Summary of Feed Carcinogenicity Study of 2-Amino-4-Chlorophenol in B6D2F1 Mice

September 2008

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on September 30, 2008.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Feed Carcinogenicity Study of 2-Amino-4-chlorophenol in B6D2F1 MICE

Purpose, materials and methods

2-Amino-4-chlorophenol (ACP, CAS No. 95-85-2) is a crystalline solid with a melting point of 137°C. It is insoluble in water.

The carcinogenicity and chronic toxicity of ACP (greater than 99.1% pure) were examined by feeding groups of B6D2F1/Crlj mice ACP-containing diets for 2 years (104 weeks). Each group of test animals consisted of either 50 male or 50 female mice. The dietary concentration of ACP was 0, 512, 1280, or 3200 ppm (w/w). Both sexes were exposed to each concentration of ACP. The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in a previous 13-week toxicity study. The identity of the ACP used in these experiments was confirmed by both infrared spectrometry and mass spectrometry, and it was analyzed by gas chromatography before and after its use to affirm its stability. To ensure that the concentration of ACP in the diet remained constant, the concentration of APC in the diet was determined by high performance liquid chromatography at the time of preparation and on the 4th day after preparation; ACP-containing food was stored at room temperature. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. All animals, including those found dead or in a moribund state as well as those surviving to the end of the 2-year exposure period, underwent complete necropsy. Urinalysis was performed near the end of the administration period. For hematology and blood biochemistry at the terminal necropsy, surviving animals were fasted overnight and bled under deep ether anesthesia. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were then fixed and embedded in paraffin. Five µm thick tissue sections were prepared and stained with hematoxylin and eosin and examined microscopically. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. Any positive dose-response trends of ACP induction of neoplastic lesions were analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by the Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

There was no significant difference in survival rate, body weight or food consumption between any ACP-fed group of either sex and their respective controls.

The incidence of squamous cell papillomas in the forestomach was increased in the 3200 ppm-fed male group compared to their control group. Also, the incidences of squamous cell papillomas in the forestomach in all ACP-fed male groups were higher than the historical control data of the Japan Bioassay Research Center (JBRC). Therefore, the increased incidences of squamous cell papillomas in the forestomach in males is related to ACP administration. A slight increase in the incidence of squamous cell papillomas in the forestomach was also observed in the ACP-fed females, but those incidences were within the range of historical JBRC control data.

Conclusions

In mice, there was some evidence of carcinogenic activity of 2-amino-4-chlorophenol in males, based on an increased incidences of squamous cell papillomas in the forestomach. There was no evidence of carcinogenic activity of 2-amino-4-chlorophenol in females.

SELECTED TABLES

TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	CHEMICAL INTAKE CHANGES: MALE
TABLE E 2	CHEMICAL INTAKE CHANGES: FEMALE
TABLE F 1	HEMATOLOGY: MALE
TABLE F 2	HEMATOLOGY: FEMALE
TABLE G 1	BIOCHEMISTRY: MALE
TABLE G 2	BIOCHEMISTRY: FEMALE

TABLE H 1	URINALYSIS: MALE
TABLE H 2	URINALYSIS: FEMALE
TABLE J 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
TABLE L 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
TABLE O 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE O 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE Q 1	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE
TABLE Q 2	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj FEMALE MICE
TABLE R	CAUSE OF DEATH OF MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

STUDY NO. : 0580
ANIMAL : MOUSE BEDZF1/Cr1,i[Cr.j.:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 1

	No. of	Surviv.		50/50	50/50	50/50	50/50	50/50	50/50	50/50	20/20	20/20	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50	45/50	45/50	42/50	40/50	38/20	36/50	35/50
9700 bbm	% of	cont.	<20>			86 (09		26) 97																			(48) 96					(47) 98			15) 66		101 (0)			35) 106
	Av. Wt.												31.1 (46.2 (4			49.3 (4													$\overline{}$
	f No. of																20/20										50/50								•		40/20			
	Av. Wt. % o	cont	<95>		(20)	(20)	(20)	(20)	(20)		(20)	(20)	(20)	(20)	(20)	(20)	(20)	(20)	(20)		(20)	(20)	(20)	(20)	(20)	(20)	49. 3 (50) 95 50 c (50) 07	(40)		(47)	(46)	(45)	(45)	(44)	(43)	(41)	(40)	(38)	4 (38)	
	No. of	Surviv.		50/50	50/50	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	20/20	50/50	49/50	49/50	49/20	49/50	49/50	49/50	49/50 40/50	49/50	49/50	48/50	48/50	46/50	45/50	45/50	45/50	43/50	40/20	38/20	35/50	34/50
	% of	cont.	<20>	100	66	66	66	86	66	66	86	66	66	66	97	26	66	66	001	66	66	66	100	100	88	86 S	0 20	8 8	86	86	66	66	66	100	100	102	109	107	109	109
	Av. Wt.			24.0 (50)	_	26.1 (50)	_	_	_	29.4 (50)	_	30.9 (50)	_	-	32.0 (50)	_	_	_	_					-	_		49.5 (49)				52.9 (48)	_	54.4 (45)					on.	55.1 (35)	53.0 (34)
	t. No. of	Surviv.	<50>	(50) 50/50		(20)	(20)	(20)	(20)	(20)	(20)	_	(20)	(20)	(20)	(20)		(20)	_	(20)	(20)	(20)	(48)	(49) 49/50			(48) 48/50			(45) 45/50	(43) 43/50		(43) 43/50	•	_	(37) 37/50			_	(33) 33/20
	Av. Wt.	Week Day	on Study	0-0 24.0				4-7 28.2	5-7 29.1						11-7 33.0		13-7 35.0							38-7 47.5			54-7 59.1		62-7 52.8			74-7 54.4								104-7 48.8

BAIS 4

(BI0040)

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

PAGE: 2

STUDY NO. : 0580
ANIMAL : MOUSE BEDZH:J/Cr1,i[Cr.j:EDF1]
UNIT : E
REPORT TYPE : A1 104
SEX : FEMALE

Week-Day on Study											
Week-Day on Study	Av. Wt.	No. of	Av. Wt.	Jo %	No. of	Av. Wt.	Jo %	No. of	Av. Wt.	36	No of
on Study		Surviv.		cont.	Surviv.		COD	Surviv		cont	Survivi
	~	<20>		<20>			<20>	: :		(20°)	
0-0	19.2 (50)	50/50	19. 2 (50)	100	20/20		100	50/50	- 1	001	50/50
1-7	_	50/50	20.1 (50)	100	20/20		66	50/50		86	50/50
2-2	20.3 (50)	50/50	20.5 (50)	101	50/50	20.2 (50)	100	50/50		100	50/50
3-7	_	50/50	_	100	20/20		100	20/20		66	50/50
4-7	~	50/50	_	100	20/20		100	50/50		100	50/50
22	22.1 (50)	50/50	_	100	20/20		100	20/20		66	50/50
2-9	_	20/20	22.3 (50)	66	20/20		100	20/20		100	50/50
2-2	_	20/20	_	101	20/20		100	20/20		100	50/50
2-8	23.6 (50)	50/50	23.7 (50)	100	50/50		86	50/50		100	50/50
2-6	24.0 (50)	50/50	24.2 (50)	101	50/50		86	20/20		66	50/50
7-01	_	50/50	24.7 (50)	102	50/50		66	50/50		100	50/50
117	24.7 (50)	20/20		100	50/50		97	50/50	_	86	50/50
127	24.8 (50)	50/50	25.1 (50)	101	20/20		66	50/50	_	100	50/50
73-7	25.8 (50)	20/20	_	100	20/20		26	20/20	_	86	20/20
14-7	_	20/20	_	100	20/20	25.6 (50)	97	50/50	25.8 (50)	86	50/50
18-7	27.5 (50)	20/20	27.9 (50)	101	50/50		86	50/50	_	66	50/50
22-7	_	20/20	_	101	50/50		66	20/20		100	49/50
26-7	_	20/20	_	101	20/20		86	50/50		26	49/50
30-7	_	20/20	32.7 (50)	102	20/20		66	50/50	_	86	49/50
34-7	_	50/50	_	101	50/50		86	20/20	_	16	49/50
38-7	_	50/50	35.3 (50)	102	20/20		66	20/20	_	100	49/50
42-7	35.9 (50)	50/50	-	103	20/20	35.4 (50)	66	20/20	_	101	48/50
46-7	_	20/20	-	102	20/20		86	50/50	_	102	48/50
2-05	_	20/20	_	104	20/20		66	20/20	_	102	48/50
54-7	_	20/20	_	103	20/20		66	20/20	_	101	48/50
287	38.8 (50)	20/20	39.8 (49)	103	49/50		66	20/20	_	101	48/50
627		50/50	_	102	48/50		66	49/50	_	102	48/50
2-99		49/50	41.1 (47)	104	47/50		66	49/20	_	102	48/50
2-02		49/50		105	47/50		101	49/20	_	103	47/50
747		49/50	_	104	47/50		101	48/50	_	102	47/50
2-82		48/50		102	46/50		86	47/50	_	100	46/50
2-28	10.1 (48)	48/50	42.5 (44)	901	44/50		100	47/50	_	102	44/50
2-98	39.8 (47)	47/50	42.8 (43)	108	43/50	10.8 (44)	103	44/50	_	102	41/50
2-06	39.9 (45)	45/50	43.3 (41)	601	41/50		104	40/20	_	103	38/50
94-7	39.0 (41)	41/50	41.7 (39)	107	39/50		106	36/50	_	103	36/50
286	40.8 (36)	36/20	41.6 (34)	102	34/50	0	100	33/20	_	86	34/50
102-7	40.5 (34)	34/50	_	102	29/50	41.5 (30)	102	30/20	38.8 (30)	96	30/50
104-7	39.6 (34)	34/50	39.1 (28)	66	28/50	9.6	103	28/50	_	96	30/50

BAIS 4

(BI0040)

TABLE C 3

BODY WEIGHT CHANGES: MALE

Group Name Administration week-day. Courtrol 24.0± 0.8 25.4± 1.2 26.4± 1.3 27.3± 1.4 28.2± 1.5 512 ppm 24.0± 0.8 25.1± 1.0 26.1± 0.9 27.0± 1.1 27.7± 1.3 1280 ppm 24.0± 0.8 25.1± 1.0 25.8± 1.3* 27.0± 1.4 27.9± 1.5 3200 ppm 24.0± 0.8 24.7± 1.2** 25.8± 1.2** 26.6± 1.6 27.3± 1.9**	UNIT : R REPORT TYPE : AI 104 SEX : MALE							PAGE :
24.0± 0.8 25.4± 1.2 26.4± 1.3 27.3± 1.4 28.2± 24.0± 0.8 25.1± 1.0 26.1± 0.9 27.0± 1.1 27.7± 24.0± 0.8 25.1± 1.0 25.8± 1.3* 27.0± 1.4 27.9± 24.0± 0.8 24.7± 1.2** 25.8± 1.2* 26.6± 1.6 27.3±	roup Name	Administration 0-0	week-day	2-7	3-7	4-7	£5	2-9
24.0± 0.8 25.1± 1.0 26.1± 0.9 27.0± 1.1 27.7± 24.0± 0.8 25.1± 1.0 25.8± 1.3* 27.0± 1.4 27.9± 24.0± 0.8 24.7± 1.2* 25.8± 1.2* 26.6± 1.6 27.3±	Control	24.0± 0.8		26.4士 1.3	27.3± 1.4		29.1± 1.6	29.7± 1.6
24.0± 0.8 25.1± 1.0 25.8± 1.3* 27.0± 1.4 27.9± 24.0± 0.8 24.7± 1.2* 25.8± 1.2* 26.6± 1.6 27.3±	512 ppm	24.0 ± 0.8					28.7 ± 1.4	29.4 ± 1.4
24.0± 0.8 24.7± 1.2** 25.8± 1.2* 26.6± 1.6 27.3±	1280 ppm	24.0± 0.8			27.0± 1.4	27.9± 1.5	28.8 1.8	29.5± 1.8
	3200 ppm	24.0± 0.8			26.6± 1.6		28.4± 1.7	29.1± 2.0
Significant difference : $\star:P \le 0.05$ $\star\star:P \le 0.01$ Test of Dunnett	Significant difference :		5 : P ≤ 0.01		Test of Dunnett			

STUDY NO. : 0580 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : K REPORT TYPE : A1 104 SEX : MALE	J[Cr.j:BDF1]		BODY WEIGHT CHANGES ALL ANTMALS	(SUMMARY)			PAGE: 2
Group Name	Administrati 7-7	Administration week-day 7-7	L-6	701	117	12-7	13-7
Control.	30.6± 1.7	31.2± 1.7	31.9± 2.0	32.3± 2.3	33.0± 2.4	34.3± 2.3	35.0± 2.6
512 ppm	30.0 = 1.7	30.9土 1.7	31.6± 1.8	32.0 ± 2.1	32.0 ± 2.1	33.4 ± 1.9	34.6 ± 2.0
1280 ppm	30.2 ± 1.9	30.7 ± 2.1	31.5± 2.2	32.1 ± 2.2	32.4± 2.3	33.6± 2.6	34.5± 2.8
3200 ppm	29.8± 2.1	30.2 ± 2.4	31.1 ± 1.9	32.0 ± 2.1	32.1± 2.1	33.4 ± 2.3	34.1± 2.4
Significant difference :	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett		ALC	
(HAN260)							BAIS 4

TRAIMING : MOOSE DOES IVELIJIES JEDITIJ UNIT : K REPORT TYPE : Al 104 SEX : MALE	1.0d.j.b0r1.j		ALL MALMALS				PAG	PAGE: 3
Group Name	Administration week-day14-7	n week-day18-7	22-7	267	30-7	34-7	38-7	
Control	35.4± 2.7	37.8± 3.8	40.0± 4.3	42.9± 4.9	44.5± 4.9	46.3 ± 4.5	47.5± 4.5	
512 ppm	35.2± 2.2	37.9± 2.5	39.4± 3.9	42.5± 3.2	44.1± 3.3	46.1± 3.4	47.5± 3.5	
1280 թթա	35.1 ± 2.8	37.7± 3.4	39.4士 4.0	42.0± 4.1	43.7 ± 4.3	44.8+ 4.2	46.2± 4.2	
3200 ppm	34.8± 2.4	37.6± 2.8	39.1± 3.3	41.4± 4.1	43.0± 4.0	44.2± 4.3*	46.2± 4.5	
Significant difference ;	*:P≤0.05	‡: P ≤ 0.01		Test of Dunnett				
(HAN260)	7,777							BAIS 4

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : MALE	[Orj:BDF1]		ALL ANTWALS				PAGE: 4
Group Name	Administration week-day 42-7	week-day46-7	2-09	547	58-7	62-7	L-99
Control	49.2	50.7 ± 3.8	51.4± 3.3	52.1± 3.1	52.1± 3.9	52.84 4.1	53.3 ± 4.0
512 ppm	48.4± 3.5	49.9士 3.2	49.5± 3.7*	51.2± 3.3	50, 9 🛨 4, 0	51.6 ± 4.4	52.1 ± 5.6
1280 ppm	47.7± 3.9	49.3± 3.7	49.3± 4.3*	50,6± 4.5	51.1± 4.3	52.1± 4.4	52.2 ± -4.5
3200 ppm	47.6± 3.9	48.9± 4.1	49.3± 3.9*	50.9± 3.8	50.6± 4.3	51.2 ± 5.0	51.7± 4.6
	And the second s						
Significant difference:	*: P ≤ 0.05	# : P ≤ 0.01		Test of Dunnett			
(HAN260)							BAIS 4

Tough Name Administration week day 76-7 78-7 78-7 82-7 86-7 86-7 90-7 94-7 Control 53.4± 3.8 54.4± 4.0 55.0± 4.6 53.8± 5.9 53.3± 5.9 54.4± 6.2 51.8± 7.0 512 ppm 52.9± 5.9 53.8± 6.2 54.4± 6.6 53.6± 6.7 53.4± 8.4 55.7± 6.7 56.4± 5.1* 1280 ppm 52.9± 5.9 52.9± 6.1 52.9± 6.1 52.8± 6.1 52.5± 7.7 54.0± 6.9 51.9± 8.1 3200 ppm 52.4± 5.3 53.1± 5.3 53.4± 6.8 53.2± 4.8 53.0± 6.0 53.9± 6.4 52.5± 6.2	ANIMAL : WOUSE BEDZF1/Cr1j[Crj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : MALE	J[Cr.j:BDF1]		DOUT WEIGHT CHANGES	(SUMMAKT)			PAGE : 5
$53.4\pm 3.8 \qquad 54.4\pm 4.0 \qquad 55.0\pm 4.6 \qquad 53.8\pm 5.9 \qquad 53.3\pm 5.9 \qquad 54.4\pm 6.2 \qquad 51.8\pm 5.9 \qquad 53.4\pm 8.4 \qquad 55.7\pm 6.7 \qquad 56.4\pm 5.9 \qquad 53.8\pm 6.1 \qquad 52.8\pm 6.1 \qquad 52.5\pm 7.7 \qquad 54.0\pm 6.9 \qquad 51.9\pm 5.2.4\pm 5.3 \qquad 53.1\pm 5.3 \qquad 53.4\pm 6.8 \qquad 53.2\pm 4.8 \qquad 53.0\pm 6.0 \qquad 53.9\pm 6.4 \qquad 52.5\pm 7.7 \qquad 53.9\pm 6.4 \qquad 52.5\pm 7.7 \qquad 53.9\pm 6.4 \qquad 52.5\pm 7.7 \qquad 53.9\pm 6.4 \qquad 52.5\pm 5.9\pm 5.2 \qquad 53.4\pm 6.8 \qquad 53.2\pm 4.8 \qquad 53.0\pm 6.0 \qquad 53.9\pm 6.4 \qquad 52.5\pm 5.2 \qquad 52.4\pm 5.3 \qquad 53.1\pm 5.3 \qquad 53.4\pm 6.8 \qquad 53.2\pm 4.8 \qquad 53.0\pm 6.0 \qquad 53.9\pm 6.4 \qquad 52.5\pm 5.2 \qquad 52.5$	Group Name	Administratio 70-7	on week-day	78-7	82-7	<i>L</i> -98	Ł-06	94-7
$52.9\pm 5.9 + 5.9 = 53.8\pm 6.2 = 54.4\pm 6.6 = 53.6\pm 6.7 = 53.4\pm 8.4 = 55.7\pm 6.7 = 56.4\pm 5.2$ $52.6\pm 4.7 = 52.9\pm 5.2 = 52.9\pm 6.1 = 52.8\pm 6.1 = 52.5\pm 7.7 = 54.0\pm 6.9 = 51.9\pm 5.2 = 52.4\pm 5.3 = 53.1\pm 5.3 = 53.4\pm 6.8 = 53.2\pm 4.8 = 53.0\pm 6.0 = 53.9\pm 6.4 = 52.5\pm 5.2 $	Control	53.4± 3.8		55.0± 4.6				
52.6 ± 4.7 52.9 ± 5.2 52.9 ± 6.1 52.8 ± 6.1 52.5 ± 7.7 54.0 ± 6.9 51.9 ± 8.4 52.4 ± 5.3 53.1 ± 5.3 53.4 ± 6.8 53.2 ± 4.8 53.0 ± 6.0 53.9 ± 6.4 52.5 ± 4.8 52.5 ± 4.8 53.0 ± 6.0 53.9 ± 6.4 52.5 ± 4.8 52.5 ± 4.8 53.0 ± 6.0 53.9 ± 6.4 52.5 ± 4.8 52.5 ± 4.8 53.0 ± 6.0	512 ppm	52.9生 5.9						
52.4 ± 5.3 53.1 ± 5.3 53.4 ± 6.8 53.2 ± 4.8 53.0 ± 6.0 53.9 ± 6.4 52.5 ± 8.9 10.00	1280 ppm	52.6± 4.7						
*: P ≤ 0.05 **: P ≤ 0.01	3200 ppm	52.4± 5.3						
*: P ≤ 0.05 **: P ≤ 0.01			777					
	Significant difference :		** : P ≤ 0.01		Test of Dunnett			

