48)	91 **	49	3.8 (49)	86 *
66	48	4.4 (48)	48	4.2 (48)	95 4	8 4.0	(48)	91 **	49	3.7 (49)	84 *
70	47	4.2 (47)	47	3.9 (47)	93 * 4	8 4.0	(48)	95	47	3.8 (47)	90 *
74	46	4.4 (46)	47	4.1 (47)	93 ** 4	8 3.8	(48)	86 **	46	3.6 (46)	82 *
78	45	4.3 (45)	45	4.2 (45)	98 4	8 4.0	(48)	93 **	46	3.7 (46)	86 *
82	44	4.4 (44)	45	4.0 (45)	91 * 4	7 3.8	(47)	86 **	45	3.7 (45)	84 *
86	43	4.2 (43)	43	4.3 (43) 1	02 4	6 4.0	(46)	95	44	3.7 (44)	88 *
90	41	4.5 (41)	40	4.4 (40)	98 4	3 4.2	(43)	93	42	3.9 (42)	87 *
94	39	4.8 (39)	35	4.5 (35)	94 3	9 4.3	(39)	90 **	41	4.2 (41)	88 *
98	38	4.5 (38)	30	4.3 (30)	96 3	6 4.0	(36)	89 **	40	4.0 (40)	89 *
102	33	4.4 (33)	25	4.4 (25) 1	00 2	7 4.2	(27)	95	38	4.0 (38)	91 *
104	31	4.5 (31)	24	4.5 (24) 1		7 4.0	(27)	89 *	36	3.8 (36)	84 *

< >: No.of effective animals, (): No.of measured animals %:% of control group
Significant Difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 7 INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Time of mass occurrence (week)	0~13	14~26	27~39	40~52	53~65	66~78	79~91	92~104	0~104
External mass									
$\operatorname{Control}$	0/50	0/50	0/50	0/50	1/50	1/49	2/47	3/45	3/50 (2/13)
$750~\mathrm{ppm}$	0/50	0/49	0/49	0/49	1/49	1/47	1/46	1/40	3/50 (2/14)
1500 ppm	0/50	0/49	1/49	1/49	1/49	1/49	1/46	3/44	3/50 (2/12)
$3000~\mathrm{ppm}$	0/50	0/50	0/50	0/50	1/50	1/49	0/45	0/44	1/50 (1/ 7)
Internal mass									
$\operatorname{Control}$	0/50	1/50	1/50	1/50	1/50	4/49	5/47	8/45	13/50 (5/13)
$750~\mathrm{ppm}$	0/50	1/49	1/49	2/49	2/49	4/47	7/46	4/40	10/50 (8/14)
1500 ppm	1/50	2/49	1/49	1/49	2/49	3/49	3/46	8/44	12/50 (4/12)
3000 ppm	0/50	0/50	0/50	0/50	0/50	0/49	0/45	2/44	2/50 (0/ 7)

No. of animals with mass / No. of survival animals at first week on each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 8 INCIDENCE AND TIME OF MASS OCCURRENCE IN CLINICAL OBSERVATION OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Time of mass occurrence	e (week)	0~13	14~26	27~39	40~52	53~65	66~78	79~91	92~104	0~104
External mass										
Co	ntrol	0/50	0/50	0/49	0/49	0/49	0/48	2/45	4/41	4/50 (3/19)
500	ppm	0/50	0/50	0/50	0/50	1/50	2/48	1/45	3/37	5/50 (4/26)
1500	ppm	0/49	0/49	0/49	0/49	0/49	1/48	2/48	3/41	3/49 (1/23)
4500	ppm	0/50	0/50	0/50	0/49	0/49	2/49	1/45	3/41	4/50 (3/14)
Internal mass										
Со	ntrol	0/50	0/50	0/49	0/49	2/49	4/48	2/45	8/41	12/50 (6/19)
500	ppm	0/50	0/50	0/50	0/50	1/50	4/48	8/45	9/37	16/50 (12/26)
1500	ppm	0/49	0/49	1/49	1/49	1/49	2/48	9/48	13/41	17/49 (13/23)
4500	ppm	0/50	0/50	0/50	0/49	0/49	4/49	4/45	5/41	10/50 (6/14)

No. of animals with mass / No. of survival animals at first week on each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 9 HEMATOLOGY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group	Control	75 0 ppm	1500 ppm	3000 ppm
No. of animals examined	34	31	35	40
Red blood cell $(10^6/\mu$ L)	9.55 ± 0.81	9.67 ± 1.37	9.83 ± 0.86	$9.52~\pm~0.79$
Hemoglobin (g/dL)	$13.6~\pm~1.2$	13.6 ± 1.8	$13.7 ~\pm~ 1.0$	$13.5 ~\pm~ 1.1$
Hematocrit (%)	43.8 ± 3.5	$44.2~\pm~5.4$	44.4 ± 3.3	$44.0 ~\pm~ 3.4$
MCV (fL)	45.9 ± 1.5	46.0 ± 3.0	$45.2 ~\pm~ 1.6$	$46.3~\pm~1.1$
MCH (pg)	$14.2~\pm~0.5$	$14.1~\pm~0.6$	14.0 ± 0.6	14.2 ± 0.4
MCHC (g/dL)	$30.9~\pm~0.7$	30.8 ± 1.0	30.9 ± 0.6	30.7 ± 0.6
Platelet $(10^3/\mu L)$	1817 ± 347	1856 ± 501	$1830 ~\pm~ 302$	1941 ± 218
WBC $(10^3/\mu\mathrm{L})$	$2.94~\pm~1.51$	2.88 ± 1.60	2.25 ± 1.00	2.01 ± 2.56 **