Group Name Administration week -day $102-7$ $104-7$ Control $51.5\pm$ 7.5 $50.5\pm$ 7.9 $48.8\pm$ 8.5 512 ppm $54.9\pm$ 6.1 $55.1\pm$ 6.5* $53.0\pm$ 6.9 L280 ppm $50.4\pm$ 7.9 $49.4\pm$ 9.7 $49.3\pm$ 8.4 3200 ppm $52.5\pm$ 6.3 $52.6\pm$ 7.3 $51.7\pm$ 7.2 Significant difference: $*: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett	UNIT : g REPORT TYPE : A1 104 SEX : MALE				PAGE: 6
$51.5\pm$ 7.5 $50.5\pm$ 7.9 $48.8\pm$ 8.5 $54.9\pm$ 6.1 $55.1\pm$ 6.5* $53.0\pm$ 6.9 $50.4\pm$ 7.9 $49.4\pm$ 9.7 $49.3\pm$ 8.4 $52.5\pm$ 6.3 $52.6\pm$ 7.3 $51.7\pm$ 7.2 $*: P \le 0.05$ **: $P \le 0.01$	Group Name	Administration 98-7	week-day 102-7	104-7	
2 ppm 54.9 ± 6.1 $55.1\pm6.5*$ 53.0 ± 6.9 6.9 0 ppm 50.4 ± 7.9 49.4 ± 9.7 49.3 ± 8.4 0 ppm 52.5 ± 6.3 52.6 ± 7.3 51.7 ± 7.2 ificant difference: *:P ≤ 0.05 **:P ≤ 0.01	Control	51.5士 7.5			
0 ppm $50.4\pm$ 7.9 $49.4\pm$ 9.7 $49.3\pm$ 8.4 0 ppm $52.5\pm$ 6.3 $52.6\pm$ 7.3 $51.7\pm$ 7.2 ificant difference: *:P \leq 0.05 **:P \leq 0.01	512 ppm	54.9士 6.1			
0 ppm $ 52.5\pm \ 6.3 \qquad 52.6\pm \ 7.3 \qquad 51.7\pm \ 7.2 $ if icant difference ; *:P ≤ 0.05 **:P ≤ 0.01	1280 ppm	50.4± 7.9		49.3 ± 8.4	
ificant difference ; *:P≤0.05 **:P≤0.01	3200 ppm	52.5± 6.3		51.7± 7.2	
ificant difference : *:P≤0.05 **:P≤0.01					
(HANZ60)	Significant difference:	*: P ≤ 0.05	*★: P ≤ 0.01		Test of Dunnett
	(HAN260)				BAIS4

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

STUDY NO. : 0580 ANUMAL : MOUSE BGDZF1/CrljfCrj:BDF1] UNIT : K REPORT TYPE : A1 104 SEX : FEMALE	[Crj:BDF1]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			PAGE: 7
Group Name	Administrati 0-0	Administration week-day 0-0	27	3-7	4-7	5-7	L-9
Control	19.2± 0.8	20.1± 1.0	20.3± 1.2	20.9± 1.2	21.3± 1.2	22.1± 1.3	22.5± 1.3
512 ppm	19.2± 0.8	20.1± 1.0	20.5 ± 1.0	20.9土 1.0	21.3± 1.1	22.1 ± 1.2	22.3± 1.3
1280 ppm	19.2± 0.8	19.8士 1.0	20.2 ± 1.2	20.9± 1.4	21.2± 1.4	22.0 ± 1.4	22.4± 1.4
3200 ppm	19.2 = 0.8	19.7± 1.1	20.2 ± 1.1	20.6± 1.1	21.2± 1.3	21.9 ± 1.3	22.4 ± 1.5
Significant difference :	*:P≤0.05	** : P ≤ 0.01		Test of Dunnett			
(HAN260)							BAIS 4

Group Name	Administration wook-day	web-day					. JAKI
	L-L	7-8	L-6	10-7	11-7	12-7	13-7
Control	22.7± 1.2	23.6± 1.5	24.0± 1.7	24.2± 1.9	24.7 ± 1.9	24.8± 2.1	25.8 ± 2.3
512 ppm	23.0 ± 1.5	23.7± 1.5	24.2± 1.6	24.7± 1.9	24.8 ± 2.2	25.1± 2.3	25.8± 2.2
1280 րրա	22.8± 1.7	23.2± 1.6	23.6± 1.9	24.0± 1.8	24.0± 2.0	24.6 ± 2.1	25.1± 2.2
3200 ppm	22.8± 1.5	23.6± 1.5	23.7± 1.5	24.1± 1.8	24.2± 1.9	24.7 ± 1.7	25.3± 1.9
Significant difference ;	*: P ≤ 0.05	‡ : P ≤ 0.01		Test of Dunnett			

STUDY NO. : 0580 ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1] UNIT : K REPORT TYPE : A1 104 SEX : FEMALE	[Crj:BDF1]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			PAGE: 9
Group Name	Administrati 14-7	Administration week-day14-7	227	26-7	30-7	34~7	38-7
Control	26.3± 2.4	27.5± 2.9	29.0± 3.4	31.2± 3.6	32.0± 4.1	33.4± 4.4	34.7± 4.3
512 ppm	26.2± 2.3	27.9土 2.8	29.2 ± 3.0	31.4 ± 3.9	32.7± 3.9	33.9士 4.3	35.3 ± 4.4
1280 րրա	25.6± 2.3	27.0± 2.9	28.7 ± 3.5	30.5± 3.8	31.7± 4.3	32.6± 4.3	34.4± 4.8
3200 ppm	25.8± 2.3	27.2± 2.9	28.9± 3.6	30.3± 3.6	31.4± 3.8	32.4± 4.0	34.6± 4.8
Significant difference :	*: P ≤ 0.05	** : P ≤ 0.0[Test of Dunnett			
(HAN260)							BAIS 4

STOPL NO. : 0.000 ANIMAL : MOUSE B6D2F1/CrljfCrj:BDF1] UNIT : R REPORT TYPE : AI 104 SEX : FEMALE	[Crj:BDF1]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			PAGE: 10
Group Name	Administration week-day 42-7	week~day	2-05	54-7	28-7	<i>L</i> -29	L-99
Control	35.9 ± 4.6	37.0± 5.0	37.4± 5.4	39.0± 5.5	38.8± 5.6	39.1 ± 5.6	39.7± 5.2
512 ppm	36.8± 4.4	37.7 ± 4.9	38.8士 5.1	40.1 ± 5.1	39.8± 5.5	40.0 ± 5.7	41.1± 5.7
1280 ppm	35.4± 4.8	36.3± 5.0	36.9± 4.8	38.6± 5.0	38.6± 5.4	38.9± 5.6	39.5± 5.4
3200 ррт	36.3± 3.9	37.6 ± 4.1	38.1± 4.2	39.5士 4.1	39.2 ± 4.5	39.8± 4.2	40.6± 4.2
Significant difference:	*: P ≤ 0.05	. P ≤ 0.01		Test of Dunnett			
(HAN260)							BAIS 4

Group Name Administration week-day.	ANIMAL : MOUSE B6D2F1/Cr1jfCrj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : FEMALE	[Cr.j:BDF1]		ALL ANEWALS				PAGE: 11
39. $5\pm$ 5.7 40. $0\pm$ 6.5 41. $3\pm$ 6.1 40. $1\pm$ 6.6 39. $8\pm$ 6.2 39. $9\pm$ 7.3 39. $0\pm$ 41. $3\pm$ 6.0 42. $3\pm$ 6.1 42. \pm 6.0 40. \pm 6.0 6 40. \pm	Sroup Name	Administratio 707	on week-day 74-7	1-87	L-78	L-98	2-06	<i>L</i> - F 6
41. $3\pm$ 6. 0 41. $7\pm$ 5. 9 42. $3\pm$ 6. 1 42. $5\pm$ 6. 0 42. 8± 5. 8 43. \pm 5. 8 41. $7\pm$ 6. 0 40. 8± 5. 3 41. \pm 6. 0 40. 8± 5. 3 41. \pm 6. 0 40. 8± 6. 0 40.	Control	39.5士 5.7		41.3± 6.1				39.0± 7.6
$39.7\pm$ 5.5 $40.2\pm$ 5.2 $40.6\pm$ 5.8 $39.9\pm$ 6.0 $40.8\pm$ 5.3 $41.3\pm$ 6.0 $41.4\pm$ $40.6\pm$ 4.3 $41.2\pm$ 4.7 $40.8\pm$ 4.8 $40.7\pm$ 5.1 $41.0\pm$ 5.3 $40.3\pm$ $40.3\pm$ $8:P \le 0.05$ **: $P \le 0.05$	512 ppm	41.3 ± 6.0						
40.6 ± 4.1 40.6 ± 4.3 41.2 ± 4.7 40.8 ± 4.8 40.7 ± 5.1 41.0 ± 5.3 40.3 ± 8.7 8.7 1.0	1280 րրտ	39.7± 5.5						
*: P ≤ 0.05 ★: P ≤ 0.01	3200 ppm	40.6± 4.1		41.2± 4.7	40.8± 4.8	40.7± 5.1		
*: P ≤ 0.05 **: P ≤ 0.01							AND CONTRACTOR OF THE PARTY OF	
	Significant difference :	*: P ≤ 0.05			Test of Dunnett			

ANIMAL : MOUSE B6DZFI/Crlj[Crj:BDF1] UNIT : R REPORT TYPE : AI 104 SEX : FEMALE	[Cr j:BDF1]		ALL ANEMALS	PAGE: 12
Group Name	Administration week-day_ 98-7 102	week-day 102-7	104-7	
Control	40.8 ± 5.9	40.5± 6.1	39.6± 6.1	
512 ppm	41.6 ± 5.6	41.3± 5.9	39.1 ± 5.6	
1280 pm	41.0± 5.2	41.5± 5.1	40.6士 4.8	
3200 ppm	40.1± 6.0	38.8± 7.2	38.1± 7.0	
Significant difference :	*: P \le 0.05	#:P≤0.01		Test of Dumett
(HAN260)				BAIS 4

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

STUDY NO. : 0580
ANIMAL : MOUSE BEDZF1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : Al 104
SEX : MALE

	Ş	Control		512 ppm			1280 ppm			3200 ppm	
Week-Day	Av. FC.	No. of Surviv.	Av. FC.	% of cont.	No. of Surviv.	Av. FC.	% of cont.	No. of Surviv.	Av. FC.	% of cont.	No. of Surviv.
on Study	~	<20>		<20>			<20>			<20>	
11	4.2 (50)		4.1 (50)	86	50/50	1	95	50/50	4.0 (50)	95	50/50
27	3.8 (50)			105	50/50	3.8 (50)	100	50/50	4.0 (50)	105	50/50
3-7	3.9 (50)		3.9 (50)	100	20/20		103	50/50	4.1 (50)	105	50/50
4-7	4.0 (50)		3.9 (50)	86	50/50	4.0 (50)	100	50/50	3.9 (50)	86	50/50
22	4.0 (50)		3.9 (50)	86	20/20		100	50/50	4.1 (50)	103	50/50
2-9	3.9 (50)		4.0 (50)	103	20/20		100	20/20	4.1 (50)	105	20/20
22	4.0 (50)		4.0 (50)	100	50/50	0	100	50/50	Ξ	103	50/50
2-8	4.0 (50)		4.0 (50)	100	50/50	3.9 (50)	86	20/20	3.9 (50)	86	20/20
2-6	4.0 (50)		4.1 (50)	103	20/20	4.2 (50)	105	50/50	4.1 (49)	103	49/50
10-7	4.0 (50)		4.0 (50)	100	20/20	4.1 (50)	103	50/50	4.2 (49)	105	49/50
11-7	4.1 (50)		3,9 (50)	95	50/50	3.9 (50)	95	50/50	4.1 (49)	100	49/50
127	4.1 (50)		4.3 (50)	105	20/20	4.3 (50)	105	50/50	4.4 (49)	107	49/50
137	4.1 (50)		4.3 (50)	105	20/20	4.1 (50)	100	20/20	4.2 (49)	102	49/50
14-7	3.8 (50)		4.1 (50)	108	50/50	4.0 (50)	105	50/50	_	103	49/50
18-7	4.4 (50)		4.3 (50)	86	20/20	2	102	20/20	_	105	49/50
22-7			4.1 (50)	95	50/50	_	98	50/50	4. (49)	92	49/50
26-7	4.5 (50)		4.5 (49)	100	49/50	60	96	50/50	4.3 (49)	96	49/50
2-0			4.6 (49)	100	49/50		100	50/50	4.6 (49)	100	49/50
34-7			4.5 (49)	105	49/50	_	102	20/20	4.4 (49)	102	49/50
38-7	_		4.4 (49)	105	49/20		100	50/50	4.4 (49)	105	49/50
42-7			4.6 (49)	100	49/50	_	102	50/50	4.8 (48)	104	48/50
46-7	4.5 (48)	48/50		100	49/50	D.	100	20/20	4.3 (48)	96	48/50
20-2	4.7 (48)			96	49/20	က	91	20/20	4.6 (48)	86	48/50
54-7	5.0 (48)		5.0 (49)	100	49/50	-	96	20/20	4.9 (47)	86	47/50
2-2	4.6 (47)			100	49/50	8	104	49/20		100	47/50
22	_			96	49/20	-	104	48/50		100	47/50
29	ص ص			100	48/20		100	47/50	_	106	47/50
20	5.0 (43)		5.0 (46)	100	48/20	_	100	46/50	5.0 (46)	100	47/50
74-7	4.9 (43)		_	100	46/50	_	102	45/50	_	100	47/50
78-7	5.4 (43)			94	45/50		93	45/50	5.3 (47)	86	47/50
82-7	5.0 (43)		5.0 (44)	100	45/50	4.8 (44)	96	44/50	5.0 (44)	100	45/50
2-98	4.8 (40)	40/50	4.8 (44)	100	45/50		102	43/50	_	106	45/50
2-06	9			92	43/50	5.4 (41)	96	41/50	5.6 (41)	100	42/50
94-7	5.1 (37)	37/20	5.0 (40)	86	40/20		90	40/20	4.6 (38)	06	40/20
7-86	4.9 (34)	•	5.0 (37)	102	38/20	_	94	38/20	4.7 (35)	96	38/20
7-20.	5.3 (33)	• •	5.4 (35)	102	35/50		86	38/20	5.3 (36)	100	36/20
7-70	(4.2)	99 /50	1 7 (24)	100	04/60	E 1 (9E)	100	00/00	(VC) 0 H	001	(L)

BAIS 4

(BI0040)

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

∌
7
\odot
ĭ
$\underline{}$
\leq
\equiv
=
₩.
3
$\overline{\infty}$
€.
CONS
\equiv
F00D
Ή.
Z
₹
(EAN
-

STUDY NO. : 0580
ANIMAL : MOUSE BED2F1/Crij[Crij:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

	5	Contro]		512 ppm			1280 ppm			3200 ppm		
Week-Day	Av. FC.	No. of Surviv.	Av. FC.	% of cont.	No. of Surviv.	Av. FC.	% of cont.	No. of Surviv.	Av. FC.	% of	No. of Surviv	
on Study	~	20>		<20>			<20>			(20)		
1-7	3.8 (50)	20/20	3.8 (50)	100	20/20	_	76	50/50	3.8 (50)	100	50/50	***************************************
2-7	2	20/20	_	103	20/20	3.4 (50)	26	20/20	3.5 (50)	100	50/50	
3-7	3.6 (50)	20/20	3.6 (50)	100	20/20	_	103	20/20	3.5 (50)	26	50/50	
4-7	4	20/20	2	103	20/20	4	100	50/50	3.4 (50)	100	50/50	
2-2	9	20/20	3.5 (50)	26	50/50	ŝ	67	50/50	3.5 (50)	97	50/50	
2-9	~	20/20	3.8 (50)	103	20/20	·~	100	20/20	_	100	50/50	
2-2	n.	20/20	3.7 (50)	106	20/20	~	106	20/20	_	103	50/50	
2-8	3.8 (50)	20/20	3.8 (50)	100	20/20	8	100	20/20	3.9 (50)	103	50/50	
2-6	3, 9 (50)	20/20	4.1 (50)	105	20/20	0	103	20/20	3.8 (50)	26	50/50	
10-7	3.7 (50)	20/20	4.0 (50)	108	20/20	20	103	20/20	3.8 (50)	103	50/50	
11-7	3.9 (50)	20/20	3.9 (49)	100	20/20	∞	26	20/20	3.8 (50)	26	50/50	
12-7	4.0 (50)	20/20	4.1 (50)	103	50/50	_	103	20/20	4.0 (50)	100	50/20	
13-7	4.1 (50)	20/20	4.1 (50)	100	50/50	4.3 (50)	105	20/20	4.0 (50)	86	50/50	
14-7	4.0 (50)	20/20	4.0 (50)	100	50/50	4.0 (50)	100	20/20	3.8 (50)	95	50/50	
18-7	4.3 (50)	50/50	4.3 (50)	100	50/50	2	105	20/20	4.3 (50)	001	50/50	
227	4.4 (50)	20/20	4.5 (50)	102	20/20	_	105	20/20	4.5 (49)	102	49/50	
2-92	4.6 (50)	20/20	4.5 (50)	88	20/20	_	86	20/20	_	93	49/50	
30-7	_	20/20	4.9 (50)	100	20/20	5.1 (50)	104	20/20	_	86	49/50	
34-7	4.5 (49)	50/50	4.8 (50)	107	20/20	_	109	20/20	4.3 (49)	96	49/50	
38-7	ص ص	20/20	4.3 (50)	96	20/20	9	102	20/20	4.7 (49)	104	49/50	
42-7	5.2 (50)	20/20	5.4 (50)	104	20/20	ກ	102	20/20	5.2 (48)	100	48/50	
46-7	_	20/20	4.7 (50)	86	20/20	9	96	20/20	4.9 (48)	102	48/50	
2-09	4.8 (49)	20/20	4.8 (49)	100	20/20	9	96	20/20	4.8 (46)	100	48/50	
54-7	က	20/20	5.4 (50)	102	20/20	5.5 (50)	104	20/20	5.3 (48)	100	48/50	
58-7	5, 3 (50)	50/50	5.1 (49)	96	49/50	0	94	20/20	4.8 (48)	91	48/50	
627	_	20/20	4.7 (48)	100	48/50	4.7 (49)	100	49/50	_	111	48/50	
299	5.2 (48)	49/50	5.4 (47)	104	47/50	~	100	49/50	_	102	48/50	
7-07	4.9 (48)	49/50	4.8 (47)	86	47/50	∞	86	49/50	5.2 (47)	106	47/50	
74-7	5.2 (48)	49/50	5.5 (47)	106	47/50	2	100	48/50	_	100	47/50	
78-7	5.2 (47)	48/50	5.6 (45)	108	46/50	4	104	47/50	_	102	46/50	
827	5.2 (47)	48/50	5.8 (44)	112	44/50	Ċ:	94	47/50		100	44/50	
2-98	1.5 (46)	47/50	5.2 (42)	116	43/50	œ	107	44/50	5.1 (40)	113	41/50	
2-06	5.3 (44)	45/50	,_	106	41/50	co	104	10/20		109	38/50	
94-7	4.9 (39)	41/50	-	104	39/20	ro -	112	36/20	-	110	36/50	
98-7	5.3 (36)	36/20	5.3 (34)	100	34/50	8	100	33/20	5.5 (34)	104	34/50	
102-7	_	34/50	6.2 (28)	111	29/20	5.9 (28)	105	30/20	6.0 (29)	107	30/50	
104-7	4.6 (32)	34/50	4.8 (27)	104	28/50	4	117	28/50	5, 4 (28)	117	30/50	

BAIS 4

(BI0040)

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

SEA . MALE Groun Name	1 deministration	deninietration wook-day(offortivo)					
	1-7 (4)	2-7(4)	3~7 (4)	4-7(4)	5-7 (4)	6-7 (4)	7-7(4)
Control	4. 2± 0.5	3.8± 0.5	3.9± 0.5	4.0 ± 0.5	4.0± 0.5	3.9± 0.4	4.0 ± 0.5
512 ppm	4.1 = 0.4	4.0 ± 0.5	3.9 ± 0.5	3.9 ± 0.6	3.9 ± 0.5	4.0 ± 0.5	4.0 ± 0.6
1280 թթա	4.0± 0.5	3.8± 0.6	4.0± 0.5	4.0 ± 0.5	4.0± 0.5	3.9± 0.4	4.0± 0.6
3200 ppm	4.0 + 0.7	4.0 ± 0.7	4.1 ± 0.6	3.9± 0.7	4.1± 0.6	4.1± 0.6	4. 1± 0.6
Significant difference ;	* : P \le 0.05 *	# : P ≤ 0.01		Test of Dunnett			

SEX : MALE	A Line	N	A CONTRACTOR OF THE CONTRACTOR				
roup round	8-7 (4)	ween day (ellective) 9-7 (4)	10-7(4)	11-7(4)	12-7 (4)	13-7 (4)	14-7 (4)
Control	4.0± 0.4	4.0 = 0.4	4.0 ± 0.6	4.1± 0.6	4.1+ 0.4	4.1 ± 0.4	3.8 ± 0.6
512 ppm	4.0-1-0.5	4. 1± 0.4	4.0 ± 0.6	3.9± 0.7	4.3 ± 0.4	4.3 ± 0.5	4.1 ± 0.6
1280 ppm	3.9± 0.7	4.2 ± 0.4	4.1± 0.4	3.9± 0.5	4.3± 0.5	4.1 0.5	4.0± 0.6
3200 ppm	3.9± 0.8	4.1± 0.5	4. 2± 0.6	4.1± 0.6	4.4± 0.6	4.2± 0.4	3.9± 0.7
Significant difference ;	* : P ≤ 0.05 *	. P ≤ 0.01		Test of Dunnett			

STUDY NO. : 0580 ANIMAL : MOUSE DEDZF1/Cr1j[Crj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : MALE	[Cr.j:BDF1]	75. IA	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	JES (SUMMARY)			PAGE	PAGE: 3
Group Name	Administration 18-7(4)	Administration week-day(effective)	26-7 (4)	30-7(4)	34-7(4)	38-7(4)	42-7 (4)	
Control	4.4± 0.5	4.3± 0.7	4.5± 0.6	4.6士 0.5	4.3± 0.8	4.2± 0.7	4.6± 0.4	
512 ppm	4.3 ± 0.4	4.1	4.5± 0.5	4.6 ± 0.6	4.5 - 0.5	4.4 ± 0.5	4.6± 0.5	
1280 ppm	4.5± 0.5	4.1± 0.7	4.3± 0.5	4.6 = 0.4	4.4± 0.7	4.2± 0.8	4.7± 0.5	
3200 ppm	4. 6± 0.4	4.1 ± 0.7	4.3± 0.6	4.6 ± 0.5	4.4± 0.8	4.4 + 0.7	4.8± 0.5	
Significant difference ;	*: P ≤ 0.05	‡ : P ≤ 0.01		Test of Dunnett	Tangang and the same of the sa			

ONII REPORT TYPE : AI 104 SEX : MALE							PAGE :	4
Group Name	Administration 46-7(4)	Administration week-day(effective)_46-7(4) 50-7(4)	54-7(4)	58-7(4)	62-7(4)	66-7(4)	70-7 (4)	
Control	4.5 ± 0.7	4.7 ± 0.6	5.0± 0.7	4.6± 0.9	4.7± 1.0	4.9士 0.7	5.0± 1.0	
512 ppm	4.5 ± 0.5	4.5 ± 0.9	5.0 ± 0.7	4.6 ± 0.7	4.5 - 1.0	4.9 ± 0.9	5.0 1 0.6	
1280 ppm	4.5± 0.6	4.3± 0.9*	4.8 + 0.9	4.8± 0.7	4.9 ± 0.8	4.9+ 0.8	5.0 ± 0.9	
3200 ррш	4.3 ± 0.8	4.6± 0.8	4.9十 0.5	4.6± 1.0	4.7 ± 1.1	5.2 ± 1.0	5.0 ± 0.8	
Significant difference; ★:P≦0.05		‡ : P ≤ 0.01		Test of Dunnett				

PAGE: 5 4.9 ± 1.4 5.0 ± 0.9 4.6 ± 1.1 4.7 ± 1.2 98-7(4) 5.1 ± 1.0 5.0 ± 1.0 4.6 ± 1.2 4.6 ± 1.3 94-7(4) 5.6 ± 0.9 5.3± 1.0 5.4 ± 1.1 5.6 ± 1.1 90-7(4) 4.8 ± 1.4 4.8± 1.2 4.9 ± 1.0 5.1 ± 1.3 86-7(4) FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS 5.0± 1.0 4.8 ± 1.0 5.0 ± 1.1 5.0 ± 1.3 82-7(4) 0.8 5.4 ± 0.7 5.0 ± 0.8 5.3 ± 0.9 5.1± 4.9 ± 0.7 4.9 ± 0.8 5.0 ± 1.1 4.9 ± 1.1 STUDY NO. : 0580
ANIMAL : MOUSE BEDZF1/Cr1j[Crj:BDF1]
UNIT : R
REPORT TYPE : A1 104
SEX : MALE 512 ppm 1280 ррш 3200 ppm Control Group Name

Test of Dunnett

★: P ≤ 0.01

Significant difference : $*:P \le 0.05$

(HAN260)

PAGE: 6 FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS 4.7± 1.6 4.7 ± 1.5 5.1 ± 1.3 5.0 ± 1.2 5.3 ± 1.2 5.4 ± 1.2 5.2 ± 1.2 5.3 ± 1.4 STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
UNIT : R
REPORT TYPE : A1 104
SEX : MALE 512 ppm 1280 ppm 3200 ppm Control Group Name

Test of Dunnett

★: P ≤ 0.01

Significant difference : $*:P \leq 0.05$

(HAN260)

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS STUDY NO.: 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
UNIT : K
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 7

Group Name	Administration	Administration week day (effective)					
	1-7 (4)	2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7 (4)	7-7 (4)
Control	3.8± 0.6	3.5± 0.5	3.6± 0.6	3.4± 0.6	3.6± 0.6	3.7 ± 0.6	3.5± 0.5
512 ppm	3.8 ± 0.6	3.6土 0.5	3.6 4 0.6	3.5 - 0.5	3.5± 0.4	3.8 ± 0.5	3.7 ± 0.6
1280 ppm	3.7± 0.5	3.4± 0.6	3.7 ± 0.6	3.4 ± 0.5	3.5± 0.6	3.7± 0.5	3.7 ± 0.5
3200 ppm	3.8± 0.6	3.5± 0.6	3.5± 0.6	3.4± 0.5	3.5 ± 0.4	3.7 ± 0.5	3.6 + 0.5
Significant difference ;	*: P ≤ 0.05	* : P & 0.01		Test of Dunnett			

STUDY NO. : 0580 ANIMAL : MOUSE BGDZP1/Cr1j[Crj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : FEMALE	j(Crj:BDF1]	FOA	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	SS (SUMMARY)				PAGE :
Group Name	Administration 8-7(4)	Administration week-day(effective) 8-7(4)	10-7(4)	11-7(4)	12-7 (4)	13-7 (4)	14-7(4)	
Control.	3.8± 0.7	3.9 ± 0.6	3.7 ± 0.7	3.9± 0.6	4.0 ± 0.6	4.1± 0.7	4.0 ± 0.8	
512 ppm	3,8 ± 0,5	4.1 ± 0.5	4.0 ± 0.6	3.94 0.6	4.1 ± 0.7	4.1 ± 0.7	4.0 ± 0.6	
1280 թյա	3.8± 0.7	4.0 ± 0.7	3.8 ± 0.6	3.8± 0.7	4.1± 0.8	4.3 1.0	4.0 ± 0.9	
3200 ppm	3.9± 0.5	3.8± 0.4	3.8± 0.6	3.8± 0.5	4.0 ± 0.6	4.0 ± 0.6	3.8 ± 0.6	

Test of Dunnett

STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/Cr1jfCrj:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : FEMALE	Cr.j:BDF1.]	F00 ALI	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	ES (SUMMARY)			PAGE:
Group Name	Administration 18-7(4)	Administration week-day(effective)	26-7 (4)	30-7(4)	34-7 (4)	38-7 (4)	
Control	4.3± 0.7	4.4± 1.0	4.64 1.0	4.9 ± 0.9	4.5± 1.0	4, 5 ± L. I	5.2± 1.0
512 ppm	4.31 0.7	4.5 ± 0.7	4.5± 1.0	4.9± 1.0	4.8± 1.0	4.3± 0.9	5.4± 1.0
1280 ppm	4.5± 1.0	4.6± 1.1	4.5± 1.2	5.1± 1.1	4.9 + 1.2	4.6± 1.3	5.3+ 1.2
3200 ppm	4.3± 0.9	4.5± 0.9	4.3 ± 0.8	4.8± 0.9	4.3± 0.8	4.7 ± 1.1	5.2± 1.1
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.0[**************************************	Test of Dunnett			

STUDY NO.: 0580 ANIMAL: MOUSE BEDZFL/CrljfCrj:BDF1] UNIT: R REPORT TYPE: A1 104 SEX: FEMALE	Cr.j:BDF1]	FOG	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	ES (SUMMARY)			PAGE: 10
Group Name	Administration 46-7(4)	Administration week-day(effective)	54-7(4)	58-7(4)	62-7(4)	66-7(4)	70-7 (4)
Control	4.8± 1.2	4.8± 1.2	5.3士 1.2	5.3土 1.5	4.7± 1.2	5.2± 1.1	4.9+ 1.3
512 ppm	4.7 ± 1.1	4.8 ± 1.0	5.4± 0.9	5.1 ± 1.3	4.7 - 1.0	5.4生 1.1	4.8± 1.3
1280 ppm	4.6± 1.2	4.6± 1.3	5.5 = 1.3	5.0+ 1.4	4.7 ± 1.3	5.2 \pm 1.2	4.8 + 1.4
3200 ppm	4.9± 1.1	4.8± 1.0	5.3± 1.0	4.8± 1.3	5.2 ± 1.0	5.3± 1.1	5.2± 1.1
Significant difference :	* : P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			
(HAN260)			AND		A STORE OF THE STO		BAIS 4

REPORT TYPE : A1 104 SEX : FEMALE							PAGE: 11
	Administration 74-7(4)	Administration week-day(effective)	82-7(4)	86-7(4)	90-7 (4)	94-7 (4)	98-7(4)
	5.2± 1.4	5.2+ 1.2	5.2± 1.3	4.5± 1.6	5.3土 1.5	4.9± 1.8	5.3± 1.5
	5.5士 1.4	5.6± 1.0	5.8 ± 1.3	5.2 1.2	5.6± 1.1	5.1 ± 1.6	5.3 ± 1.1
	5.2± 1.3	5.4± 1.2	4.9± 1.4	4.8 1.4	5.5 ± 1.4	5.5+ 1.5	5.3± 1.5
	5.2 ± 1.4	5.3士 1.2	5.2 ± 1.3	5.1± 1.7	5.8 ± 1.2	5.4 ± 1.4	5.5± 1.6

BAIS 4 Test of Dunnett **★**: P ≤ 0.01 Significant difference : * : P \leq 0.05 (HAN260)

512 ppm 6.2± 1.2 4.8± 1.3 1280 ppm 5.9± 1.5 5.4± 1.2 3200 ppm 6.0± 1.5 5.4± 1.3*	
Significant difference: *:PS005 \$:PS001	Test of humott

TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

PAGE: 1						
PA	7	0,000± 0.000	0.068 = 0.010	0.171 ± 0.024	0.437 ± 0.066	
	9	0.000 ± 0.000	0.069 ± 0.008	0.171 ± 0.017	0.453 ± 0.061	
	5	0.000 ± 0.000	0.070± 0.007	0.179± 0.023	0.457 ± 0.066	
(SUMMARY)	4	0.000 ± 0.000	0.071 ± 0.009	0.182± 0.025	0.459± 0.069	
CHEMICAL INTAKE CHANGES ALL ANIMALS	3	0.000土 0.000	0.074 ± 0.008	0.189± 0.025	0.490 ± 0.070	
ਲੋ ਚ	(weeks)	0.000 年 0.000	0.079 ± 0.009	0.189 ± 0.027	0.495士 0.082	
Crlj[Crj:BDF1] v	Administration (weeks)_ l	0.000 ± 0.000	0.083 ⊕ 0.008	0.204 ± 0.023	0.515± 0.076	
STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1] UNIT : g / kg / d a y REPORT TYPE : A1 104 SEX : MALE	Group Name	Control	512 ppm	1280 րթա	3200 ppm	

STUDY NO.: 0580 ANIMAL: MOUSE BEDZF1/CrijfCrj:EDF1] UNIT: R / kg / d a y REPORT TYPE: A1 104 SEX: MALE	rj:BDF1]	O 4	CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS	(SUMMARY)			PAGE: 2
Group Name	Administration (weeks)9	(#eeks)	10	11	12	13	14
Control	0.000 ≠ 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000
512 ppm	0.067± 0.008	0.066 ± 0.007	0.064上 0.009	0.062 = 0.010	0.065 = 0.007	0.064± 0.008	0.059 ± 0.008
1280 ppm	0.163 = 0.027	0.169 ± 0.018	0.164± 0.017	0.153± 0.021	0.162± 0.017	0.153 ± 0.019	0.145± 0.021
3200 ppm	0.413 ± 0.070	0.425± 0.053	0. 420 ± 0. 056	0.410 ± 0.059	0.423 ± 0.058	0.395 ± 0.039	0.362 ± 0.065

BA1S 4

STUDY NO. : 0580 ANTMAL : MOUSE BGDZF1/Crlj[Crj:BDF1] UNIT : R / kg / d a y REPORT TYPE : A1 104 SEX : MALE	rj:BDF1]	ਹ ਝ	CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS	(SUMMARY)			PAGE: 3
Group Name	Administration (weeks)	(weeks) 22	26	30	34	388	42
Control	0.000± 0.000	0.000 ± 0.000	0.000± 0.000	0.000 + 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000
512 ppm	0.059± 0.006	0.053 ± 0.007	0.055± 0.007	0.053 ± 0.007	0,050± 0,006	0.048 ± 0.006	0.049± 0.007
1280 ppm	0.152± 0.017	0.134± 0.022	0.133 ± 0.017	0.135 ± 0.014	0.126± 0.020	0.117± 0.022	0.127± 0.015
3200 ppm	0.390± 0.042	0.338± 0.052	0.332 ± 0.045	0.348± 0.057	0.321 ± 0.055	0.309± 0.048	0.323± 0.050

PAGE: 4		0.000 ± 0.000	⊕ 0.006	+ 0.024	+ 0.060	
	70	0.000	0.048±	0.122±	0.306±	
	99	0.000 ± 0.000	0.048士 0.007	0.122 ± 0.021	0.323 ± 0.078	
	62	0.000 ± 0.000	0.045 ± 0.009	0.120± 0.021	0.296± 0.072	
(SUMMARY)	58	0.000 ± 0.000	0.046士 0.008	0.120± 0.018	0.293土 0.058	
CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS	54	0.000± 0.000	0.050 ± 0.008	0.122± 0.023	0.308± 0.043	
A. C.	(weeks) 50	0.000 ± 0.000	0.047 ± 0.009	0.112 ± 0.020	0.300土 0.049	
-1.j[Cr.j:BBF1.]	Administration (weeks) 46 50	0.000 ≠ 0.000	0.046 ± 0.005	0.118 ± 0.019	0.285 ± 0.051	
STUDY NO.: 0580 ANIMAL: MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT: R/kg/day REPORT TYPE: A1 104 SEX: MALE	Group Name	Control	512 ppm	1280 ppm	3200 ppm	

STUDY NO.: 0580 ANIMAL: MOUSE BGDZF1/Cr1j[Crj:BDF1] UNIT: R/kg/day REPORT TYPE: A1 104 SEX: MALE]:BDF1]		CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANDMALS	(SUMMARY)			PAGE: 5
Group Name	Administration (weeks) 74	(weeks) 78	88	98	06	94	86
Control	0.000 幸 0.000	0.000 ± 0.000	0.000± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000
512 ppm	0.047 ± 0.007	0.048 ± 0.007	0.048± 0.012	0.047 ± 0.012	0.048 ± 0.008	0.046 ± 0.009	0.046⊥ 0.009
1280 րրա	0.122 ± 0.025	0.122 ± 0.022	0.117± 0.025	0.122 ± 0.027	0.130 ± 0.039	0.113± 0.031	0.117± 0.034
3200 ppm	0.295± 0.068	0.322 ± 0.053	0, 298 ± 0, 068	0.305± 0.079	0.334± 0.071	0.278 ± 0.079	0.288± 0.079

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS PAGE: 6	Administration (weeks) 102	$0.000\pm 0.000 \pm 0.000 \pm 0.000$	$0.051\pm \ 0.012$ $0.046\pm \ 0.016$	$0.141\pm\ 0.047$ $0.138\pm\ 0.050$	0.328 ± 0.092 0.320 ± 0.118	
2c j: BDF1]	Administration 102	0.000 ± 0.000	0.051 ± 0.012	0.141± 0.047	0.328 ± 0.092	
STUDY NO. : 0580 ANIMAL : MOUSE BEDZF1/Crlj[Crj:BDF1] UNIT : K / Kg / d a y REPORT TYPE : A1 104 SEX : MALE	Group Name	Control	512 ppm	1280 ppm	3200 ppm	

TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

PAGE: 7		0.000	0.012	0.027	0.066	
	7	0.000±	0.083土(0.209±	0.500± 0	
		0.000	0.011	0.031	0,059	
	9	0.000+	0.088±	0.214±	0.534±	
		0.000	0.010	0.033	0.058	
	2	0.000 ≠ 0.000	0.082	0.204± 0.033	0.505土	
		0.000	0.012	0.031	0.071	
(SUMMARY)	4	0.000 ∓	0.083±	0.204± 0.031	0.514±	
E CHANGES		0.000	0.014	0.037	0.081	
CHEMICAL INTAKE CHANGES ALL ANIMALS	3	0.000 ⊞	0.089 ±	$0.224\pm$	0.547±	
		0.000	0.013	0.030	0.090	
	Administration (weeks)	€ 000 +	0.090 ⊡	0.213士	0.554±	
	istration	0,000	0.015	0.024	0.094	
STUDY NO. : 0580 ANIMAL : MOUSE BEDZFI/Crlj[Crj:BDF1] UNIT : g /kg / d a y REFORT TYPE : A1 104 SEX : FEMALE	Admini 1	0.000 + 0.000	0.096 ± 0.015	0.238± 0.024	$0.624\pm$	
STUDY NO. : 0580 ANIMAL : MOUSE F UNIT : g / kg, REPORT TYPE : A1 10 SEX : FEMALE	Group Name	Control	512 ppm	1280 րբա	3200 ppm	

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANTMALS PAGE: 8	Administration (weeks) 8 10 11 12 13 14	$0.000 \qquad 0.000 \pm 0.000 \qquad 0.00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.038 \qquad 0.215 \pm \hspace{0.05in} 0.037 \qquad 0.205 \pm \hspace{0.05in} 0.032 \qquad 0.204 \pm \hspace{0.05in} 0.040 \qquad 0.212 \pm \hspace{0.05in} 0.039 \qquad 0.218 \pm \hspace{0.05in} 0.050 \qquad 0.199 \pm \hspace{0.05in} 0.043$	0.060 0.510 ± 0.050 0.508 ± 0.059 0.501 ± 0.059 0.520 ± 0.065 0.512 ± 0.068 0.476 ± 0.065
CHEMIC ALL AN	weeks)	0.000	0.011	0.037	0.050
Or j: BDF1]	Administration (v	0.000± 0.000	0.082 ± 0.011	0.212 ± 0.038	0.529 ± 0.060
STUDY NO.: 0580 ANIMAL : MOUSE BGDZFI/CrjjfCrj;BDF1] UNIT : g / kg / d a y REPORT TYPE : A1 104 SEX : FEMALE	Group Name	Control	512 ppm	1280 բթա	3200 ppm

STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/Crij[Crj:BDF1] UNIT : g / kg / d a y REPORT TYPE : Al 104 SEX : FEMALE]:B0F1]		CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS	(SUMMARY)			PAGE: 9
Group Name	Administration (weeks)	(weeks) 22	26	30	34	38	42
Control	0.000 = 0.000	0.000 ± 0.000	0.000± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
512 ppm	0.079 ± 0.013	0.079 ± 0.013	0.073 土 0.013	0.077± 0.014	0.072 ± 0.012	0.063± 0.013	0.076± 0.013
1280 րրա	0.213 = 0.046	0.204 ± 0.045	0.191± 0.045	0.209± 0.049	0.192± 0.044	0.170 ± 0.041	0.194士 0.041
3200 ppm	0.503 ± 0.082	0.499 ± 0.083	0.452士 0.080	0.492± 0.073	0.431± 0.094	0.433 ± 0.080	0.459 ± 0.081

STUDY NO.: 0580 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : R / kg / d a y REPORT TYPE : A1 104 SEX : FEMALE	cj:BDF1]		CHEMICAL INTAKE CHANGES ALL ANIMALS	(SUMMARY)			PAGE: 10
Group Name	Administration (weeks)	(weeks) 50	54	58	62	99	70
Contro]	0.000± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000
512 ppm	0.063 ± 0.013	0.064 ± 0.013	0.069± 0.013	0.066 ± 0.015	0.060 ± 0.012	0.068 ± 0.013	0, 060 ± 0, 016
1280 ppm	0.163 ± 0.040	0.162± 0.044	0.182 ± 0.045	0.167 ± 0.041	0.157 ± 0.037	0.172 ± 0.039	0.157± 0.042
3200 ppm	0.421 ± 0.087	0.411± 0.078	0.429 ± 0.061	0.389± 0.084	0.415± 0.067	0.419 ± 0.069	0.413 ± 0.080

52

(HAN300)