Significant difference, **: $p \le 0.01$, Test of Dunnett

TABLE 10 HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group	Control	500 ppm	1500 ppm	4500 ppm
No. of animals examined	28	24	24	33
Red blood cell (10 6 / μ L)	$9.42~\pm~1.83$	9.04 ± 1.66	$9.40~\pm~1.45$	$9.23~\pm~1.51$
Hemoglobin (g/dL)	$13.7~\pm~2.4$	$12.9~\pm~2.3$	$13.3~\pm~2.1$	$12.9 ~\pm~ 2.1$
Hematocrit (%)	$43.7~\pm~7.4$	42.0 ± 6.8	$43.1~\pm~5.4$	$42.2~\pm~6.3$
MCV (fL)	$46.9~\pm~4.2$	46.8 ± 3.5	46.3 ± 3.5	46.0 ± 2.3
MCH (pg)	$14.6~\pm~0.9$	14.4 ± 0.7	$14.1~\pm~0.5$	$14.0~\pm~0.5~$
MCHC (g/dL)	$31.2 ~\pm~ 1.1$	30.8 ± 1.1	$30.7 ~\pm~ 1.9$	$30.5 \pm 1.1 **$
Platelet $(10^3/\mu$ L)	$1075 ~\pm~ 304$	1111 ± 293	1180 ± 313	$1336 \pm 241 **$
WBC $(10^3/\mu\mathrm{L})$	3.99 ± 9.86	$2.00~\pm~1.22$	$1.45~\pm~0.72$	$3.25~\pm~10.52$

Data represent means \pm S.D.

Significant difference, **: $p \le 0.01$, Test of Dunnett

TABLE 11 BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Control	750 ppm	1500 ppm	3000 ppm
No. of animals examined	35	33	36	41
Total protein (g/dL)	$5.1~\pm~0.5$	5.3 ± 0.7	$5.1~\pm~0.5$	4.9 ± 0.4 *
Albumin (g/dL)	$2.8~\pm~0.3$	$2.9~\pm~0.5$	$2.8~\pm~0.3$	$2.8~\pm~0.2$
A/G ratio	$1.2~\pm~0.1$	$1.2~\pm~0.2$	$1.2~\pm~0.2$	1.3 ± 0.1 **
T-Bilirubin (mg/dL)	0.13 ± 0.03	0.13 ± 0.03	$0.13~\pm~0.03$	$0.13~\pm~0.02$
Glucose (mg/dL)	$204 ~\pm~ 36$	$186~\pm~40$	188 ± 43	$204~\pm~22$
T-Cholesterol (mg/dL)	110 ± 28	$122~\pm~49$	$109~\pm~44$	102 ± 20
Triglyceride (mg/dL)	42 ± 18	48 ± 81	32 ± 13 *	31 ± 11 *
Phospholipid (mg/dL)	$201 ~\pm~ 42$	218 ± 73	$196~\pm~48$	198 ± 30
GOT (IU/L)	$112~\pm~253$	$246 \pm 768 *$	102 ± 158	$52~\pm~11$
GPT (IU/L)	$54~\pm~118$	166 ± 536	$65~\pm~128$	$22 \pm 10 **$
LDH (IU/L)	$553~\pm~1049$	770 ± 1585	$450~\pm~555$	$265~\pm~87$
ALP (IU/L)	$129~\pm~44$	$138~\pm~74$	$139~\pm~85$	130 ± 19
γ -GTP (IU/L)	2 ± 1	2 ± 1	2 ± 2	2 ± 3
CPK (IU/L)	52 ± 22	63 ± 33	59 ± 36	61 ± 29
Urea nitrogen (mg/L)	$21.8~\pm~2.5$	23.6 ± 5.8	$24.2~\pm~11.1$	$21.9 ~\pm~ 3.8$
Sodium (mEq/L)	153 ± 1	154 ± 1	154 ± 1	154 ± 2
Potassium (mEq/L)	$4.4~\pm~0.4$	$4.3~\pm~0.5$	$4.1~\pm~0.7~^{**}$	4.1 ± 0.5 **
Chloride (mEq/L)	122 ± 3	122 ± 3	122 ± 3	121 ± 3
Calcium (mg/dL)	$8.8~\pm~0.4$	$8.9~\pm~0.6$	$8.7 ~\pm~ 0.4$	$8.6~\pm~0.3$
Inorganic phosphorus (mg/dL)	6.6 ± 0.8	6.5 ± 0.8	$6.7 ~\pm~ 1.0$	$6.3~\pm~0.8$