PAGE: 11	86	0.000± 0.000	0.065 ± 0.016	0.166± 0.043	0.441 = 0.111
	94	0.000 ± 0.000	0.064生 0.020	0.175 ± 0.050	0.433± 0.101
	06	0.000 ± 0.000	0.068± 0.016	0.171 = 0.040	0.457 ± 0.097
(SUMMARY)	86	0.000 ± 0.000	0.062± 0.014	0.152士 0.041	0,404± 0,125
CHEMICAL INTAKE CHANGES ALL ANTMALS	82	0.000 ± 0.000	0.071± 0.019	0.159± 0.042	0.407 ± 0.093
CHI ALJ	(Weeks) 78	0.000 ± 0.000	0.069 ± 0.015	0.173± 0.037	0.411 0.094
[Cr.j:B0F1]	Administration (weeks)	0.000 ± 0.000	0.068± 0.016	0.167 ± 0.036	0.411 ± 0.100
STUDY NO. : 0580 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : R/Kg/day REPORT TYPE : A1 104 SEX : FEMALE	Group Name	Control	512 ppm	1280 ppm	3200 ppm

53

(HAN300)

PAGE : 12					
CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANLWALS		0.000	0.020	0.040	0.115
	(weeks)	0.000±	0.064土	0.173±	0.464土
STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1] UNIT : g / kg / d a y REPORT TYPE : A1 104 SEX : FEMALE	Administration (weeks)	0.000± 0.000	0.078 ± 0.017	0.183 ± 0.050	0.498 ± 0.103
STUDY NO. : 0580 ANIMAL : MOUSE UNIT : g/k REPORT TYPE : A1 SEX : FEMALE	Group Name	Control.	512 ppm	1280 ppm	3200 ррш

TABLE F 1

HEMATOLOGY: MALE

REPORT TYPE : A1 NO. of RED BLOOD CELL HEMOGLOBIN No. of RED BLOOD CELL HEMOGLOBIN Animals 10 6 / μ e g / d e 33 9.73 \pm 1.52 13.8 \pm 1.9 34 9.57 \pm 0.96 14.0 \pm 1.3 35 9.23 \pm 1.44 13.4 \pm 2.0 35 9.39 \pm 1.56 13.6 \pm 2.1	HEMATOLOGY (SUMMARY) ALL ANIMALS (105W) PAGE :	HEMATOCRIT MCV MCH NCHC PLATELET % f 2 D g g /d ℓ 103/ $\mu\ell$	$40.8\pm$ 4.9 $42.2\pm$ 2.5 $14.3\pm$ 0.8 $33.9\pm$ 1.1 $1530\pm$ 441	$41.0\pm$ 3.8 $42.9\pm$ 2.2 $14.6\pm$ 0.8 $34.1\pm$ 0.9 $1660\pm$ 341	$39.3\pm$ 5.3 $42.9\pm$ 3.5 $14.5\pm$ 1.0 $33.9\pm$ 1.3 $1601\pm$ 429	$40.1\pm$ 5.1 $43.3\pm$ 4.0 $14.5\pm$ 0.7 $33.7\pm$ 1.9 $1667\pm$ 348	
E B6D2F1/Cr1j(Cr.j:BDF1] 1 RBPORT TYPE : Λ1 NO. of RBD BLOOD CELL Animals 106/με 33 9.73± 1.52 34 9.57± 0.96 35 9.23± 1.44 35 9.39± 1.56	HEMATOLOGY (SUN ALL ANIMALS (10	NI	1.9	1.3	2.0	2.1	
E B6D2F1/Cr1j[Crj: NO. of Animals 33 9 34 9 35 9	BDF1] : A1		L. 52	0.96	1. 44	1. 56	
1.0 : 0580 1.1 : MOUSI IRE. TIME : MALE Name Name Name 1280 ppm 1280	STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/CrljfCrj:1 MEASURE. TIME : 1 SEX : MALE REPORT TYPE		æ	34	35	35	TA A A A A A A A A A A A A A A A A A A

(HCL070)

SEX : MALE REPORT TYPE : A1 PAGE : 2 Group Name No. of Factority	STUDY NO.: 0580 ANIMAL: MOUSE MEASIBE TIME: 1	0 SE B6D2F1/Crl _]	j[Crj:BDF1]	HEMATOLOGY (SUMMARY) ALL ANIMALS (1054)	
RETICULOCYTE % 3.3± 3.5 2.5± 1.0 3.5± 3.5 4.2± 7.6 * : P ≤ 0.05 ** : P ≤ 0.01 Test of Dunnett	SEX : MALE	REPORT	TYPE : A1		
titrol 33 3.3± 3.5 2 ppm 34 2.5± 1.0 9 ppm 35 3.5± 3.5 9 ppm 35 4.2± 7.6 [ficant difference : *: P ≤ 0.05 **: P ≤ 0.01] Test of Dunett	Group Name	NO. of Animals	RETICULOCYTE %		
2 ppm 34 2.5± 1.0) ppm 35 3.5± 3.5) ppm 35 4.2± 7.6) figurat difference; *:P ≤ 0.05 **:P ≤ 0.01 Test of Dunnett	Сонтго	£			
) ppm 35 $3.5\pm$ 3.5 $1.2\pm$ 1.0	512 ppm	34			
D ppm 35 4.2± 7.6 Great difference : *: P ≤ 0.05 **: P ≤ 0.01 Test of Dunnett	1280 ppm	35			
lficant difference ; *: P ≤ 0.05 **: P ≤ 0.01 Test of Dunnett	3200 ppm	35			
	Significant	difference ;	* : P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett
	(HCL070)				BAIS A

Animals 10 d / MS MSEG (%) EOSINO EASINO EASINO </th <th>STUDY NO. : 0584 ANIMAL : MOUS MEASURE. TIME : SEX : MALE</th> <th>STUDY NO. : 0580 ANTHAL : MOUSE BEDZEL/Crlj[Crj:BDFL] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1</th> <th>FI/Crj:BDF1] REPORT TYPE : A1</th> <th></th> <th>HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)</th> <th>(105W)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>PAGE :</th> <th>·· ເລ</th>	STUDY NO. : 0584 ANIMAL : MOUS MEASURE. TIME : SEX : MALE	STUDY NO. : 0580 ANTHAL : MOUSE BEDZEL/Crlj[Crj:BDFL] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1	FI/Crj:BDF1] REPORT TYPE : A1		HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)	(105W)									PAGE :	·· ເລ
33 3.84± 3.68 1± 1 27± 10 2± 1 0± 0 4± 2 63± 34 4.19± 3.97 1± 1 25± 12 2± 1 0± 0 4 0 4± 2 65± 35 5.26± 10.39 1± 2 29± 15 3± 2 0± 0 5 0± 0 3± 2 60± 35 3.70± 1.74 1± 1 25± 13 2± 1 0± 0 5 3± 2 68±	Group Name	NO. of Animals	ΨBC 1 0³∕μβ	Differentia N-BAND	WBC N-SEG	E08	SINO		BASO		MONO		CYMPHO	000000000000000000000000000000000000000	OTHER	The second secon
34 4.19± 3.97 1± 1 25± 12 2± 1 0± 0 4± 2 65± 35 5.26± 10.39 1± 2 29± 15 3± 2 0± 0 5 0± 0 35 3.70± 1.74 1± 1 25± 13 2± 1 0± 0 5 3± 2 60±	Control	33	3.84± 3.68	1 +1		0	+1	_	+ 1	0	4=	.7	€3±	12	57 †	2
35 5.26 \pm 10.39 1 \pm 2 29 \pm 15 3 \pm 2 0 \pm 0 3 \pm 2 60 \pm 35 3.70 \pm 1.74 1 \pm 1 25 \pm 13 2 \pm 1 0 \pm 0 35 5 68 \pm	512 ppm	34		1 +		23	2 ÷	_	0	0	<u>+</u>	69	65 <u>- </u>	16	3.±	13
35 3.70 ± 1.74 1 ± 1 25 ± 13 2 ± 1 0 ± 0 0 ± 2 $68\pm$	1280 ppm	35				10	÷	23	1 ~0	0	3+	63	+ 09	18	4	16
	3200 ppm	35		1+		m	5+	- -	∓0	0	3+	63	∓89	15	1+	67
Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Dunnett	Significant	difference;	* : P ≤ 0.05	★ : P ≤ 0.01			Test of	Dunnett				With a should district 1 and a second second				

TABLE F 2

HEMATOLOGY: FEMALE

STUDY NO.: 0580 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MMASNER TYME: 1 SEX : FEMALE	3 BGD2F1/Cr1j L REPORT 1	F1/Cr13[Cr3:BDF1] REPORT TYPE : A1		ALL	HEMATOLOGY (SUMMARY) ALL ANIMALS (1054)	MARY) 15W)								
Group Name	NO. of Animals	RED BLOOD CELL 1 OF / MR	HEMOCLOBIN g / dl	OBIN	HEMATOCRIT	117	MCV f &		MCH p.g		MCHC g / dl?		PLATELET 1 0³/μβ	PAGE: 4
Control	34	9.11 = 1.50	13.5±	2.0	39.9∓	4. 4	44.3±	4.2	14.9±	0.8	33.9±	1. 6	1051	351
512 ppm	88	9. 66 ± 0.88	14.41	1.2	41.5±	2.7	43.1±	2.1	14.9±	0.5	34.6±	0.9	1030 ±	302
1280 ppm	58	9.66± 0.76	14.3.	1.1	41.1#	2.7	42.7±	J. 4	14.8	0.4	34.8±	0.8**	1173±	156
3200 ppm	59	9.44 ± 0.64	14.0±	1.0	40.8±	8	43.2±	1.4	14.9±	0.4	34.4±	9.0	1138±	298
Significant o	lifference;	Significant difference ; * $*$: P \leq 0.05	** : P ≤ 0.01	01		Te	Test of Dunnett	ett				No. 11. Company of the Company of th	SIS SISTANA LANGARANA SALAMAN ALAKA SALAMAN	***************************************

1		(IIO) CTURE WAYER TO TO	
	RT TYPE : A1		PAGE :
Group Name NO. of Animals	RETICULOCYTE %		
Control 34	5.2 ± 6.3		
512 ppm 28	3.2 ± 2.8		
1280 ppm 28	$2.6\pm$ 1.0		
3200 ppm 29	3.6 ± 1.8		
Significant difference ; * : P \leq 0.05	; *:P≤0.05	** : P ≤ 0.01 Tes	Test of Dunnett

NO. Anin oul 3 opm 2 opm 2 opm 2 cant differ	ANTMAL : MOUSE BEDZFI/Crij(Crj;BDF1) MEASURE, TIME : 1 SEX : FEMALF	USE BODZFI/CF. : 1 REPORT	REPORT TYPE : A1			ALL AINIMALS (105W)	(10011)									ŝ	
	Group Name	.0N	WBC	Difi	ferential	WBC (%				Annual of the second se						rau	
$5.11\pm 6.94 \qquad 1.1 + 1 \qquad 2.5 \pm 15 \qquad 1.1 + 1 \qquad 0.1 + 1 \qquad $	TO PROPERTY AND A STATE OF THE	Animals	1 0³/µl	N-BAND		N-SEG		EOSINO		BASO		MONO		LYMPIJO		OTHER	071070000000710071000000
	Control	34		+1	-	722+	15	+1	~	†1 0	0	4	67	+ 1	61	+ 1	14
3.55 \pm 2.29 1 \pm 1 1 22 \pm 7 2 \pm 2 0 \pm 0 4 4 2 69 \pm 10 2 \pm 2.83 \pm 1.41 2 \pm 1 30 \pm 18 2 \pm 1 0 \pm 0 4 4 2 59 \pm 20 3 \pm 8 : P \leq 0.05 ** : P \leq 0.01 Test of Dumett	512 ppm	28	27.20 ± 127.52	+1		21 🛨	10	2 +		- - 0	0	4 ==	64	∓89	17	4-1-	19
2.83 \pm 1.41 $2\pm$ 1 30 \pm 18 $2\pm$ 1 0 \pm 0 4 \pm 2 59 \pm 20 3 \pm * : P \leq 0.05 ** : P \leq 0.01 Test of Dunnett	1280 ppm	87		+		$22\pm$	7	+1	2)	+0	0	4+	63	+69	10	+ 2	7
* : P ≤ 0.05	3200 ppm	59		5 ++		30十	18	5+2	yerd	+0	0	4. +I	63	29 +	20	#	9
	Significant	difference;		‡ ∴ P ≤ (), 01	7 ALCO 1	AT AN THE GALLAN STEIN COMMENT OF THE STEIN STEI	Test (of Dunnet	1.	FOR PASSED THE STREET,					10 mm m m m m m m m m m m m m m m m m m	A CONTRACTOR OF THE REAL PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE

TABLE G 1

BIOCHEMISTRY: MALE

STUDY NO. : 0580 ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1	SE BGDZF1/Cr1j[1 REPORT T	F1/Crlj[Crj:BDF1] KEPORT TYPE : A1			B10 ALL	BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	(SUMMARY) (05W)								PAGE: 1
Group Name	NO. of Animals	TOTAL PROTEIN g/d2	ROTEIN	ALBUMIN g / d&		A/G RAT10	10	T-BILIK ng/de	T-BILIRUBIN mg/de	GLUCOSE GLUCOSE		T-CHOLESTEROL mg/dl	STEROL	TRIGLYCERIDE mg/dl	ERIDE
Control	83 83	5.6∄	8.0	2.7±	0.5	F. 0.+	0.2	0.14±	0.05	178∓	49	125±	57	37±	73
512 ppm	33	5. 4 ⊞	0.8	2.7 -1-	0.4	1.0土	0.1	0.13±	0.03	∓661	36	128±	65	∓09	22*
1280 ppm	35	5,7±	1.2	2.7±	0.4	1.0 ±	0.3	0.15+	0.07	177±	57	125 ±	110	38+	20
3200 ppm	35	5.5	6.0	2.8	0.5	1.0±	0.2	0.15±	0.08	+1881	47	140 ±	83	49士	61
Significant (HCL074)	Significant difference; *: P ≤ 0.05 .074)	 ∀∥ *		** : P S 0.01				Test of Dunnett	mnett						BAIS 4

ANTMAL : MOUSE BGD2F1/Cr15[Crj:BDF1] MEASURE, TIME : 1	BGD2F1/Cr1j	[Crj:BDF1]			ALL	ALL ANIMALS (105W)	05W)								
SEX : MALE		REPORT TYPE : A1													PAGE :
Group Name	NO. of Animals	PHOSPHOLIPID mg/dl	TPID	AST I U Z	7	ALT I U / g	2	LDH I U / g	2	ALP I U / g	ğ	G-GTP 1 U / g		CK IU/2	6
Control	33	208±	83	平669	3131	∓172	1033	∓168I	8013	T67	119	+!	1	56土	35
512 ppm	33	218±	91	115±	509	4- 29	106*	495 ±	335	153 ±	122	÷l	-	∓09	13
1280 ppm	35	506±	144		66	£29	96	473.±	291	±621	33	+1	1	€3 +	49
3200 ppm	35	229±	96	102±	254**	114±	443*	1578±	7106	151	001	+0	-	∓08	184
Significant difference; *: P ≤ 0.05	fference ;	* : P \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	05	‡ : P ≤ 0.01				Test of Dunnett	nett		**************************************				

STUDY NO. : 0580 ANTMAL : MOUSE BGDZF1/Crlj[Crj:BDF1] MEASNEE. TIME : 1) E B6D2F1/Cr1j[1	[Cr.j:BDF1]				BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	(SUMMAR'	(.k						
SEX : MALE	REPORT 1	TYPE : AI												PAGE: 3
Group Name	NO. of Animals	UREA NI	UREA NITROGEN mg/dl	SODIUM m Eq / J	R	POTASSIUM m Eq∕2	SIUM 2	CHLORIDE m Eq / &	8 3(CALCIUM Fig/dl	¥	INORGAN mg/de	INORGANIC PHOSPHORUS	
Control	89	20.0∓	3.7	153±	-	4. 2. +	0.4	±021	89	9.3	0.6	6.4±	1.1	
512 ppm	34	23.1±	11.4	T23 T	2	4.3±	0.5	上121	2	9.1.	0.6	6.5±	1.0	
1280 ppm	35	26.4	15.0**	153 ±	က	4.4	9.0	$120\pm$	4	9.5+	9.0	年9.9	1. 3	
3200 ppm	35	26.2±	19.9*	153±	73	4.4	9.0	120±	4	9. 1+1	9.0	6.4±	1.0	
Significant	Significant difference ;	*:P≤0.05	3.05	# : P ≤ 0.0	01	07730A300A400A400A0000000000000000000000		Test of Dunnett	nett					
(HCL074)														BAIS 4

TABLE G 2

BIOCHEMISTRY: FEMALE

Group Name NO. of TO	THE CHILL WATER		ALL ANIMALS (105W)				PAGE :
	TOTAL PROTEIN g/dl	ALBUMIN g / dê	A/G RAT10	T-BILIRUBIN mg/dl	mg/de GLUCOSE	T-CHOLESTEROL mg/dl	TRIGLYCERIDE mg/dl
Control 34 4.5	4.9 ± 0.6	2.5士 0.3	1.1± 0.2	0.14土 0.05	137 ± 40	73± 23	31± 14
512 ppm 28 4.9	4.9± 0.4	2.6 - 0.2	1.1± 0.1	0.14 ± 0.05	144± 29	71 ± 18	91 ∓ 1E
1280 ppm 28 5.(5.0 ± 0.6	2.6士 0.4	1.1± 0.2	0.13± 0.02	142± 29	80± 34	30± 14
3200 ppm 30 5.2	5.2士 0.5	2.7± 0.3	1.1 ± 0.1	0.13 ± 0.03	145± 37	92 ± 40	37± 23
Significant difference ; * : P \leq 0.05	≤ 0.05	* : P ≤ 0.01		Test of Dunnett			

ANNWAL : MOUSE BGDZF1/Cr1jfCrj:BDF1] MEKSURE. TIME : 1 SEX : FEWALE REPORT TYPE : A1	E BODZFI/CFIJI 1 REPORT T	ZFI/CFIJICFJ:BBFI] REPORT TYPE : AI													PAGE :
Group Name	NO. of Animals	PHOSPHOLIPID mg/d2	TP10	AST 1 U / 2		ALT IU/2	TOTAL TRANSPORTATION OF THE PROPERTY OF THE PR	LDH I U / &	8	ALP I U / &	e	G-GTP I U / R		CK IU/l	õ
Control	34	128±	36	∓621	346	74±	160	711±	1367	224+	86	# 1	-1	126±	249
512 ppm	88	于081	32	∓911	66	58 <u>+</u>	20	437±	476	212 ±	63	Ħ		∓99	50
1280 ррт	88	138#	51	84±	23	36+	15	353 ±	183	198+	78	+1	П	127±	252
3200 ppm	30	155 🛨	3 6 *	$101 \pm$	72	41+	31	449土	409	181±	75	11	-	₩28	127
Significant o	Significant difference; *: P ≤ 0.05	* : P \le 0.	VIII (Lake by Assemilaneau	* : P ≤ 0.01	· · · · · · · · · · · · · · · · · · ·		PTYTO PARAMETERS IN THE PARAMETERS IN	Test of Dunnett	nett		APPROXITATION AND AND AND AND AND AND AND AND AND AN		THE PROPERTY OF THE PARTY OF TH	***************************************	

Tough Name No. of Animals UNEAN ITROGEN SODIUM PUTASSIUM CHLORIDE CALCIUM INDRGANIC PROSTHORUS Control 34 20.7± 19.9 153± 1 4.3± 0.8 122± 2 9.0± 0.6 6.3± 2.0 512 ppm 28 15.8± 3.3 152± 2 4.0± 0.3 122± 2 8.9± 0.4 5.8± 0.8 1280 ppm 28 18.0± 10.4 152± 2 4.0± 0.4 122± 3 9.0± 0.6 6.5± 1.0 3200 ppm 30 20.8± 17.5 152± 2 4.2± 0.4 121± 2 9.3± 0.9 6.5± 1.3 Significant difference; *:P ≤ 0.05 **:P ≤ 0.01 **:P ≤ 0.01	STUDY NO. : 0580 ANIMAL : MOUSE BGDZFL/Crlj[Crj:BDF1] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1) SE BGDZF1/Cr1 1 REPORT	FI/Crlj[Crj:BDFL] REPORT TYPE : Al		BIO	BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	SUMMARY) JSW)							PAGE:
	Group Name	NO. of Animals	UREA NITROGEN mg/d2	SODIUM m Eq /		POTASSIC mÉq / &	JM	CHLORIDE m Eq / 2		CALCIUA mg/d2		INORGAI mg / d£	VIC PHOSPHORUS	
15.8± 3.3 152± 2 4.0± 0.3 122± 2 8.9± 0.4 5.8± 18.0± 10.4 152± 3 9.0± 0.4 6.1± 20.8± 17.5 152± 2 4.2± 0.4 121± 2 9.3± 0.9 6.5± *: P ≤ 0.05 **: P ≤ 0.01 Test of Dumett Test of Dumett	Control	34			-	4.3+	8.0	122 ±	57	€0.6	0.6	6.3土	2.0	
$18.0\pm$ 10.4 $152\pm$ 1 $4.1\pm$ 0.4 $122\pm$ 3 $9.0\pm$ 0.4 $6.1\pm$ $20.8\pm$ 17.5 $152\pm$ 2 $4.2\pm$ 0.4 $121\pm$ 2 $9.3\pm$ 0.9 $6.5\pm$ *: P \leq 0.05 **: P \leq 0.01	512 ppm	88			63	4.0土	0.3	122 🕂	83	8.9±	0.4	5.8∄	0.8	
$20.8\pm~17.5$ $152\pm~2$ $4.2\pm~0.4$ $121\pm~2$ $9.3\pm~0.9$ $6.5\pm$ *: P ≤ 0.05 **: P ≤ 0.05	1280 ppm	82				4.1±	0.4	122 ±	က	€0.6	0.4	6.1±	1.0	
*:P \ 0.05	3200 ppm	30			2	4.2+	0.4	121 ±	23	9.3±	6.0	6.5±	1.3	
	Significant	difference;		* : P ≤ 0.01	THE REAL PROPERTY OF THE PROPE	***************************************		est of Dunne	**************************************		979999999999999999999999999999999999999			

TABLE H 1

URINALYSIS: MALE

SEX : MALE	REPORT TYPE : A1	TYPE : A.	_											PAGE :
Group Name	NO. of Animals	рН 5.0 (6.0 6	3.5 7.	6.0 6.5 7.0 7.5 8.0	5 8.	0 8.5	CHI	Protein — ± + 2+ 3+ 4+ CIII	Glucose + 2+3+4+	4+ CIII	Ketone body ± + 2+3+4+ CIII	Occult blood - ± + 2+3+	CIII
Control	33	0	8 -	15	7 3	0	0		0 3 24 6 0 0	33 0 0 0 0	0	21 6 6 0 0 0	27 0 1 0 5	
512 ppm	35	0	7	17 1.	.3	0	0		0 124 7 0 0	35 0 0 0 0	0	21 9 5 0 0 0	31 0 1 0 3	
1280 ppm	36	0	8	11 %	8	0 4	-		0 621 7 2 0	36 0 0 0 0	0	17 10 9 0 0 0	34 0 0 0 2	
3200 ppm	36	0	3	15 1	11 5	59	0		0 12 18 6 0 0 *	36 0 0 0 0	0	21 9 6 0 0 0	31 0 0 0 5	
Significant	Significant difference ;		* : P ≤ 0.05	. 05	#	√II *	≥ 0.01		Tes	Test of CHI SQUARE				

GIII	EX : MALE	REPORT	MEANDER. 1 REPORT TYPE : A1	PAGE :
		NO. of Animals	Urobilinogen ± + 2+3+4+ CIII	
	-	\$		
	CONTROL	÷	33 0 0 0	
	512 ppm	35	35 0 0 0 0	
	1280 ррт	36	36 0 0 0 0	
	3200 ppm	36	36 0 0 0 0	
	Significant di	ifference ;	* : P ≤ 0.05 ** : P ≤ 0.01	Test of CHI SQUARE

TABLE H 2

URINALYSIS: FEMALE

URINALYSIS

STUDY NO. : 0580
ANIMAL : MOUSE BEDZFI/Crij[Crj:BDF1]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1 REPORT TYPE : A1

																. 7007
Group Name	NO. of Animals	рН 5.0	6.0	6.5	5.0 6.0 6.5 7.0 7.5 8.0 8.5	7.5 8	8.0 8	8.5 CIII	Protein - ± + 2+ 3+ 4+ C	CIII	Glucose - + 2+3+4+ CIII		Ketone body - ± + 2+ 3+ 4+	CIII	Occult blood - ± + 2+ 3+	GII
Control	34	0	4 10	0.1	cs	7	9	¢2	0 3 15 14 2 0	,	34 0 0 0 0 0	23	2 25 6 1 0 0		28 1 0 0 5	
512 ppm	53	0	-	9	12	~	4	23	0 2 18 8 1 0		29 0 0 0 0 0	3 20	0 0 0 9 0		26 1 0 1 1	
1280 ppm	38	0	0	ဘ	4	6	4	m	0 3 18 6 1 0	24	28 0 0 0 0 0	3 19	94200		22 1 0 2 3	
3200 ppm	30	0	0	Ţ.	6	7	ဘ	1	1 4 18 6 1 0	çı	30 0 0 0 0 0	5 57	2 24 3 1 0 0		29 0 0 0 1	
Significant	Significant difference ;		*: P \le 0.05	0.05	*	*	** : P ≤ 0.01), 01		lest of	Test of CH1 SQUARE					
(IICL101)				TO DESCRIPTION OF THE PERSON												

Group Name NO. of Urobilings		PAGE :
Animals	Urobilinogen ± + 2+3+4+ CII	
Control 34 34 0 0 0	0 0	
512 ppm 29 29 0 0 (0 0	
1280 ppm 28 28 0 0 (0 0	
3200 ppm 30 30 0 0 0 0	0 0	
Significant difference ; *: P ≦ 0.05	0.05 ** : P ≤ 0.01	Test of CHI SQUARE

TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0580
ANIMAL : MOUSE BEDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: g

Choung Money	g ON	1 - M - 1 - U		0.111	THE CHIEF								
oroup Name	Animals	body Weight		ADKENALS	TESTES	λ3	IIEART		LUNGS	S	KIDNEYS	YS	
THE COMMENTS OF THE CONTRACT O							***************************************		Addition and the control of the cont	70.170.70.470.180.1888.1888.1888.1888.1888.1888.188	o jeloklabi okia sasa mama sasa mama saja gaja		
Control	33	45.5± 8.2	0.010 =	0.001	$0.222\pm$	0.028	0.220±	0.025	0.207±	0.050	$0.640\pm$	0. 167	
512 ppm	34	49.8± 7.1	0.010 ±	0.001	0. 222 ±	0. 030	0. 215 ±	0.020	0.213±	0.070	0.665±	0.373	
1280 բրա	36	45.8± 8.8	⊕0.010∓	0.002	0. 222 ±	0.029	0.219±	0.025	0.211±	0.059	0.724±	0.479	
3200 ppm	35	48.5± 7.2	$0.012\pm$	0.012	0.225土	0.033	0. 222 ±	0.021	0.242±	0.147	0.653±	0.137	
Significant	Significant difference ;	*: P \square 0.05	** : P ≤ 0.01			Test	Test of Dunnett	2000-000			A COLUMN A SER BEN'N A SER		

(IICL040)

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: g

Group Name	NO. of Animals	SPLEEN	ien ien	LIVER	es es	BRAIN	NJ
				THE CARACTER CONTRACTOR OF THE CONTRACTOR CO	***************************************	***************************************	
Control	33	0.126± 0.113	0.113	∓628.1	0.576	$0.449\pm$	0.014
512 ppm	34	0.161±	0.325	1.857 ±	0.728	0. 453 ±	0.019
1280 ppm	36	0.168±	0. 194	1.799+	0.687	0.451±	0.017
3200 ppm	35	0.094土	0.054	1. 782±	0.537	0.449±	0.019
Significant	Significant difference ;	*: P ≤ 0.05	1000	* : P ≤ 0.01	AND THE PROPERTY OF THE PROPER		Test of Dunnett

(IICL040)

TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

. 25 VC	LAGE					
	KIDNEYS	0.558± 0.642	0.432 ± 0.057	0.472 ± 0.225	0.471 ± 0.153	
	PUNGS	0.198 ± 0.042	0.189 ± 0.054	0.181 ± 0.013	0.224 ± 0.204	African i fanns men men men men en menget trigjege trigge graf district district men en men en men
	IIEART	0.170± 0.024	0.176± 0.031	0.176± 0.025	0.167 ± 0.020	
ORCAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (1059)	OVARIES	0.106± 0.211	0.055土 0.157	0.057 ± 0.147	0.067± 0.210	
ORGAN WE SURVIVAL	ADRENALS	0.014 = 0.003	0.013 ± 0.001	0.014 = 0.002	0.014 ± 0.004	
:BDF1]	Body Weight	36.4± 6.3	35.9± 5.4	37.4± 4.7	35.1 ± 6.8	
STUDY NO. : 0580 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE UNIT: g	NO. of Animals	34	78	28	30	THE RESIDENCE OF THE PERSON OF
STUDY NO. : 0580 ANIMAL : MOUSE REPORT TYPE : A1 SEX : FEMALE UNIT: g	Group Name	Control	512 ppm	1280 թբա	3200 ppm	

(IICI,040)

BAIS 4

Test of Dunnett

★: P ≤ 0.01

Significant difference ; * : P \leq 0.05

PAGE: 4

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W) 0.0130.015 0.013 0.468 ± 0.019 BRAIN $0.467\pm$ $0.468\pm$ $0.467\pm$ 1.404 ± 0.425 0.2620.235 0.291 LIVER $1.368\pm$ $1.412\pm$ 1.403 ± 0.188 0.081 0.232 ± 0.307 0.178 ± 0.247 SPLEEN $0.167\pm$ 0.138± STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE
UNIT: g NO. of Animals 34 28 28 30 1280 руш 512 ppm 3200 ppm Control Group Name

(HCL,040)

BAIS 4

Test of Dunnett

★ : P ≤ 0.01

Significant difference ; * : P \leq 0.05

TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: %

	(8)		541541	HEAKI	LUNGS	KIDNEYS
Control 33 45.5± 8.2	8. 2	0.023 ± 0.006	0.507土 0.119	0.498± 0.097	0.473 ± 0.144	1. 441 + 0. 385
512 ppm 34 49.8上	7.1	0.020 ± 0.004	0.454 土 0.080	0,441 ± 0.074**	0. 443 ± 0. 203	1.330 ± 0.576*
1280 ppm 36 45.8土	& &	0.024	0.501士 0.115	0.498 ± 0.127	0. 477 ± 0. 151	1 660 + 1 221
3200 ppm 35 48.5±	7.2	0.030 ± 0.050	0.476 ± 0.108	0.468± 0.088	0.554± 0.601	1. 392± 0. 450

(IICI,042)

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: %

PAGE: 2

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN
Control	33	0.299土 0.279	4.323± 1.775	L. 024± 0. 223
512 ppm	34	0.331± 0.688	$3.883\pm\ 2.140$	$0.928\pm\ 0.140$
1280 ppm	36	$0.391\pm\ 0.437$	$4.149\pm\ 2.229$	1.025 \pm 0.216
3200 ppm	35	0.209士 0.147	$3.878\pm\ 1.871$	0.952± 0.182
Significant	Significant difference;	*:P≤0.05	** : P ≤ 0.01	Test of Dunnett

(HCL042)

TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

ORCAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 3

 1.282 ± 0.669 1.400 ± 0.598 1.505 \pm 1.331 1. 228 ± 0.227 KIDNEYS 0.553 ± 0.101 0.548 ± 0.248 0.491 ± 0.073 0.752 ± 1.176 LUNGS 0.477 ± 0.085 0.475 ± 0.075 0.490 ± 0.100 0.499 ± 0.111 HEART 0.211 ± 0.696 0.296 ± 0.607 0.163 ± 0.476 0.151 ± 0.382 OVARIES 0.039 ± 0.008 0.041 ± 0.016 0.037 ± 0.007 0.038 ± 0.007 ADRENALS **★**: P ≤ 0.01 Body Weight (g) 36.4 ± 6.3 5.4 37.4士 4.7 35.1 ± 6.8 Significant difference ; \star : P \leq 0.05 $35.9 \pm$ STUDY NO. : 0580
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE
UNIT: % No. of Animals 34 28 82 30 512 ррт 3200 ppm Control 1280 ррт Group Name

(IICL042)

BAIS 4

Test of Dunnett

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE
UNIT: %

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	600000
Control	34	0.625± 0.765	3.873 ± 0.929	1. 325 ± 0. 244	
512 ppm	82	0.506土 0.655	4.005 ± 1.022	1. 333 ± 0. 214	
1280 ppm	78	0.371 ± 0.214	$3.665\pm\ 0.503$	1. 268 ± 0. 182	
3200 ppm	30	0.487 ± 0.546	4.094 ± 0.831	$1.391\pm\ 0.324$	
Significant	difference;	Significant difference; *:P≤0.05 *#	‡ : P ≤ 0.01	Test of Pumett	THE PROPERTY AND A STATE OF TH

TABLE L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS

Organ Findings [Integumentary system/appandage] skin/app ulcer squamous cell hy	Group Name No. of Animals on Study Grade				
sutary s	1655	Control 50 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 3 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
	(арындақс)				
nomenbs		<50> 0 1 0 0 (0) (2) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	<pre></pre>	(50) 0 1 0 (0) (2) (0) (
	squamous cell hyperplasia		(0)(0)(0)(0)	0 1 0 0 (0) (0) (0)	0 0 0 0
scab		0 1 0 0 (0) (0) (0) (0)	(0)(2)(0)	0 2 0 0 (0) (4) (0) (0)	0 0 0 0
ерідея	epidermal cyst		(0)(0)(0)(0)	1 0 0 0 (2) (2) (3) (4) (5)	0 0 0 0
duct ec	duct ectasia:sebaceous gland				1 0 0 (2) (3) (4) (4)
subcutis thrombus	sn	<50> 0 1 0 0 (0) (2) (0) (0)	(6) (0) (0) (0) 0 0 0 0 0 0 (0)	<pre></pre>	<00> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
[Respiratory system]					
nasal cavit mineral	mineralization	<pre></pre>	<pre></pre>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)
Grade 1: Slight <a> a : Number of ar b	2: Moderate 3: Marked of animals examined at the site of animals with lesion 1:00 *: P ≤ 0.05 ***: P ≤ 0.01	4 : Severe Test of Cli Square			

SEX : MAL	: MALE									PAGE
Organ	Findings	Group Name No. of Animals on Study Grade	%) (%) (%)	Control 50 3 4 (%) (%)	(%)	512 ppm 50 3 4 (%) (%)	(%) (%)	1280 ppm 50 3 4 (%) (%)	(%)	3200 ppm 50 2 3 4 (%) (%) (%)
(Respiratory system)	ys.tcm)									
nasal cavit	inflammation		(50) 0 1 (0) (2) (0 (0)	0 0	<50> 0 1 0 0) (2) (0)	(8) (8) (8) (8) (8) (8) (8) (8) (8) (8)	(50) (0) (0)	0) (0)	<50> 0 0 0 0) (0) (0)
	eosinophilic change:olfactory epithelium	רחשו	30 2 (60) (4)	1 0 (2) (0)	27 7 (54) (14)	(0) (0) (27 10 (54) (20)	(0) (0)	26 2 (52) (4	2 0 0 4) (0) (0)
	eosinophilic change:respiratory epithelium	lium	12 14 (24) (28) (1 0 (2) (0)	30 3	(0)(0)(25 6 (50) (12)	*0 0	14 1 (28) (2	1 0 0 2) (0) (0)
	inflammation respiratory epithelium		0 (0)	(0) (0)	0 1 (0) (2)	0 0 0	(0)(0)	(0) (0)	0) (0)	(0) (0) (0
	respiratory metaplasia:olfactory epithelium	lelium	23 3 (46) (46) ((0) (0)	27 3 (54) (6)	(0) (0) (17 4 (34) (8)	(0) (0)	18 1 (36) (2	1 0 0 2) (0) (0)
	respiratory metaplasia:gland		21 8 (42) (42) (42)	3 0 (9)	28 14 (56) (28)	*0 0 (0) (20 16 (40) (32)	(0) (0)	26 6 (52) (12)	(0)(0)()
	squamous cell metaplasia:respiratory epithelium	pithelium	0 (0)	(0) (0)	(0) (0)	(0) (0) ((0) (0)	0 (0)	1 0 (2) (0)	(0) (0) (0
	epithelial Ayperplasia:transitional cell type	ll type	0 0 0	(0) (0)	1 0 (2) (0)	(0) (0) ((0) (0)	(0) (0)	0) (0)	(0) (0) (0
Grade 1 : Slight <a> a : Number b b : Number c : c : c : b a c : c : c : b a c : c : c : c : b a c : c : c : c : c : b a c : c : c : c : c : b a c : c : c : c : c : b a c : c : c : c : c : b a c : c : c : c : c : b a c : c : c : c : c : c : c : b c : c : c : c : c : c : c : b c : c : c : c : c : c : c : c : c : c	2: Moderate of animals examined at the of animals with lesion Figo	Marked	4 : Severe					MICROSOM PROMOS MARKET LANG.		

Organ Findings. [Respiratory system] nasal cavit necrosis									
y sys		Group Name No. of Animals on Study Grade	Con 50 1 2 6) (%)	trol 3 4 (%) (%)	512 ppm 50 1 2 3 (%) (%) (%)	4 (%)	1280 ppm 50 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 (%) (%) (%)	ppm 3 4 (%) (%)
	necrosis:olfactory epithelium		<00> (50> (50) ()	0 0	(0) (0) (0) 0 0 0 (0) (0)	0 (0	<550> 0 0 0 0 0 0 0 0 0 0 0 0	(50) 0 1 ((0) (2) ((0 0 0
nasopharynx eosino	eosinophilic change		<50> 1 0 (2) (0) (1 0 2) (0)	<250> 1 0 0 (2) (0) (0)	0 (0)	<pre></pre>	(20) (0) (0) (0) (0)	(0) (0 0 0
inflam	inflammation		1 0 (2) (0) (0 0	(0) (0) (0)	0 0		0 0 0	(0) (0
lung hemorrhage	rhage		(50> 1 0 (2) (0) ((0) (0 0 0	(50) 0 1 0 (0) (2) (0)	0 (0)	<00 (0) (0) (0) (0) (0) (0) (0) (0) (0) ((20) (0) (0)	0 0
едеша			1 0 (2) (0) (0 0	0 0 0	0 0	(0)(0)(0)(0)(0)	0 0 0	0 (0)
inflam	inflammatory infiltration		1 0 (2) (0) (0 0	0 0 0	0 0)	1 1 0 0 (2) (2) (0) (0)	1 0 (0 (0)
l ympho	lymphocytic infiltration		2 0 (1) (0) (0 0	2 0 0 (1) (0) (0)	0 (0)	2 0 0 0 (4) (4) (6) (6) (6)	0 0 0	0 0
Grade 1 : Slight (a > a : Number b b : Number (c) c : b / a *	2: Moderate of animals examined at the of animals with lesion 100	3 : Marked 4 Site	: Severe						

7 0 0 (14) (14) (10) (10) (10) 1 0 0 ((2) ((3) (0 0 0 0 1 0 0 (2) (2) (0) (0 0 0 0 e **%** 3200 ppm 50 0 0 2 (%) 00 0 (0) - 8 5 0 0 0 (10) (10) (0) 4 8 (0) (0) (0) (0) (0)(0)(0)(0) (0)(6)(0)(0) (2) (0) (0) 3 1280 ppm 50 2 8 -|89 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W) 4 % (0)(0)(0)(0)(0) 2 0 0 0 (4) (0) (0) (0) 0 0 0 6 (0) (0) (0) (0) (2) (0) (0) (0) 0 (0 1 0 0 (2) (2) (0) ((%) (%) 512 ppm 50 0 1 0 (0) (0) (0) 1 88 4 8 5 0 0 0 (10) (10) (10) (10) 00 0 0 0 0 0 0 0 00 00 0 1 0 (0) (2) (0) (_ 2 0 0 (4) (4) (0) (1 2 3 (%) (%) (%) Control 50 (0) (0) (0) Test of Chi Square 4 : Severe Group Name No. of Animals on Study Grade 3 : Marked ** : P ≤ 0.01 i : Slight 2 : Moderate 3 : Ma a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 bronchiolar-alveolar cell hyperplasia Significant difference; *: P ≤ 0.05 accumulation of foamy cells : MOUSE B6D2F1/Crij[Crj:BDF1] inflammatory infiltration granulopolesis:increased mastcell hyperplasia myelofibrosis Findings [Hematopoietic system] (Respiratory system) REPORT TYPE : A1 SEX : MALE STUDY NO. : 0580 роне шаггож lymph node Grade (a) b (c) Organ lung