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 12 BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group	Control	$500~\mathrm{ppm}$	1500 ppm	4500 ppm
No. of animals examined	30	24	26	34
Total protein (g/dL)	$5.2~\pm~1.1$	$5.2~\pm~0.7$	$4.9~\pm~0.3$	$4.7 ~\pm~ 0.4 ~~*$
Albumin (g/dL)	$2.8~\pm~0.4$	$2.9~\pm~0.5$	$2.8~\pm~0.2$	$2.8~\pm~0.3$
A/G ratio	$1.2~\pm~0.3$	$1.3~\pm~0.2$	1.4 ± 0.2 *	$1.5~\pm~0.2~~^{**}$
T-Bilirubin (mg/dL)	$0.14~\pm~0.03$	$0.15~\pm~0.07$	$0.13~\pm~0.03$	$0.12~\pm~0.02$
Glucose (mg/dL)	130 ± 41	$149~\pm~37$	$147~\pm~22$	157 ± 31 **
T-Cholesterol (mg/dI)	78 ± 36	98 ± 57	75 ± 15	92 ± 16 **
Triglyceride (mg/dL)	30 ± 17	$29~\pm~15$	$25~\pm~14$	19 ± 11 **
Phospholipid (mg/dL)	$141~\pm~55$	$182~\pm~104$	145 ± 26	$172 \pm 24 \ ^{**}$
GOT (IU/L)	96 ± 52	84 ± 33	$76~\pm~23$	85 ± 114 **
GPT (IU/L)	43 ± 34	40 ± 29	$28~\pm~10$	28 ± 18 **
LDH (IU/L)	$548~\pm~559$	$403~\pm~524$	$462~\pm~752$	$495 \pm 1365 **$
ALP (IU/L)	$191~\pm~82$	203 ± 119	$310 \pm 258 **$	$255~\pm~94~~**$
γ -GTP (IU/L)	2 ± 1	2 ± 2	2 ± 2	2 ± 2
CPK (IU/L)	$99~\pm~77$	75 ± 71	77 ± 35	89 ± 77
Urea nitrogen (mg/L)	23.3 ± 14.1	19.9 ± 8.4	$18.8~\pm~4.5$	$21.9~\pm~11.5$
Sodium (mEq/L)	154 ± 4	$152~\pm~2$	154 ± 2	$153~\pm~2$
Potassium (mEq/L)	$4.3~\pm~0.8$	$4.0~\pm~0.5$	$4.1~\pm~0.4$	$4.2~\pm~0.4$
Chloride (mEq/L)	$123~\pm~4$	$122~\pm~3$	$123~\pm~2$	$121 \pm 3 \qquad *$
Calcium (mg/dL)	$8.8~\pm~0.5$	$9.2~\pm~0.9$	$8.9~\pm~0.4$	$8.8~\pm~0.3$
Inorganic phosphorus (mg/dL)	$6.8~\pm~1.4$	6.4 ± 0.7	$6.8~\pm~0.9$	5.7 ± 1.1 **

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 13 URINALYSIS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group No. of animals exan	nined	Control 37	750 ppm 36	1500 ppm 39	3000 ppm 43
pН	6.0	3	6 **	4 **	10 **
F	6.5	6	19	32	33
	7.0	16	9	2	0
	7.5	12	2	0	0
	8.0	0	0	1	0
	8.5	0	0	0	0
	(Grade)				
Protein		0	0 *	0 **	0 **
	土	0	3	0	0
	+	31	21	17	14
	2+	3	11	19	28
	3+	2	0	2	1
	4+	1	1	. 1	0
Ketone body	_	29	13 **	11	10 **
_	土	7	14	13	20
	+	1	8	12	11
	2+	0	1	2	2
	3+	0	0	1	0
Occult blood		28	29	37	39
	±	3	1 .	0	1
	+	1	1	0	0
	2+	1	0	0	0
	3+	4	5	2	3

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$ Chi square test

TABLE 14 URINALYSIS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED)

Group		Control	500 ppm	1500 ppm	4500 ppm
No. of animals exan	nined	31	24	27	36
pН	6.0	1	0	1 **	5 **
P	6.5	5	3	9	23
	7.0	1	6	7	4
	7.5	3	4	6	3
	8.0	19	11	4	1
	8.5	2	0	0	0
	(Grade)				
Protein	_	0	0	0	0 **
	±	0	0	0	0
	+	17	9	13	7
	2+	13	15	12	25
	3+	1	0	2	4
•	4+	0	0	0	0
Ketone body	_	9	1	0 **	4 **
· ·	±	18	20	11	14
	+	4	3	10	11
	2+	0	0	6	7
	3+	0	0	0	0
Occult blood		24	20	22	19
	±	4	3	0	5
	+	0	0	1	1
	2+	0	0	3	3
	3+	3	1	1	8