BA1S4

PAGE: 4

4 %

00

0 0

00

00

00

J

00

ANIMAL : MOUSE BEDZF1/Crij[Crj:BDF1] REPORT TYPE : Al SEX : MALE	ALL ANIMALS (0-105W)		<u>.</u>	PAGE :
OrganFindings	Group Name Control No. of Animals on Study 50 Grade	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Hematopoietic system)				
spleen atrophy	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)	(6) (6) (6) (6) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) (0) (0)
congestion			1 0 0 0 0 (2) (3) (4) (6)	(0)(0)(0)(0)
angiectasis	1 0 0 0 (2) (3) (4) (6) (6)		(0)(0)(0)(0)(0)	
deposit of hemosiderin	1 0 0 0 (2) (3) (4) (5) (6)	(2) (0) (0) (0)		1 0 0 0 (2) (3) (4) (6)
deposit of melanin	1 0 0 0 (2) (2) (3) (4) (5)	2 0 0 0 (4) (4) (6) (6) (6)	(2)(0)(0)(0)	1 0 0 0 (0) (0) (0)
extramedullary hematopoiesis	10 13 6 0 (20) (26) (12) (0)	19 9 2 0 (38) (18) (4) (0)	12 9 6 0 (24) (18) (12) (0)	16 11 5 0 (32) (22) (10) (0)
follicular hyperplasia	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0 0 0 0 (0) (0)	2 0 0 0 (4) (4) (6) (6) (6)	2 1 0 0 (4) (2) (0) (0)
(Circulatory system)				
heart mineralization	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(50) 2 0 0 (4)(0)(0)(0)	<pre></pre>	<50> 1 0 0 (2) (0) (0) (0)
Grade 1 : Slight 2 : Moderate 3 : N	3: Marked 4: Severe re site P < 0.01 Test of Chi Senare			

Organ Findings	Group Name No. of Animals on Study Grade				
datory sys		Control 50 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 512 ppm 50 60 60 60 60 60 60 60 60 60 60 60 60 60	1280 ppm 50 1 2 3 4 (%) (%) (%)	3200 ppm 50 3 4 (%) (%) (%) (%)
, co	inflammatory infiltxation	<00 (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0
2007		(0)(0)(0)(0)(0)	(0)(0)(0)(0)(0)	(0)(0)(0)(0)(0)	1 0 0 0 0 (0) (0) (0)
myocarditis			(0)(0)(0)(0)(0)	(0)(0)(0)(0)(0)	1 0 0 0 (2) (3) (4) (6)
arteritis		0 1 0 0 (0) (0) (0) (0)	1 0 0 0 (2) (3) (4) (5)		
(Digestive system)					
oral cavity ulcer		(0)(0)(0)(0) 0 0 0 0 0 0 0 0	<pre></pre>	<pre></pre>	<pre></pre>
tooth dysplasia		<50> 3 1 0 0 (6) (2) (0) (0)	<50> 3 2 0 (6) (4) (0) (0)	<50> 7 3 0 0 (14) (6) (0) (0)	<50> 2 3 0 0 (4) (6) (0) (0)
Grade 1 : Slight <a> a : Number of an b b : Number of an (c) c : b / a * 100	2 : Moderate 3 : Marked timals examined at the site timals with lesion	4 : Severe			

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

KEPOKI IYPE : AI SEX : MAL	: A1 : MALE					PA	PAGE:
Organ	Findings	Group Name No. of Animals on Study Grade	Control 50 4 4 (%) (%) (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50 3 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 (%) (%) (%)	4 8
(Digestive system)	ystem)						
rooth	odontogenic cyst		<50> <50> (0) (0) (2) (0) (0) (2) (0) (0) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<00	<50> 0 0 0 (0) (0) (0)	0 0
tongue	arteritis		<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<00) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0	<00) (0) (0) (0) 0 0 0 0 <000>	0 0
salivary gl	atrophy:focal		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	<50> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	0 0
	lymphocytic infiltration		1 0 0 0 (2) (3) (4) (6) (6)	1 0 0 0 (0) (0)		2 0 0 (4) (4) (6) (6)	0 0
	granulation			1 0 0 0 (2) (3) (3) (4)	(0)(0)(0)(0)(0)	$\begin{pmatrix} 1 & 1 & 0 \\ (2) & (2) & (0) & ($	0 0
	Xairliograiuloma		(0)(0)(0)(0)	0 1 1 0 (0) (2) (2) (0)	1 0 0 0 (2) (3) (4) (5)	0 0 0	0 6
stomach	ulcer:forestomach		<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 (0) (0)	<50> 1 0 1 0 (2) (0) (2) (0)	<50> 3 0 0 (6) (0) (0) (0 6
Grade < a > b	1 : Slight 2 : Moderate 3 :) a : Number of animals examined at the site b : Number of animals with lesion	3 : Marked due site	4 : Severe				

STUDY NO. : 0580 ANIMAL : MOUS REPORT TYPE : A1 SEX : MALE	: 0580 : MOUSE B&D2F1/Cr1;[Cr.j:EDF1] : A1 : MALE	HISTOPATHOLOGICAL FINDINGS :N ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE :
Огвап	Findings	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive system}	(ens)				
stomach	hyperplasia:forestomach	<00> (0) (0) (0) (0) (0) (0)	<50> <50> (50> (4) (0) (0) (0)	<pre></pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	erosion∶glandular stomach	5 0 0 0 (10) (10) (10) (10) (10)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1 0 0 (8) (8) (8) (9) (10)	3 0 0 0 0 0 0 0
	ulcer:glandular stomach	1 0 0 0 (2) (2) (0) (0)		(2) (2) (0) (0)	
	hyperplasia:glandular stomach	15 0 0 0 (30) (30) (30) (30) (30) (30) (30	13 0 0 0 (26) (26) (30) (30)	10 0 0 0 (20) (20) (30) (30)	7 0 0 0 0 (14) (14) (14) (15) (15)
	degeneration:glandular stomach	2 0 0 0 (4) (7) (6) (7)	(0)(0)(0)(0)(0)		
large intes	inflammation	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	<50> 0 0 1 0 (0) (0) (2) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0
liver	anglectasis	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 <05>	<50> 1 0 0 0 (2) (0) (0) (0)

BAIS4

Test of Chi Square

Grade 1 : Slight 2 : Moderate 3 : Marked \langle a \rangle a : Number of animals examined at the site b : Number of animals with lesion (c) c : b / a * 100 Significant difference ; * : P \leq 0.05 **: P \leq 0.01 .

4 : Severe

STUDY NO. : 058 ANIMAL : MOU REPORT TYPE : AI SEX : MAL	: 0580 : MOUSE B6D2F1/Cr1;[Cr;:BDF1] :: A1	HISTOPATHOLOGICAL FINDLNGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE: 9
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%) (%)	3200 ppm 50
(Digestive system)	system)				
liver	necrosis:focal	(0) (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<50> <50> (0) (2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0
	fatty change:central			(0) (0) (0) (0)	0 1 0 0 (0) (0) (0)
	inflammatory infiltration		(0)(0)(0)(0)(0)	2 0 0 0 (4) (4) (6) (6) (6)	
	granulation		(0) (0) (0) (0) (0)	(2) (0) (0) (0)	$\begin{pmatrix} 1 & 1 & 0 & 0 \\ (2) & (2) & (0) & (0) \end{pmatrix}$
	inflammatory cell nest	5 0 0 0 (10) (10) (10) (10)	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 (8) (8) (9) (9) (9)	2 0 0 0 (4) (4) (6) (6)
	clear cell focus	1 0 0 0 (2) (3) (0) (0)	1 0 3 0 (2) (3) (6) (6) (7)	(0) (2) (0) (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	acidophilic cell focus	2 2 1 0 (4)(4)(2)(0)	1 3 0 0 (2) (3) (6) (0) (0)	2 1 1 0 (4) (2) (2) (0)	4 0 1 0 (8) (8) (9) (5) (9)
	basophilic cell focus	(2) (2) (0) (0)	0 0 1 0 (0) (0) (0)	1 0 0 0 (2) (3) (3) (4)	1 0 0 0 (2) (3) (4) (6) (6)
Grade <a>b b co) Significant	Grade 1: Slight 2: Moderate 3: 1 < a > a : Number of animals examined at the site b : Number of animals with lesion (c) c: b / a * 100	3: Marked 4: Severe he site P ≤ 0.01 Test of Chi Square			
(HPT150)					BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SEX : MALE	: MALE	***************************************						PAGE	נצו
Organ	Findings	Group Name No. of Animals on Study Grade (9	Control 1 2 3 (%) (%)	3 4	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1 (%) (%)	1280 ppm 50 3 4 60 (%) (%)	3200 ppm 50 1 2 3 (%) (%) (%)	4 %
(Digestive system)	system)								
Liver	biliary cyst		<50> 1 0 C (2) (0) (0	(0) (0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	2 0 (4) (0)	<50> 0 0 0 0) (0) (0)	(250) (0) (0) (0) (0)	0 0
pancreas	islet cell hyperplasia		(50) 4 0 C (8) (0) (0	0 (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<5 7 0 (14) (0)	(50) (0) (0) (0)	(0) (0) (9) (3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (0
(Urinary system)	(stem)								
kidney	atrophy		<50> 0 0 1 (0) (0) (2	1 0 2) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0	(0) (0) (0) (0)	<50> 0 0 0 0) (0)	<050	0 0
	cyst	Č	0) (0) (0)	0 0	1 0 0 0 (2) (3) (3) (3)	(0) (0)	(0) (0)	1 0 0 (2) (0) (00
	hyaline droplet			0 (0	2 0 0 0 (4) (4) (6) (6)	1 0 (2) (0)	(0) (0)	1 1 0 (2) (2) (0) (00
	deposit of hemosiderin		1 0 0 ((2) (0) (0	0 0		1 0 (2) (0)	(0) (0)	1 0 0 () () (0 0
Grade 1 : Slight < a > a : Number b b : Number (c) c : b / a *	2 : Moderate of animals examined at of animals with lesion	farked 4	: Severe						

SEX : MALE																		PAGE
Organ Find	findings	Group Name No. of Animals on Study Grade	on Study	2 8	Control 50 3	4 8	1 3	2/ %	512 ppm 50 3	4 8	4/8		1280 ppm 50 3	4 (5)	1 (2)		3200 ppm 50	mc 4
ry system										(2)				(8)	8			
kidney Lympi	lymphocytic infiltration		1 (2)	° - 6 -) (0) 0 (0)	0 (0	3 (9)	(6 (0 (0)	(50)	0)	1 (2)	0 >	<50> 0 0 (0)	0 0)	1 2	1 0 2) (0)	<50> 0) (0)	00
scar			1 (2)	0 0	0 (0)	0 (0	0 0	0 0	0 (6)	0 (0)	0)	0 0	0 0	0 0)	1 2	1 0 2) (0)	(0) (0 0
infl	inflammatory polyp		0 0	1 (2)	0 (0)	0 (0	0 (0	1 (2)	1 (2)	0 (0)	0)	1 (2)	1 (2)	0 (0)	0 0)	0 (0	(0) (0 0
ossi	ossi fication		0)	0 0	0 (0)	0 (0	(2)	o ô	06	0 (0)	0)	0 0	0 0	0 0)	1 (2	1 0 2) (0)	(0) (0 0
hydr	hydronephrosis		.2 .2 .4	0 0	3 (9 (0 (0	1 (2)	0 0)		0)	1 (2)	1 (2)	2 (4	0)	0 0	. 1	2 (4)	0 0
papi	papillary necrosis		0)	0 0	0 (0)	0 (0	1 (2)	(2)	0 0	0)	0)	0)	0 0	0)	0 0	0 0	0 0 0	00
шіле	mineralization:cortex		0)	0 0	0 (0)	0 (0	1 (2)	o ô	0 0	0 (0)	1 (2)	0 0	0 0	0)	- 2	1 0 2) (0)	(0)	0 0
ego.i	regeneration:proximal tubule		0 0)	0 0	0 (0)	0 (0	0 0	o ô	0 0	0 (0)	1 (2)	0 0	0 0	(O)	0)	0 0	0 0 0	00
Grade 1 : Slight (a > b : Number b : Number (c) c:b/a*	2 : Moderate of animals examined of animals with lesi	Marked	4 : Severe	90				VI (100A) Label (n. da. sana	00000 T TO T					MATERIAL PROPERTY OF THE PROPE	ARREST CONTRACTOR OF THE ARREST CONTRACTOR OF			

PAGE: 12 4 % 0 0 0 0 (0 (0 0 0 0 (0 3200 ppm 50 0 2 0) (0 4) ლ § 00 000 1 1 2) (2) 25 62 00) 0 0) 0 0 000 0 0) 0 0 1 % 0 0 o (i) 4 8 00 00 0 0 0 0 0 0 0 1280 ppm 50 1 4 2) (8) + 0 0 0 e 8 ~ §€ 2) (0 0 - 8 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#) 4 % 0 0 00 00 0 (0) 0 0 0 0 0 $\overline{}$ 512 ppm 50 e 86 1 0 0 (2) (2) (3) 00 0 (0) (0) 0 0 0 0 1 0 (2) (3) (62 63 (%) (%) 00 4 8 00 00 00 00 00 0 1 3 (0) (2) (6) ($\overline{}$ 0 0 0 0 1 0 0 (2) (0) (J Control 50 2 3 (%) 0 0 00 (0) (0) (0) (0) 0 0 0 **<49>** 3 0 (0) Test of Chi Square 4 : Severe Group Name No. of Animals on Study Grade 3 : Marked ** : $P \leq 0.01$ 1: Slight 2: Moderate 3: Me a: Number of animals examined at the site b: Number of animals with lesion c: b/a*100 * : P ≤ 0.05 : MOUSE B6D2F1/Cr1;[Cr;:BDF1] inflammatory infiltration inflammation inflammation hyperplasia Significant difference ; dilatation Findings ANIMAL : MOUSE REPORT TYPE : AI SEX : MALE cyst : 0580 (Endocrine system) (Urinary system) STUDY NO. urin bladd pituitary urethra Organ

06

00

00

06

06

00

(4)	
ATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMA IMALS (0-105W)	
0580 MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANL MALE	
STUDY NO. : 0580 ANIMAL : MOUSE J REPORT TYPE : A1 SEX : MALE	

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%)
(Endocrine system)	stem)				
pituítary	Rathke pouch	<49> 2 0 0 (4) (0) (0) (0)	<49> 2 0 0 (4) (0) (0) (0)	<pre></pre>	<49> (49> (2) (0) (0) (0)
thyroid	cyst	<50> 2 0 0 0 (4) (0) (0) (0)	(0)(0)(0)(0)	<50> 4 0 0 0 (8) (0) (0) (0)	<pre></pre>
	focal follicular cell hyperplasia			(0)(0)(0)(0)(0)	0 1 0 0 0 (0) (0) (0)
paratkyroid	cyst	<50> 1 0 0 0 (2) (0) (0) (0)	<pre><50> 1 0 0 0 (2) (0) (0) (0)</pre>	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0)
adrenal	spindle-cell hyperplasia	<50> 28 4 0 0 (56) (8) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
	hyperplasia:cortical cell		2 0 0 0 0 (4) (4) (6) (6)	(0)(0)(0)(0)(0)	1 0 0 0 (0) (0)
	hyperplasia:medulla	0 0 0 0	(0)(0)(0)(0)	1 0 0 0 0 (2) (3) (0) (0) (0)	

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; *: P ≤ 0.05 **: P ≤ 0.01 Test of Chi Square

(IIPT150)

13 (26) ((000 0 (0 0 0 5 (10) (- 8 (22) (0) (0) (0) 00 o ô 00 00 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0) (2) (0) (3(%) 1280 ppm 50 2 (%) 2 (4)) 0 0 --| <u>S</u> HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#) 4 8 00 00 00 00 00 00 2) (0) (0 0 (0) 1 0 0 2) (0) (0) (3 0 0 6 512 ppm 50 e 8 0 (0 0 (0 0 0 0 0 2 8 13 (26) () 0 0 0 0 - 8 0 0 0 4 8 (0)(0)(0)(0)(0) 00 00 06 Control 50 2 3 (%) (%) 1 0 0 (2) (0) (0) 0 0 0 0 (0)(0)(0) 2) (2) (~ € Group Name
No. of Animals on Study
Grade : 0580 : MOUSE B6D2F1/Cr1;[Cr;:BDF1] inflammatory infiltration spermatogenic granuloma mineralization granulation hemorrhage Findings (Reproductive system) REPORT TYPE : A1 SEX : MALE STUDY NO. ANIMAL epididymis semin ves testis Organ

00

00

) 0 0 00

00

000

00

00

) 00

PAGE: 14

4 8

ლ წ

2 8

0 (0

3200 ppm 50

Grade	1 : Slight	1 : Slight 2 : Moderate	3 : Marked	, pe	4 : Severe	
< a >	a : Number o	a : Number of animals examined at the site	at the site			
ā	b : Number o	b : Number of animals with lesion	tion			
(°)	c:b/a*100	100				
Significan	t difference ;	ignificant difference ; *: $P \le 0.05$ **: $P \le 0.01$	**: P ≤ 0.01	Test of	Test of Chi Square	

(IIPT150)						BAIS4

06

0 0

00

00

00

2 0 0 (1) (0) (0) (

mineralization

STUDY NO. : 0580 ANIMAL : MOUSE B6D2F1/Cx1;[Cr.j:BDF1] REPORT TYPE : A1 SEX : MALE	-1;[Cr.j:BDF1]	HISTOPATHOLOGICAL FINDINGS : ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE: 15
Organ Findings	Group Name No. of Ania Grade	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%)	3200 ppm 50
{Reproductive system} mammary gl duct ectasia		(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(50) (0) (0) (0) (0) (0)	<50> (0) (0) (0) (0) (0)	(0) (0) (0) (0)
{Nervous system} brain mineralization	=	(50) 12 0 0 0 (24) (0) (0) (0)	(50) (0) (0) (0) (0) (0) (0)	<550> 6 0 0 0 (12) (0) (0) (0)	<50> 12 0 0 0 (24) (0) (0) (0)
(Special sense organs/appendage) eye keratitis	(n8	(50) 0 0 1 0 (0) (0) (2) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	<00 (0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
Harder gl hyperplasia		<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
(Musculoskeletal system) bone osteosclerosis	v	(0) (0) (0) (0) 0 0 0 0 (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
Grade 1: Slight <a> a : Number of a b : Number of a c : b / a * 100 Significant difference : *	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 fference; *:P ≤ 0.05 **:P ≤ 0.01 Te	4 : Severe Test of Chi Square			
(Hr.11307)					BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W) STUDY NO. : 0580
ANIMAL : MOUSE BEDZFI/Crlj[Crj:BDFl]
REPORT TYPE : A1
SEX : MALE

PAGE : 16

Ory infiltration (2) (3) (3) (3) (3) (4) (6) (6) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8			Group Name No. of Animals on Study Grade	Control 50 3 4		mqq s	mdd .
Inflammatory infiltration	Organ	Findings.	(%)	(%)		(%)	389
Inflammatory infiltration	(Body cavitiv	(รก					
Second S	pleura	inflammatory infiltration	0 0	<50> (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0		(50) 0 1 0 (0) (2) (0) (0)
Strict	peritoneum	peritonitis	(O)	<50> (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	_	(0) (0) (0) (0) 0 0 0 0 0 000 0000
1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100 c:	mesenterium	hemorrhage	0	(0) (0) (0) 0 0 0 0 (0) (0)	(0)(0)(0)(0)	(50) 1 0 0 0 (2) (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0
	Grade <a>ca> b (cc) Significant of	2: Moderate f animals examined f animals with lesi 100 *: P \$ 0.05	arked 01				

TABLE L 4

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC

LESIONS: FEMALE: ALL ANIMALS

STUDY NO. : 058 ANLMAL : MOU REPORT TYPE : A1 SEX : FEM	: 0580 : MOUSE B6DZF1/Crlj[Crj:BDF1] : A1 : FEMALE	HISTOPATH ALL ANIMA	OCCCAL FIN	OLINGS : NC	HISTOPATBOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE : 17	2
Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 50 2 3 (%) (%)	4 (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 1280 ppm 50 1280 ppm 50 12 3 4 168 ppm 68 18 18 18 18 18 18 18 18 18 18 18 18 18	3200 ppm 50 (%) (%) (%)	1
{Integumental	[Integumentary system/appandage]							
skin/app	ulcer	60	<50> 1 0 (2) (0) (0 (0)	(0) (0) (0) (0) 0 0 0 0 <05>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	
	inflammation	1 (2) (0 (0)	(O)		(0)(0)(0)(0)	(0)(0)(0)(0)	
	scab	1 (2) (0 (0)	0 (0)	(0)(0)(0)(0)(0)	(0)(0)(0)(0)	1 0 0 0 (2) (2) (3) (4) (5)	
	epidermal cyst	(2) (0 (0)	0 (0)			(0)(0)(0)(0)	
(Respiratory system)	system)							
nasal cavit	mineralization	60)	<20> (0) (0) (0) (0) (0) (0) (0) (0	(O)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 <09>	<50> 1 0 0 0 (2) (0) (0) (0)	
	inflammation	0 0	0 (0)	0 (0)	1 0 0 0 (2) (3) (4) (5)	(0)(0)(0)(0)	(0) (0) (0) (0)	
	eosinophilic change:olfactory epithelium	23 (46)	5 0 (10) (0) ((O)	18 1 0 0 (36) (36) (2) (0) (0)	23 2 0 0 (46) (46) (4) (0) (0)	16 0 0 0 ** (32) (0) (0) (0)	
Grade <a>> b	Grade 1 : Slight 2 : Moderate 3 : h < a > a : Number of animals examined at the site b : Number of animals with lesion (c) c : b / a * 100 Significant difference ; * : $\Gamma \le 0.05$ ** : $\Gamma \le 0.05$	3 : Marked 4 : Severe ne site P ≤ 0.01 Test of Chi Square						,
(IIPT150)							BAIS4	

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUBMARY) ALL ANIMALS (0-105#)

STUDY NO. : 0580
ANIMAL : MOUSE BGDZF1/Cr1,i[Cr;:BDF1]
ALL ANIMALS
REPORT TYPE : A1
SEX : FEMALE

	Group Name No. of Animals on Study		512 ppm 50	1280 ppm 50	3200 ppm 50
Organ	Findings	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
(Respiratory system)	system}				
nasal cavit	eosinophilic change:respiratory epithelium	<pre></pre>	<pre></pre>	<50> 19 17 3 0 (38) (34) (6) (0)	<50> 18 13 1 0 * (36) (26) (2) (0)
	respiratory metaplasia:olfactory epithelium	13 2 0 0 (26) (4) (0) (0)	10 0 0 0 (20) (20) (0) (0)	8 1 0 0 (16) (2) (0) (0)	13 1 0 0 (26) (20) (00)
	respiratory metaplasia:gland	35 9 0 0 (70) (70) (18) (0) (0)	34 9 0 0 (68) (18) (0) (0)	40 5 0 0 (80) (80) (80) (80)	36 5 0 0 (72) (10) (0) (0)
	squamous cell metaplasia:respiratory epithelium	2 0 0 0 (4) (4) (6) (6) (6)	1 0 0 0 0 (2) (2) (3) (4)		
	ulcer:respiratory epithelium	1 0 0 0 (2) (2) (3) (4) (4)	1 0 0 0 (2) (2) (3) (4)		
паѕорһагупх	eosinophilic change	<50> 3 0 0 0 (6) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<pre></pre>	(0) (0) (0) (0) 3 0 0 0 (0) (0) (0)
lung	lymphocytic infiltration	(50) (2) (0) (0) (0)	\$ 0 (0) (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)
Grade < a > b	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion	4 : Severe			

Organ Findings (Ruspiratory system) lung accumulation bone marrow augiectasis	Findings ctum) accumulation of foamy cells bronchiolar-alveolar cell hyperplasia ystem)	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) 7 0 0 (14) (0) (0) (0)	3 4 (%) (%)	512 ppm		VXXX
y sys	ion of foamy cells ur-alveolar cell hyperplasia	(50) (0) (0)		1 2 3 4 (%) (%) (%)	1280 ppm 50 4 (%) (%) (%) (%)	200 ppm 50 1 2 3 4 (%) (%) (%)
tic s	ion of foamy cells r-alveolar cell hyperplasia	<50> 0 (0)				
tic s	u-alveolar cell hyperplasia		(0) (0	<50> 12 0 0 (24) (0) (0) (0)	<50> 4 0 0 (8) (0) (0) (0)	<pre></pre>
tic s		3 0 (9) (9)	0 0		3 0 0 0 (6) (7) (8) (8) (8)	
	²³	(90 (0) (0) (0) (0) (0) (0) (0) (0 0	(50) 1 0 0 0 (2) (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0	(20) (0) (0) (0) (0) (0) (0) (0) (0) (0) (
granulation	щ	0 0 0	(O) (O O O		1 0 0 0 (2) (2) (3) (4) (4)	1 0 0 0 (2) (3) (4) (5)
increased b	increased hematopoiesis	0 0	0 0	(0)(0)(0)(0)	(0)(0)(0)(0)	(2) (0) (0) (0)
myelofibrosis	sis	1 1 (2) (2) ((0) (0 0 0	(2) (0) (0) (0)		
splcen deposit of	deposit of hemosiderin	<50> 5 0 (10) (0) ((0) (0 0 0	<pre></pre>	<50> 4 0 0 0 (8) (0) (0) (0)	(50) 11 0 0 0 (22) (0) (0) (0)
Grade 1: Slight <a> a : Number of an b : Number of an c : b / a * 100 Significant difference ; *	2: Moderate imals examined at the imals with lesion : P \leq 0.05 **: P	3: Marked 4: Severe site ≤ 0.01 Test of Chi Square				

ANIMAL : MOU REPORT TYPE : AI SEX : FEN	: MOUSE BEDZF1/Cr1,[Cr.j:BDF1] PE: A1 : FEMALE		ALL ANIMAL	S (0-105W)		ALL ANIMALS (0-105W)	:						_	PAGE: 20
Organ	Findings	Group Name No. of Animals on Study Grade	s on Study	Control 50 3 (%) (%)	4 (%)	1 (%) (%)	512 ppm 50 3 4	•	12 1 2 (%) (%)	280 ppm 50 3 (%)	(%)	1 (%)	3200 ppm 50 2 3 (%) (%)	4 (%)
(Hematopoi	(Hematopoietic system)													
spleen	deposit of melanin		1 (2) (<50> 0 0 0 0	0 (0)	1 0 (2) (2) (0)	<50> 0 0 0 0) (0) (0)	_	(5) 1 0 2) (0)) (0 0 00	0 0	0 0	<50> 0 0 0) (0)	0 0
	extramedullary hematopoiesis		7 (14) (5 2 (10) (4)	o (o)	11 2 (22) (4)	(0) (0)	J	14 3 28) (6)	6 (12) (0 (0	13 6 (26) (12)	3 (9)	0)
	follicular hyperplasia		0 0	1 0 2) (0)	0 (0)	0 3 (0)	(0) (0)	Ü	1 1 2) (2)	1 (2) (0 (0) (0 0	0 1 0) (2)	0 (0
Circulato	(Circulatory system)													
heart	thrombus		0 0	<50> 1 0 2) (0)	0 (6	, 1 0 (2) (3) (4)	<50> 0 0 0 0) (0) (0)	J	(5) (1) (2) (3)	0 0 0	0 (0	0 0	<50> 1 0 2) (0)	0 0
	mineralization		0 0	0 0	0 (0)	(0) (0)	(0) (0)	Ü	1 0 2) (0)	0 (0)	o (o	0 0	0 (0	0 0
	inflammatory infiltration		0 (0)	(0) (0 0 0	0 (0)	(0) (0)	(0) (0) (Ü	0 0	0 (0)	0 (0	1 (2) (0 0	° 6
	arteritis		0 (0)	0 0	0 (0)	(0) (0)	(0)(0)	_	1 0 2) (0)	0 (0)	0 (0	1 (2) (0 0	0 (0
Grade (a > b (c) Significan	Grade 1: Slight 2: Moderate 3:) <a> a : Number of animals examined at the site b : Number of animals with lesion (c) c: b / a * 100 Similicant difference : *: P ≤ 0.05 **: P ≤ 0.	farked 01 1	4 : Severe			**************************************								

(SUMMARY)	
LESIONS	
: NON-NEOPLASTIC 1	
FINDINGS	(M)
HISTOPATHOLOGICAL	ALL ANTHALS (0-105)
	Ξ

REPORT TYPE SEX	: A1 : FEMALE				PAGE :
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%)
(Digostive system)	ystem)				
oral cavity	thrombus	(0) (0) (0) (0) 0 0 0 0 <05>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 1 0 (0) (0) (2) (0)
tooth	dysplasia	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 2 0 (0) (4) (0) (0)	<50> 3 0 0 0 (6) (0) (0)	<550> 0 0 0 0 (0) (0) (0)
tongue	inflammation	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)	<50> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	<pre></pre>
salivary gl	lymphocytic infiltration	<50> 4 0 0 0 (8) (0) (0) (0)	3 0 0 0 0 0 0 (0 0) (0 0) (0 0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)
stomach	ulcer:forestomach	<50> 2 0 0 0 (4) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> (0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	hyperplasia:forestomach	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0 0 0 0 0 0 0 0	(0) (0) (0) (0) (0)	1 0 0 0 (2) (3) (4)
	erosion:glandular stomach	3 1 0 0 (6) (7) (10) (10)	8 0 0 0 0 0 (16) (16) (16)	1 0 0 0 (2) (3) (4) (5)	3 0 0 0 0 (0) (0) (0)
Grade <a>><a>><ba>b<ba>(c)</ba></ba> <a>Significant	Grade 1: Slight 2: Moderate 3: N < a > a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 c: b / a * 100 c: b / a * 100 c: c: b / a * 100 c: c: b / a * 100 c: c: c: b / a * 100 c: c: c: b / a * 100 c: c: c: b / a * c: c: b / a * c: c: c: b / a * c:	3 : Marked 4 : Severe the site . P < 0.01 Tack of Chi Samme			

SEX : FEM	: FEMALE					PAGE :
Organ	Findings	Group Name No. of Animals on Study Grade	Control y 50 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 4 (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%)
(Digestive system)	ys (cm)					
stomach	ulcer:glandular stomach		<pre></pre>	<00 (0) (0) (0) (0	<pre></pre>	<50> 1 0 0 0 (2) (0) (0) (0)
	hyperplasia:glandular stomach	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	13 0 0 0 26) (0) (0) (0)	6 0 0 0 (12) (12) (13) (13) (13) (14)	4 0 0 0 * (8) (8) (9)	6 0 0 0 (12) (12) (13) (13) (13) (14)
small intes	lymphocytic infiltration		<pre><20></pre> <pre>(0) (0) (0) (0)</pre>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<pre></pre>	<50> 1 0 0 0 (2) (0) (0) (0)
liver	angiectasis		3 (50) 3 0 0 0 6) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 2 0 (0) (4) (0) (0)
	necrosis:centra]		2) (0) (0) (0)			
	necrosis:focal	Č	0 0 0 0 0		(0)(0)(2)(0)	0 0 0 0 0
	inflammatory infiltration	J	2) (0) (0) (0)			0 0 0 0 0
Grade < a > b	1: Slight 2: Moderate 3: 9 a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	3 : Marked 4 : Severe	/ere			

STUDY NO. ANLMAL REPORT TYPE SEX	: 0580 : MOUSE B6D2F1/Cr1;[Cr.j:BDF1] ; : A1 : FEMALE	ALL 1	HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NOW-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE :
		Group Name No. of Animals on Study	Control y 50	512 ppm 50	1280 ppm 50	3200 ppm
Organ	Findings.	Grade	(%)	(%) (%) (%) (%)	(%) (%) (%) (%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(Digestive system)	system)					
liver	lymphocytic infiltration	Č	<50> 1 0 0 0 2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 <05>	<50> 0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0
	granulation	7 3 3	11 1 0 0 22) (2) (0) (0)	16 1 0 0 (32) (2) (0) (0)	20 1 0 0 (40) (2) (0) (0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	inflammatory cell nest		4 0 0 0 8) (0) (0) (0)		(2) (0) (0) (0)	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & (0) & (0) & (0) \end{pmatrix}$
	extramedullary homatopojesis	Č	2) (0) (0) (0)	(0) (0) (0) (0)	3 0 0 0 (0) (9) (9)	(2) (0) (0) (0)
	clear cell focus		(0) (0) (0) (0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0) (0) (0) (0) (0)	
	acidophilic cell focus		1 1 2 0 2) (2) (4) (0)	1 1 4 0 (2) (2) (8) (0)	1 2 3 0 (2) (4) (6) (0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	basophilic cell focus		(0)(0)(0)(0)(0		2 0 0 0 (4) (4) (6) (6) (6)	1 0 0 0 () () () ()
	biliary cyst	Č	(0) (0) (0) (0 0 0	1 0 0 0 (2) (2) (3) (4) (4)	(0) (0) (0) (0) (0)	(2) (0) (0) (0)
Grade < a > b (c) Significant	Grade 1: Slight 2: Moderate 3: N < a > a : Number of animals examined at the site b : Number of animals with lesion (c) c: b / a * 100 Significant difference ; *: $P \le 0.05$ **: $P \le 0.05$	farked 4:	Severe i Square			
(IIPT150)						BAIS

PAGE: 23

STUDY NO. : 058 ANIMAL : MOU REPORT TYPE : A1 SEX : FEM	: 0580 : MOUSE BEDZFI/Crlj[Crj:BDF1] : Al : FEWALE	HISTOPATHOLOGICAL FINDINGS :1 ALL ANIMALS (0-105#)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#)	(A	PAGE
Organ	Group No. of Grade Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Digestive system)	(m) sks(rem)				
liver	mineralization:central	(0) (0) (0) (0) 0 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<00 (0) (0) (0) (0) (0) (0) (0) ((0)(0)(0)(0)
	hyperplasia:Ito-cell				0 1 0 0 (0) (0) (0) (0)
gall bladd	hyperplasia	<pre></pre>	(0)(0)(0)(0)	<20\$ (0) (0) (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
pancreas	lymphocytic infiltration	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)	<50> (0) (0) (0) (0)
	islet cell hyperplasia				2 0 0 0 (4) (4) (6) (6) (6)
(Urinary system)	stem)				
kidney	cyst	<50> 0 1 0 0 (0) (2) (0) (0)	(0)(0)(0)(0)	<pre></pre>	(0)(0)(0)(0)
Grade <a>b b (c) Significant	Grade 1: Slight 2: Moderate 3: Marked $\langle a \rangle$ a : Number of animals examined at the site b : Number of animals with lesion (c) c: b / a * 100 Significant difference; *: P \leq 0.05 **: P \leq 0.01	ted 4 : Severe Test of Chi Square			
(IIPT150)					

Group Nan No. of Ar Grade frade frade frade framyloid framyloid ic infiltration ory polyp ory polyp ic infiltration ory militration ory mil	ANLMAL REPORT TYPE SEX	: NOUSE BGD2F1/Cr1,[Crj:BDF1] : FEMALE		יורד זוואדאשערבט (במסש) (אפטר	,											PAGE:
Payline Grouplet	gan	Findings	Group Name No. of Animal Grade	s on Study (%)	Contro 50 2 3 (%) (%)	1	(%)	512 p 50 2 (%) (9		1 (%)	1280 50 2 (%)			(4)	3200 ppi 50 3) (%)	
Modeline droplet	rinary s	:Asrcm)														
deposit of ampleid (0) (0) (0) (0) (0) (0) (0) (0	dney	hyaline droplet		3	<50> 3 6) ($\overline{}$	1 (3)		_	8	4 8	$\overline{}$	Ç		<50> 5) (10)	
inflammatory infiltration (0) (0) (0) (0) (0) (0) (0) (0		deposit of amyloid		0 0	0 0	$\overline{}$	0	\smile	\smile	0 0	0 0	\smile	C	\smile	\smile	
Jymphocytic infiltration 8		inflammatory infiltration		0 0	。 0 0	$\overline{}$	0 0	~	$\overline{}$	00	- 3	\smile	J	$\overline{}$	$\overline{}$	
scar inflammatory polyp inflammatory polyp ossification 1		lymphocytic infiltration			\$\tag{2}\$	\smile	9	\smile	\smile		0 0	\smile	$\overline{}$	$\overline{}$	$\overline{}$	
inflammatory polyp (2) (4) (0) (0) (2) (0) (1) (0) (2) (0) (2) (0) (2) (0) (4) (0) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6		scar		2)	0 6	$\overline{}$	06	$\overline{}$	$\overline{}$	0 0	00	$\overline{}$	J	\smile	<u> </u>	
1 0 0 0 0 0 0 0 0 0		inflammatory polyp		2 1	2 (4) (\smile	2 (4)	<u> </u>	<u> </u>	1 3	0 0	~	J	_	_	
lydronephrosis		ossification		23) 0 0	$\overline{}$	23	\smile	$\overline{}$	0 0	0 6	$\overline{}$	<u> </u>	$\overline{}$	J	
1 : Slight 2 : Moderate 3 : Marked a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100		lydronephrosis		0 0	2 4) (\smile	1 (5)	$\overline{}$	$\overline{}$	0 0	0 0	\smile	\sim	$\overline{}$		
	ade a > b	2 : Moderate of animals examined of animals with lesi	farked	4 : Severe			enne enne en	70 100 100 100 100 100 100 100 100 100 1								

Organ Findings. [Urinary system]							. 7007
ry system)	SS	Group Name No. of Animals on Study Grade	1 2 %) (%)	Control 50 3 4 (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50 1 2 3 4 (%) (%) (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
	regeneration:proximal tubule	Ç	(00) (0)	(0) (0 0 0	(0) (0) (0) (0) 0 0 0 0 (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(50) 0 0 1 0 (0) (0) (2) (0)
urin bladd dilatation	ion	J	<50> 1 1 (2) (2) ((0) (0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0)
inflamm	inflammatory infiltration	J	1 0 (2) (-0) (-	(0) (0 0 0	(0)(0)(0)(0)(0)	(0)(0)(0)(0)(0)	(0)(0)(0)(0)(0)
1 ymphoc;	lymphocytic infiltration	Ü	0 0 0	0 0	1 0 0 0 (2) (2) (3) (4) (4)	1 0 0 0 (2) (3) (3) (4)	(0) (0) (0) (0)
(Endocrine system)							
pituitary angiectasis	asis		(0) (0) (0) (0)	(0) (0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)
cyst			0 (0)	(0) (0 0 0	(0)(0)(0)(0)	1 0 0 0 (2) (3) (6) (6)	2 0 0 0 (4) (4) (6) (6)
Grade 1 : Slight (a 2) a : Number b b : Number (c) c : b / a *	2: Moderate of animals examined at the of animals with lesion 100	Narked 4	: Severe				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMM)	N-NEOPLASTIC LESIONS	(SUMMARY)
ALL ANIMALS (0-105W)		

HISTOPATHOLOCICAL FINITNGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	PAGE: 27	Group Name Control 512 ppm 1280 ppm 3200 ppm 3200 ppm No. of Animals on Study 50
: MOUSE BED2F1/Cr1j[Crj:BDF1] TYPE : Al	SEX : FEMALE	Group Name No. of Animals on Study

		oroup name Control No. of Animals on Study 50	512 ppm 50	1280 ppm 50	3200 ppm
Organ	Findings	Grade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	(%) (%) (%) (%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
{Endocrine system}	(ketem)				
pituitary	hyperplasia	(50) 9 5 3 0 (18) (10) (6) (0)	<pre></pre>	<50> 8 4 4 0 (16) (8) (8) (0)	<50> 7 6 4 0 (14) (12) (8) (0)
	Rathke pouch	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0) (0) (0) (0) (0) 0 0 0	
thyrold	cyst	<pre></pre>	(0) (0) (0) (0) 0 0 0 0 0 000	<50> 2 0 0 0 (4) (0) (0) (0)	(6) (0) (0) (0) (0) (0) (0) (0)
	lymphocytic infiltration		1 0 0 0 0 (2) (2) (3) (4)	(0) (0) (0) (0) (0) 0	
parathyroid	cyst	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0
adrenal	fatty change	<50> 0 0 1 0 (0) (0) (2) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0
	extramedullary hematopoiesis		0 0 0 0 0	(2) (0) (0) (0)	

Grade 1: Slight 2: Moderate 3: Marked 4: Severe (a > a: Number of animals examined at the site b b: Number of animals with lesion (c) c: b/a*100 Significant difference: *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square (HPT150)

(SUMMARY)	
HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMM	
GICAL FINDINGS :	(10)
HISTOPATHOLOGICAL	make of constitution the

REPORT TYPE : AI SEX : FEM	. MOOSE BODGEL/OFLICE, BUFIL : FAIL	ALL ANIMALS (U-1050)			PAGE: 28
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%)	1280 ppm 50 4 (%) (%) (%)	3200 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Endocrine system)	;ys.tem}				
adrenal	spindle-cell hyperplasia	$\langle 50 \rangle$ 34 13 0 0 (68) (26) (0) (0)	<pre></pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<50> 40 9 0 (80) (18) (0) (0)
	hyperplasia:cortical cell		(0)(0)(0)(0)(0)	1 0 0 0 (2) (2) (3) (4) (4)	(0)(0)(0)(0)
	focal fatty change:cortex	1 0 0 0 () () () () ()	2 1 0 0 (4) (5) (6) (6)	(0)(0)(0)(0)	2 0 0 0 (4) (4) (6) (6)
(Reproductive system)	'o system)				
ovary	angiectasis	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) (0)	<00 (0) (0) (0) (0) (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	thrombus	0 0 1 0 (0) (0) (2) (0)			0 0 1 0 (0) (0) (0)
	cyst	3 1 0 0 (6) (2) (0) (0)	0 0 1 0 (0) (0) (0)	3 0 2 0 (6) (6) (4) (0)	0 1 0 0 (0) (0) (0)
	lymphocytic infiltration	1 0 0 0 (2) (3) (4) (6) (6) (6)	(0)(0)(0)(0)(0)		
Grade <a>b <a>c <a>c<!--</td--><td>Grade 1: Slight 2: Moderate 3:) <a>a> Number of animals examined at the site b b: Number of animals with lesion c c b a * 100 c Significant difference; * : P \leq 0.05 **: P \leq 0.</td><td>3 : Marked 4 : Severe e site ≥ 0.01 Test of Chi Square</td><td></td><td></td><td></td>	Grade 1: Slight 2: Moderate 3:) <a>a> Number of animals examined at the site b b: Number of animals with lesion c c b a * 100 c Significant difference; * : P \leq 0.05 **: P \leq 0.	3 : Marked 4 : Severe e site ≥ 0.01 Test of Chi Square			