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$ Chi square test

TABLE 15 ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group		Control	750 ppm	1500 ppm	3000 ppm
No. of anime		<37>	<36>	<38>	<43>
Adrenal	(g) (%)	$\begin{array}{c} 0.010 \pm 0.002 \\ 0.021 \pm 0.006 \end{array}$	0.009 ± 0.002 0.022 ± 0.006	0.010 ± 0.002 0.027 ± 0.008 **	0.009 ± 0.002 0.027 ± 0.007 **
Testis	(g) (%)	0.207 ± 0.036 0.445 ± 0.099	0.227 ± 0.040 * 0.547 ± 0.124 **	0.201 ± 0.027 0.549 ± 0.107 **	0.214 ± 0.030 0.624 ± 0.101 **
Heart	(g) (%)	0.227 ± 0.030 0.482 ± 0.057	0.220 ± 0.027 0.527 ± 0.076 *	0.203 ± 0.025 ** 0.552 ± 0.080 **	0.201 ± 0.018 ** 0.585 ± 0.062 **
Lung	(g) (%)	0.225 ± 0.026 0.481 ± 0.078	0.246 ± 0.150 0.635 ± 0.676	0.216 ± 0.040 0.591 ± 0.126 **	0.202 ± 0.017 ** 0.592 ± 0.084 **
Kidney	(g) (%)	0.616 ± 0.048 1.313 ± 0.140	1.261 ± 3.470 2.772 ± 6.753 **	0.690 ± 0.340 1.883 ± 0.923 **	0.636 ± 0.053 1.853 ± 0.186 **
Spleen	(g) (%)	0.134 ± 0.219 0.317 ± 0.623	0.115 ± 0.116 0.228 ± 0.313	0.108 ± 0.139 0.298 ± 0.402	0.078 ± 0.074 ** 0.227 ± 0.220
Liver	(g) (%)	1.799 ± 0.863 3.866 ± 2.147	1.805 ± 0.509 4.346 ± 1.458 **	$1.551 \pm 0.340 *$ $4.240 \pm 1.212 **$	1.447 ± 0.205 ** 4.222 ± 0.718 **
Brain	(g) (%)	0.448 ± 0.018 0.960 ± 0.126	0.448 ± 0.014 1.082 ± 0.187 **	0.446 ± 0.014 1.222 ± 0.169 **	0.448 ± 0.015 1.314 ± 0.179 **

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

TABLE 16 ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Group		Control	500 ppm	1500 ppm	4500 ppm
No. of anime		<31>	<24>	<27>	<36>
Adrenal	(g) (%)	0.013 ± 0.002 0.040 ± 0.007	0.015 ± 0.007 0.050 ± 0.026	0.012 ± 0.003 0.045 ± 0.012	0.012 ± 0.002 0.048 ± 0.009 **
Ovary	(g) (%)	0.052 ± 0.052 0.162 ± 0.152	0.142 ± 0.492 0.441 ± 1.476	0.335 ± 1.196 1.088 ± 3.752	0.067 ± 0.134 0.268 ± 0.543
Heart	(g) (%)	0.176 ± 0.024 0.560 ± 0.089	0.179 ± 0.025 0.605 ± 0.122	$0.159 \pm 0.014 * 0.595 \pm 0.067$	0.155 ± 0.021 ** 0.632 ± 0.110 **
Lung	(g) (%)	0.226 ± 0.049 0.720 ± 0.154	0.209 ± 0.029 0.708 ± 0.135	0.202 ± 0.021 0.756 ± 0.106	0.192 ± 0.035 ** 0.784 ± 0.195
Kidney	(g) (%)	0.431 ± 0.065 1.370 ± 0.200	0.463 ± 0.043 * 1.560 ± 0.218 **	0.473 ± 0.117 1.771 ± 0.481 **	0.531 ± 0.243 ** 2.151 ± 0.953 **
Spleen	(g) (%)	0.196 ± 0.156 0.624 ± 0.481	0.220 ± 0.248 0.711 ± 0.739	0.158 ± 0.160 0.573 ± 0.514	0.179 ± 0.236 0.727 ± 0.957
Liver	(g) (%)	1.754 ± 1.036 5.505 ± 2.942	1.579 ± 0.514 5.270 ± 1.511	$1.470 \pm 0.859 * 5.389 \pm 2.637$	1.275 ± 0.235 ** 5.166 ± 0.885 **
Brain	(g) (%)	0.471 ± 0.020 1.508 ± 0.197	0.470 ± 0.023 1.597 ± 0.286	0.471 ± 0.017 1.767 ± 0.210 **	0.453 ± 0.015 ** 1.845 ± 0.155 **

Significant difference, *: $p \le 0.05$, **: $p \le 0.01$, Test of Dunnett

NEOPLASTIC LESIONS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED) TABLE 17

OF 2-HIDROAIETHIL ACKILATE (SELECTEL)	ATE (SELECT	(U.			
Group No. of animals examined	Control <50>	750 ppm <50>	1500 ppm <50>	3000 ppm <50>	
Lung					
Bronchiolar-alveolar adenoma	5 (10%) ^{a)}	6 (12%)	4 (8%)	3 (6%)	
Bronchiolar-alveolar carcinoma	4 (8%)	3 (6%)	5 (10%)	1 (2%)	
Lymph node Malignant lymphoma	7 (14%)	11 (22%)	9 (18%)	6 (12%)	
Spleen					
Malignant lymphoma	2 (4%)	$\overline{}$	$\overline{}$	1 (2%)	
Hemangioma	3 (6%)	1 (2%)	1 (2%)	(%0)0	
Hemangiosarcoma	2(4%)	$\overline{}$	$\overline{}$	0 (0%)	
Hemangioma / hemangiosarcoma		$\overline{}$	$\overline{}$	* (%0) 0	⇔
Liver					
Hepatocellular adenoma	7 (14%)	8 (16%)	5 (10%)	3 (6%)	
Hepatocellular carcinoma	6(12%)	7 (14%)	$\overline{}$	$\overline{}$	₽
Hepatocellular adenoma / carcinoma	11 (22%)	ල	\Box		₽₽
Hemangioma	1 (2%)	(%0)0	(%0)0		
Hemangiosarcoma	7 (14%)	$\overline{}$	$\overline{}$		₽₽
Hemangioma / hemangiosarcoma	8 (16%)	3 (6%)	$\overline{}$	** (%0) 0	↑↑
Histiocytic sarcoma	3 (6%)	$\overline{}$	$\overline{}$	$\overline{}$	
Stomach					
Squamous cell carcinoma	0 (0%)	0 (0%)	1 (2%)	(%0)0	
Multi-site					
Histiocytic sarcoma	5 (10%)	2 (4%)	* (%0) 0	6 (12%)	
мапвпапи тушрпоша	9 (10%)	14 (20%)	11 (22%)	(14%)	

: No. of animals with bearing tumor (incidence; %)

: Statistically differenct from control group at $p \le 0.05$ and $p \le 0.01$ by Fisher exact test, respectively * and **

: The trend of treated groups statistically different from control group at $p \le 0.05$ and $p \le 0.01$ by Cochran-Armitage test, A and AA

respectively.

NEOPLASTIC LESIONS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED) TABLE 18

		(
Group No. of animals examined	Control <50>	500 ppm <50>	1500 ppm <49>	4500 ppm <50>	
Lung Bronchiolar-alveolar adenoma Bronchiolar-alveolar carcinoma	0 (0%) a) 0 (0%)	1 (2%) 0 (0%)	1 (2%) 0 (0%)	0 (0%) 2 (4%)	
Lymph node Malignant lymphoma	18 (36%)	17 (34%)	9 (18%) *	9 (18%) *	₽
Spleen Malignant lymphoma	4 (8%)	2 (4%)	1 (2%)	3 (6%)	
Liver					
Hepatocellular adenoma	(%0)0	6 (12%) *	1 (2%)	2 (4%)	
Hepatocellular carcinoma Hepatocellular adenoma / carcinoma	1 (2%) $1 (2%)$	2 (4%) 8 (16%) *	0 (0%) $1 (2%)$	0 (0%) 2 (4%)	
Kidney Renal cell carcinoma	(%0)0	2 (4%)	(%0) 0	(%0)0	
Stomach Squamous cell papilloma	(%0)0	1 (2%)	(%0) 0	(%0)0	
Pituitary Adonome	K (10%)	(19%)		_	c
Adenocarcinoma	(%0) 0 0 (0%)	1 (2%)	$\frac{1}{1}(\frac{2\%}{2\%})$	(%0) 0 0 (0%)	⇒
Adenoma / adenocarcinoma	5(10%)	7 (14%)			₽
Uterus Endometrial stromal polyp Histiocytic sarcoma	1 (2%) 5 (10%)	0 (0%) 6 (12%)	3 (6%) 12 (24%) *	2 (4%) 9 (18%)	
Multi-site Histiocytic sarcoma Malignant lymphoma	6 (12%) 22 (44%)	8 (16%) 19 (38%)	13 (26%) 10 (20%) *	10 (20%) 12 (24%) *	Î

: No. of animals with tumor (incidence; %)

: Statistically differenct from control group at p≤0.05 by Fisher exact test

: The trend of treated groups statistically different from control group at $p \leq 0.05$ by Cochran-Armitage test

NON-NEOPLASTIC LESIONS IN MALE AND FEMALE MICE ON THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE (SELECTED) TABLE 19

			TATATA	2				213	
Group		Control	750 ppm	1500 ppm	3000 ppm	Control	500 ppm	1500 ppm	4500 ppm
No. of animals examined		<20>>	<50>	<20>	<20>	<20>>	<20>	<49>	<200>
Nasal cavity	Grade								
Respiratory metaplasia : gland	+	Н	10	14	10	က	ū	12	14
1	2+	2	-	က	0	0	0	0	0
Stomach									
Erosion: forestomach	+	0	0	0	0	0	П	0	4
${\tt Ulcer:forestomach}$	+	-	0	0	က	0	0	0	0
Squamous cell hyperplasia :	+	7	0		4	тO	7	13	10
forestomach	2+ 3+	00	00	00	40	00	0 73	00	33
Hyperplasia : glandular stomach	+	13	6	11	2	0	∞	73	0
Mineralization : glandular stomach	+	7	က	က	0	က	7	1	0
Liver			•	,	,	,	•	,	(
Clear cell focus	+ ē	4.0	0 6	N -	0 0	p{ y	0	- <	ကင
Kidney	 	o	4	-	Þ	⊣	>	>	>
Desquamation: pelvis	+	0	0		Н	7	1	10	4
	2+	0		0	83	Н	က	4	က
Mineralization : cortex	+	15	5	4	7	0	0	0	H
Testis	-	(,	Ć	i				
Mineralization	5 ⁺	3. 3.	2 ¹⁶	∞ဝ	r 23	1 1			
Uterus Cystic endometrial hyperplasia	+					24	23	18	21
4	2+		ı		•	9	0	Û	∞
Brain Mineralization	+	37	29	19	21	15	H	15	18
	46	C	c	<	-	•	c	_	•

Grade +: Slight 2+: Moderate 3+: Marked

CAUSE OF DEATH OF MALE AND FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE TABLE 20

		7 6	-			F			1
		M	Male			ren	Female		
Group	Control	750 ppm	1500 ppm	3000 ppm	Control	200 ppm	$1500~\mathrm{ppm}$	4500 ppm	
No. of dead/moribund animals	<13>	<14>>	<12>	<7>	<19>	<56>	<22>	<14>>	- 1
Useduces bussels	C	¢	¢	-	-	F	-	Ò	
Tryanepurosis	>	1	1	7	4	-₁	4	>	
Urinary retention	-	0	0	0	0	0	—	0	
Urinary system lesions	0		0	0	0	0	0	0	
Arteritis	0	0	H	0	0	0	0		
Amyloidosis	0	0	0	0	0	Н	0	0	
Peritonitis	0	0	0	0	0	0		0	
Tumor death:									
leukemia	က	9	4		11	11	7	က	
subcutis	0	0	П	-	0	0	0	₽	
lung	2	0	က	0	0	0	0	0	
liver	9	က	0	—	_	က	2	0	
kidney	0	0	0	0	0	2	0	0	
pituitary	0	0	Н	0	1	 1	Н	0	
ovary	ı	1	ı	•	0		0	0	
uterus	1	•	ı		7	4	7	∞	
mammary gland	0	0	0	0	73	0	0	0	
epididymis	. ⊣	-	0	2	ŧ		•	ı	
No microscopical confirmation	0	-	0	H	1	7	7	П	

TABLE 21 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: Crj: BDF1 MALE MICE

Organs	No. of animals	No. of animals with bearing	Incidence	Min Max.
Tumors	examined	tumor	(%)	(%)
Lung	<1046>			
Bronchiolar-alveolar adenoma		74	7.1	2 - 18
Bronchiolar-alveolar carcinoma		120	11.5	0 - 24
Lymph node	<1047>			
Malignant lymphoma		111	10.6	2 - 22
Spleen	<1046>			
Malignant lymphoma		43	4.1	
Hemangioma		18	1.7	0 - 10
Hemangiosarcoma		26	2.5	
Liver	<1047>			
Hepatocellular adenoma		179	17.1	4 - 34
Hepatocellular carcinoma		224	21.4	2 - 42
Hemangioma		14	1.3	0.10
Hemangiosarcoma		42	4.0	0 - 12
Histiocytic sarcoma		30	2.9	8 - 0
Stomach	<1046>			
Squamous cell carcinoma			0.1	0.2

21 carcinogenicity studies examined in Japan Bioassay Research Center were used.
Study No. 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0270, 0285, 0297, 0319

TABLE 22 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: Crj: BDF1 FEMALE MICE

M M.	MIN Max. (%)	0 - 10	12 - 44	0 - 26	2 - 10 0 - 8	0	0 - 2	2 - 34 0 - 4	0 - 10 10 - 30
	Incidence (%)	4.0	26.4	7.3	25 57 57 52	0	0.4	15.3 0.6	2.9 19.8
No. of animals	with bearing tumor	42	277	77	54 26	0	4	159 6	30
No. of	animals examined	<1048>	<1048>	<1048>	<1048>	<1048>	<1047>	<1042>	<1046>
Organs	Timore	Lung Bronchiolar-alveolar adenoma Bronchiolar-alveolar carcinoma	Lymph node Malignant lymphoma	Spleen Malignant lymphoma	Liver Hepatocellular adenoma Hepatocellular carcinoma	Kidney Renal cell carcinoma	Stomach Squamous cell papiloma	Pituitary Adenoma Adenocarcinoma	Uterus Endometria stromal polyp Histiocytic sarcoma

21 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No. 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0270, 0285, 0297, 0319

FIGURES

FIGURE 1	SURVIVAL RATE OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 2	SURVIVAL RATE OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 3	BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 4	BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 5	WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 6	WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 7	FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
FIGURE 8	FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

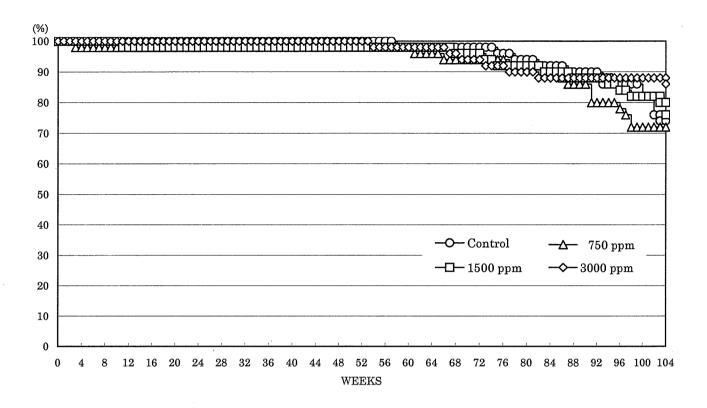


FIGURE 1 SURVIVAL RATE OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

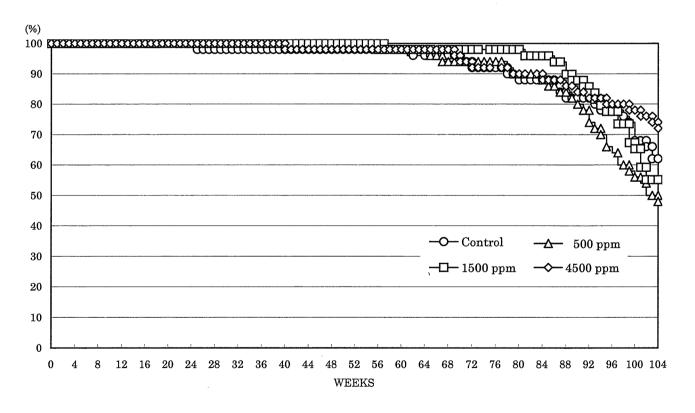


FIGURE 2 SURVIVAL RATE OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

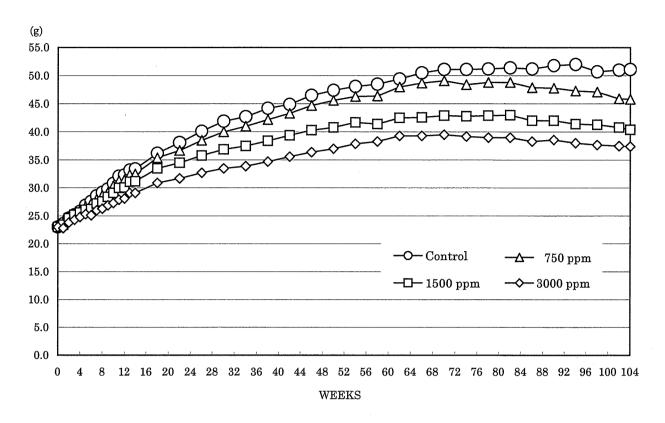


FIGURE 3 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

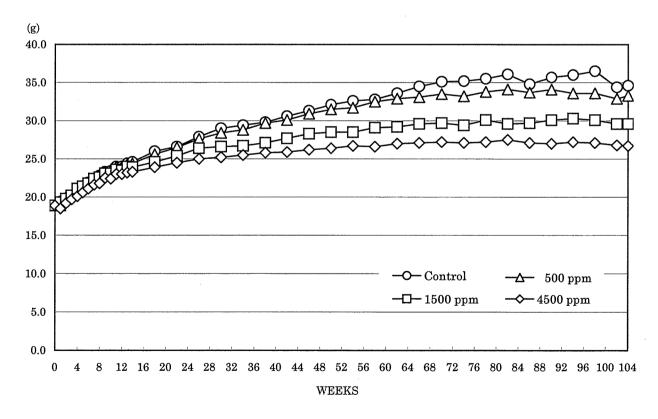


FIGURE 4 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

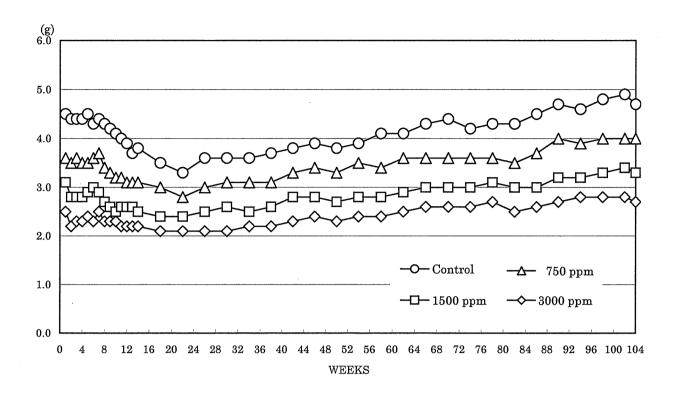


FIGURE 5 WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEARDRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

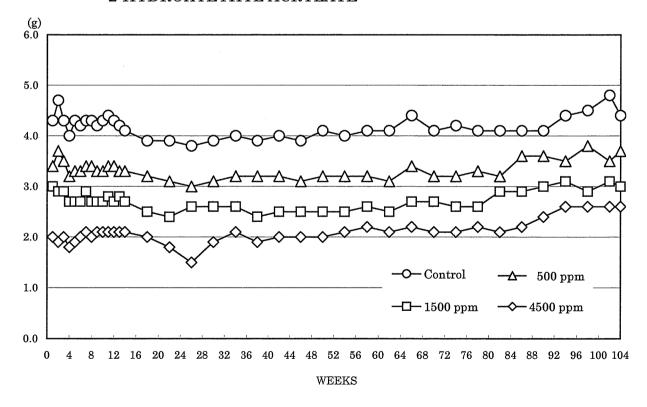


FIGURE 6 WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEARDRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

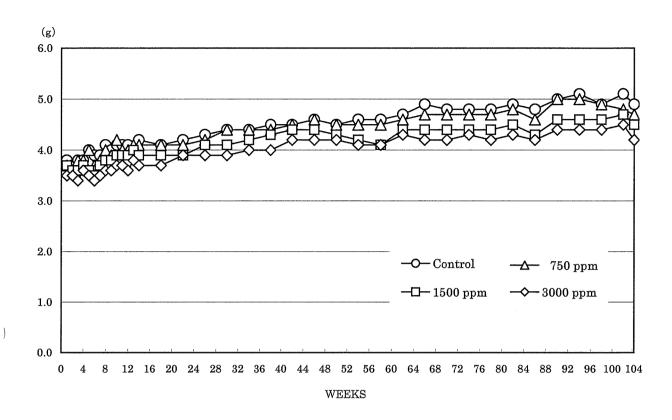
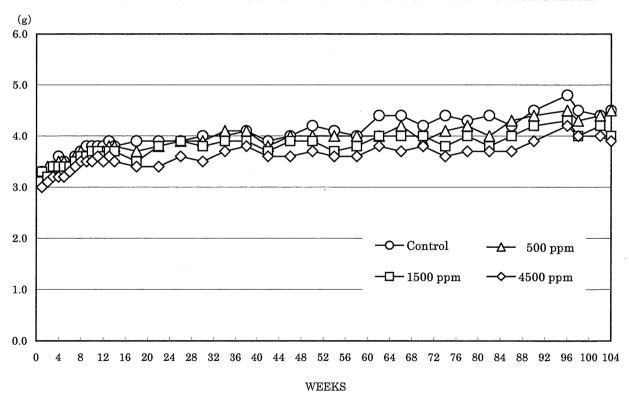
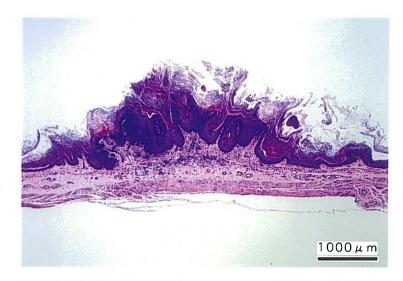
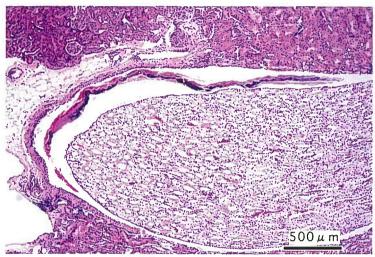


FIGURE 7 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE




FIGURE 8 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

PHOTOGRAPHS


PHOTOGRAPH 1	FORESTOMACH: SQUAMOUS CELL HYPERPLASIA							
	MOUSE FEMALE 4500 ppm ANIMAL NO 0348-2324 (H&E							

PHOTOGRAPH 2 KIDNEY: DESQUAMATION: PELVIS, MOUSE, FEMALE, 1500 ppm, ANIMAL NO. 0348-2232 (H&E)

PHOTOGRAPH 3 NASAL CAVITY: RESPIRATORY METAPLASIA: GLAND, MOUSE, MALE, 1500 ppm, ANIMAL NO. 0348-1222 (H&E)

PHOTOGRAPH 1

PHOTOGRAPH 2

PHOTOGRAPH 3