STUDY NO. : 058 ANIMAL : MOU REPORT TYPE : AI SEX : FEM	: 0580 : MOUSE B6D2F1/Cr1;[Cr;:BDF1] : A1 : FEMALE	HISTOPATH ALL ANIMO	HISTOPATHOLOGICAL FIND ALL ANIMALS (0-105%)	INGS : NON	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	(SUMMARY)		PAGE : 29
		Group Name	Control		512 ppm		1280 ppm	3200 ррт
Organ	Findings	Grade (%)		(%)		4 (%	50 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%)
(Reproductive system)	system)							
ulerus	stromal hyperplasia	0 0	(0) (0) (0) (0) (0)	0 (0	<pre> (0) (0) (0) (0) (0) </pre>	0 (6	<00 (0) (0) (0) (0) (0) (0) (0) (0) (0) (<50> 1 0 0 0 (2) (0) (0) (0)
	cystic endometrial hyperplasia	28 (56) (0 0 0	0 (0	32 1 0 (64) (2) (0) (0 0	29 0 0 0 0 (58) (69) (69)	29 0 0 0 (58) (58) (60) (60)
(Nervous system)	.em)							
brain	mineralization	5 (10) (<50> 0 0 (0) (0) (0 (0	<50> 10 0 0 (20) (0) (0) (0 0	\$ 0 (0) (0) (0) (0) (0)	(50) 4 0 0 0 (8) (0) (0) (0)
(Special sens	(Special sense organs/appendage)							
еуе	keratitis	2 (7) (7)	<50> 0 0 0) (0) (0 (0	<50> 0 1 0 (0) (2) (0) (0 (0	<pre></pre>	(20) (0) (0) (0) (0) (0)
	degeneration:cornea) (0)	1 0 2) (0) (0 (0	2 0 0 (4) (0) (0) (0 (0		(2) (0) (0) (0)
Grade 1: Slight <a> a : Number b b : Number (c) c : b / a * Significant difference ;	1: Slight 2: Moderate 3::) a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 hifference; *:P ≤ 0.05 **:P ≤ 0.	3 : Marked 4 : Severe site ≤ 0.01 Test of Chi Square						
(HPT150)								BAIS4

STUDY NO. : 058C ANIMAL : MOUS REPORT TYPE : AI SEX : FEM.	: 0580 : WOUSE BEDZF1/Crlj[Crj:EDF1] : A1 : FEMALE	HISTOPATHOLOGICAL FINDINGS : ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-1054)		PAGE: 30
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 50 1 2 3 4 (%) (%) (%) (%)	1280 ppm 50	. 3200 ppm 50 (%) (%) (%)
(Special sense	(Special sense organs/appendage)				
eye	mineralization:cornea	<50> 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 <005>	<50> 2 0 0 0 (4) (0) (0) (0)	<pre></pre>
Harder gl	hyperplasia	<50> 0 0 0 0 0 0 0 0 0 0 0 0	(50) 2 0 0 0 (4) (0) (0) (0)	<00	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0
(Musculoskeletal system)	tal system)				
muscle	mineralization	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 <05>
attoq	osteosclerosis	<50> 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 <05>	<50> 0 0 0 0 (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
Grade 1: Slight (a > a : Number b b : Number (c) c: b/a* Significant difference: (HPT150)	2: Moderate of animals examined at the of animals with lesion : 100 *: P ≤ 0.05 **: P	3: Marked 4: Severe site ≤ 0.01 Test of Chi Square			BAIS1

TABLE O 1

NEOPLASTIC LESIONS-INCIDENCE AND

STATISTICAL ANALYSIS: MALE

2	/
1400	_
ALCOT DATE	
147	
71.00	
died to Fales	_
į	·
1	2
ä	
TAICHINGAIN	
2	2
-	
3	
-	
Ę	_
SON ACC	
Ŝ	

STTE 1u	Control	512 ppm	a. 1980		
SITE : TUMOR : 3/50(3/33(1) P = 0.81		•	mdd oost	3200 ppm	
3/50(3/33(p = p = 1)	: lung : bronchiolar-alveolar adenoma	EU			
d d d					
<u> </u>	3/50(6.0)	6/50 (12.0)	2/50(4.0)	2/50 (4.0)	
	9. 09	13.04		5.00	
method(d) i method(d) analysis(d)	9. 1)	4/34(11.8)	2/36(5.6)	1/35(2.9)	
(F) (F)					

	596				

Cochran-Armitage test(e) P = 0.3226	226				
Fisher Exact test(e)		P = 0.2435	P = 0.5000	P = 0.5000	
SITE :	: lung	value of			
		Iloina			
Overall rates(a) 6/50(12.0)	12.0)	4/50(8.0)	8/50(16.0)	7/50(-14,0)	
	17.65	11.76	16.67	20.00	
5/33(15.2)	4/34 (11.8)	6/36(16.7)	7/35(20.0)	
Statistical analysis					
	556				
	959				
Ь	046				
Cochran-Armitage test(e) $P = 0.5395$	395				
Fisher Exact test(e)		P = 0.3703	P = 0.3871	P = 0.5000	
TUMOR :		bronchiolar—alveolar adenoma, bronchiolar—alveolar carcinoma			
Overall rates(a) 9/50(18.0)	(8.0)	9/50(18.0)	10/50 (20, 0)	9/50(-18-0)	
	26. 47	20.59	22.22	22.86	
8/33(24.2)	7/34(20 6)	8/36(22 9)	8/35(22 0)	
is	ì				
Peto test					
Standard method(d) $P = 0.4556$	556				
Prevalence method(d) $P = 0.5620$	620				
	009				
itage test(e)	296				
		P = 0.6024	P = 0.5000	P = 0.6024	

Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : lung TUMOR : bronchiolar-alveolar ade	: lung : bronchiolar-alveolar adenoma, bronchiolar-alveolar carcinoma, squamous cell carcinoma	squamous cell carcinoma		The state of the s
Tumor rate					
Overall rates(a)	9/50(18.0)	9/50(18.0)	11/50(22.0)	9/50(18.0)	
Adjusted rates(b)	26.47	20.59	25.00	22.86	
Terminal rates(c)	8/33(24.2)	7/34(20.6)	9/36(25.0)	8/35(22.9)	
Statistical analysis Peto test					
Standard method(d)	P = 0.4556				
Prevalence method(d)	P = 0.5610				
Combined analysis(d)	P = 0.5591				
Cochran-Armitage test(e)	P = 0.9924				
Fisher Exact test(e)		P = 0,6024	P = 0.4016	P = 0.6024	
	SITE : lymph node TUMOR : malignant lymphoma				ANTICLE THE RESIDENCE OF THE STREET OF THE S
[umor rate					
Overall rates(a)	3/50(6.0)	6/50 (12.0)	8/50(16.0)	2/50(4.0)	
Adjusted rates(b)	9. 09	5.88	22. 22		
Terminal rates(c) Statistical analysis Peto test	3/33(9.1)	2/34(5.9)	8/36(22.2)	1/35(2.9)	
Standard method(d)	P = 0.6351				
Prevalence method(d)	P = 0.7743				
Combined analysis(d)	P = 0,8057				
Cochran-Armitage test(e)	P = 0.4275				
Fisher Exact test(e)		P = 0.2435	P = 0.0999	P = 0.5000	
	SITE : spleen TIMOR · hemonaicearcome				
Tumor rate					
Overall rates(a)	4/50(8.0)	2/50(4.0)	0/50(0.0)	1/50(2.0)	
Adjusted rates(b)	8.89	0.0	0.0	0.0	
Terminal rates(c)	1/33(3.0)	0/34(0.0)	0/36(0.0)	0/35(0.0)	
Peto test					
Standard method(d)	P = 0.4010				
Prevalence method(d)	P = 0.9962				
Combined analysis(d)	P = 0.9335				
Cochran-Armitage test(e)	P = 0.1532	;			
Fisher Exact test(e)		0 3330	D = 0 0587	1011	

Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : spleen TUMOR : hemangioma,hemangiosarcoma				A C TANDON BY THE TANDAN AND A STATE AND A
Tumor rate	A /50 (0 0)		, , , , , , , , , , , , , , , , , , ,		
Adjusted rates(b)	8.89	3/30(0.0) 2.86	2/50(4.0) 4.26	1/50(2.0)	
Terminal rates(c) Statistical analysis	1/33(3.0)	0/31(0.0)	1/36(2.8)	0/35(0.0)	
Peto test Standard method(d)	P = 0.4010				
Prevalence method(d)	P = 0.9755				
Combined analysis(d)	P = 0.9246 P = 0.1665				
Fisher Exact test(e)		P = 0.5000	P = 0.3389	P = 0.1811	
	SITE : stomach THMOP : conseque cell masillame				
Tumor rate					
Overall rates(a)	0/50(0.0)	4/50(8.0)	3/50 (6.0)	6/50(12.0)	
Adjusted rates(b)		8.51	8.33	13, 95	
Terminal rates(c) Statistical analysis	0/33(0.0)	2/34(5.9)	3/36(8.3)	3/35(8.6)	
Peto test					
Standard method(d)	р =				
Prevalence method(d)	F = 0.02/3*				
Cochran-Armitage test(e)	P = 0.0365*				
Fisher Exact test(e)		P = 0.0587	P = 0.1212	P = 0.0133*	
	SITE : liver				
·	TUMOR : hepatocellular adenoma				
lumor rate	(0.00.707) 81	() 0 / 0 1/ 0 1	() () () () () ()		
Overall rates(a) Adjusted rates(h)	14/ 50 (26. 0)	13/501 Z6. 0/ 31 43	13/50(20.0)	19/50(38. 0)	
Terminal rates(c)	11/33 (33.3)	10/34(29.4)	12/36 (33.3)	15/35 (42.9)	
Statistical analysis					
Standard method(d)	P = 0.2429				
Prevalence method(d)	P = 0.1761				
Combined analysis(d)	P = 0.1335				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.1820	P = 0.5000	0.5000	926] O = d	

. MALE					PAGE: 4
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : liver TUMOR : histiocytic sarcoma				The same of the sa
Tumor rate Overall rates(a)	0/50(0.0)	3/50(6.0)	0/50(0.0)	2/50(4.0)	
Adjusted rates(b) Terminal rates(c)	0.0 0/33(0.0)	0.0 0/34(0.0)	0.0 0/36(0.0)	0.0 0/35(0.0)	
Statistical analysis Peto test					
Standard method(d)	P = 0.2791				
rrevalence method(d) Combined analysis(d)	r = P = 0.2791				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.5274	P = 0.1212	P = N. C.	P = 0, 2475	
	SITE : liver TUMOR : hemangiosarcoma				
[umor rate					
Overall rates(a)	5/50(10.0)	3/50(6.0)	0/50(0.0)	1/50(2.0)	
Adjusted rates(b)	15, 15	4.35	0.0	2.86	
lerminal rates(c) Statistical analysis	5/33(-15.2)	1/34(2.9)	0/36(0.0)	1/35(2.9)	
Peto test					
Standard method(d) Prevalence method(d)	F = 0.5516 P = 0.9518				
Combined analysis(d)	P = 0.9781				
Cochran-Armitage test(e)	P = 0.0683				
Fisher Exact test(e)		P = 0.3575	P = 0.0281*	P = 0.1022	
limor rate	TUMOR : hepatocellular carcinoma	a			
Overall rates(a)	20/50 (40.0)	7/50 (14.0)	7/50(14.0)	8/50(16.0)	
Adjusted rates(b)	42. 42	18.92	11.11	15.38	
Terminal rates(c) Statistical analysis	14/33(42.4)	6/34(17.6)	4/36(11.1)	5/35(14.3)	
Peto test					
Standard method(d)	P = 0.8323 P = 0.0234				
Combined analysis(d)	$\Gamma = 0.9144$ P = 0.9859				
Cochran-Armitage test(e)	P = 0.0415*		111111111111111111111111111111111111111		
Fisher Exact test(e)		1' = 0, 0031**	** S	**/ 4	

STUDY No. : 0580 ANIMAL : MOUSE BEDZFL/Crlj[Crj:BDF1] SEX : MALE	zlj[Crj:BDFl]	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS	ISTICAL AMLYSIS	PAGE	
Group Name	Control	512 ppm	1280 ppm	3200 mdd	
	SITE : liver TUMOR : hemanciona.hemanciosarcoma	ntiosarcoma			
Tumor rate					
Overall rates(a)	6/50(12.0)	4/50(8.0)	1/50(2.0)	1/50 (2.0)	
Adjusted rates(b)	16.67	6.52	2.70	2.86	
Terminal rates(c) Statistical analysis	5/33(-15.2)	2/34(5.9)	0/36(0.0)	1/35(2.9)	
Peto test					
Standard method(d)	P = 0.5616				
Prevalence method(d)	P = 0.9855				
Combined analysis(d)	P = 0.9890				
Cochran-Armitage test(e)	P = 0.0385*				
Fisher Exact test(e)		P = 0.3703	P = 0.0559	P = 0.0559	
	The state of the s				- CONTRACTOR OF CASE CASE CASE CASE CASE CASE CASE CASE
	SITE : liver				
Timor vato	NUMOR : hepatocellular	IUMOR : hepatocellular adenoma,hepatocellular carcinoma			
Overall rates(a)	28/50(56.0)	17/50(34 0)	18/50(36.0)	03/20(46.0)	
Adjusted rates(b)	58.82	41.67	70 CO 100 CO	40, 50 (40, 0)	
Terminal rates(c)	19/33(57.6)	13/34 (38.2)	14/36(38.9)	10. 37	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.6439				
Prevalence method(d)	P = 0.6382				
Combined analysis(d)	P = 0.6942				
Cochran-Armitage test(e)	P = 0.8157				
Fisher Exact test(e)		P = 0, 0219*	P = 0.0352*	P = 0.2119	
(IIPT360A)					RATSA

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0580
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
SEX : MALE

					. 700 r
Group Name	Control	512 ppm	1280 ppm	3200 mdd	
	SITE : liver TUMOR : hepatocellular aden	SITE : liver TUMOR : hepatocellular adenoma, hepatocellular carcinoma, hepatoblastoma			
Tumor rate Overall rates(a)	29/50(58.0)	18/50(36.0)	(0 36 0)	94/50(40 0)	
Adjusted rates(b)	58.82	44, 44	38.89	73, 30 (43. 0)	
Terminal rates(c)	19/33(57.6)	14/34(41.2)	14/36(38.9)	17/35(48 6)	
Statistical analysis				(6 10.1) 0.0 (1.1	
Peto test					
Standard method(d)	P = 0.5872				
Prevalence method(d)	P = 0.6446				
Combined analysis(d)	P = 0.6717				
Cochran-Armitage test(e)	P = 0.8135				
Fisher Exact test(e)		P = 0,0223*	P = 0.0223*	P = 0.2115	
(IIPT360A)					BATCA
					FCIPO

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.
Standard method : Death analysis

Combined analysis: Death analysis + Incidental tumor test Prevalence method : Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.
-----: There is no data which should be statistical analysis.
Significant difference; * : P ≤ 0.05 **: P ≤ 0.01
N.C. Statistical value cannot be calculated and was not significant.

BAIS4 6/50(12. 0) 8. 57 3/35(8. 6) 2/50(4.0) 2.86 1/35(2.9) 3200 ppm P = 0.0559P = 0.50003/50(6.0) 5.56 2/36(5.6) 8/50(16.0) 22.22 8/36(22.2) 1280 ppm P = 0.0999P = 0.3087NEOPLASTIC LESIONS-INCLDENCE AND STATISTICAL ANALYSIS 512 ppm 5/50(10.0) 2.94 1/34(2.9) 6/50(12.0) 5.88 2/31(5.9) P = 0.1022P = 0.2435SITE : ALL SITE TUMOR : histiocytic sarcoma SITE : ALL SITE TUMOR : malignant lymphoma 1/50(2.0) 0.0 0/33(0.0) 3/50 (6.0) 9.09 3/33 (9.1) Control P = 0.3363 P = 0.0504 P = 0.0873 P = 0.1286 P = 0. 6351 P = 0. 7743 P = 0. 8057 P = 0. 4275
 STUDY No.
 : 0580

 ANIMAL
 : MOUSE B6D2F1/Cr1jfCrj:BDF1]

 SEX
 : MALE
 Standard method (d)
Prevalence method (d)
Combined analysis(d)
Cochran-Armitage test(e)
Fisher Exact test(e) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e) Standard method(d) Prevalence method(d) Adjusted rates(b) Terminal rates(c) Statistical analysis Group Name Statistical analysis Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Tumor rate Overall rates(a) Peto test Peto test (HPT360A)

STITE ALL SITE ALL SITE ALL SITE TUMOR hemanglosarcoma 1280 ppm 3200 ppm	STUDY No. : 0580 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : MALE	rlj[Crj:BDFt]	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS	TSTICAL ANALYSIS		PAGE: 2
SITE : ALL SITE TUMOR : hemangiosarcoma 9/50(18.0) 2.91 6/33(18.2) 1/34(2.9) 0/50(0.0) 0.0 6/33(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 0/36(0.0) 0/36(0.0) 1/34(2.9) 0/36(0.0) 0/36(0.0) 0/36(0.0) 0/36(0.0) 0/36(0.0)	ıp Name	Control	512 ppm	1280 ppm	3200 ppm	
TUMOR : hemanglosarcoma $9/50$ (8. 0) $0/50$ (0. 0) $0/50$ (0. 0) $0/50$ (0. 0) $0/50$ (0. 0) $0/30$ (0.		SITE : ALL SITE				
9/50(18.0) 4/50(8.0) 0/50(0.0) 0/50(0.0) 0/50(0.0) 0.0		TUMOR : hemangiosarcoma				
9/50(18.0) 4/50(8.0) 0/50(0.0) 2.94 0/50(0.0) 2.94 0.0 6/33(18.2) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0) 1/34(2.9) 0/36(0.0)						
20.00	s(a)	9/50(18.0)	4/50(8.0)	0/50(0.0)	2/50(4 0)	
b	es (b)	20.00	2.94	0.0	16:1 \ 22./T	
P = 0.5266 P = 0.9884 P = 0.9984 P = 0.9930 P = 0.0233* P = 0.1168	es(c)	6/33(18.2)		0/38 (0.0)	1/35(2.00	
P = 0.5266 P = 0.9984 P = 0.9930 p = 0.0233* P = 0.0013**	nalysis				(c : 2) (c : 4)	
P = 0, 5266 P = 0, 9984 P = 0, 9930 P = 0, 0233* P = 0, 02168 P = 0, 0013**						
P = 0.9984 P = 0.9930 P = 0.0233* $P = 0.1168$ $P = 0.0013**$	thod(d)	P = 0.5266				
P = 0.9930 $P = 0.0233*$ $P = 0.1168$ $P = 0.0013**$	method(d)	P = 0.9984				
P = 0.0233* P = 0.1168 P = 0.0013**	alysis(d)	P = 0.9930				
P = 0, 1168 P = 0, 0013**	Cochran-Armitage test(e)	P = 0.0233*				
	Fisher Exact test(e)		P = 0.1168	P = 0.0013**	P = 0.0256*	

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran Armitage and Fisher exact test compare directly the overall incidence rates.

?: The Cochran Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

-----: There is no data which should be statistical analysis.

Significant difference; *: P ≤ 0.05 **: P ≤ 0.01

N.C.:Statistical value cannot be calculated and was not significant.

TABLE O 2

NEOPLASTIC LESIONS-INCIDENCE AND

STATISTICAL ANALYSIS: FEMALE

STSV IANA
NP STATISTICAL
NEOPLASTIC LESIONS-INCIDENCE AN

Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : lung TUMOR : bronchiolar-alveolar carcinoma	r carcinoma			
Tumor rate					
Overall rates(a)	2/50(4.0)	1/50(2.0)	2/50(4.0)	4/50 (8.0)	
Adjusted rates(b)	2.94			13.33	
Terminal rates(c)	1/31(2.9)	1/28(3.6)	1/28(3.6)	1/30(13.3)	
otatisticai analysis Peto test					
Standard method(d)	P = 1,0000 ?				
Prevalence method(d)					
Combined analysis(d)	P = 0.0842				
Cochran-Armitage test(e)	P = 0.1929				
Fisher Exact test(e)		P = 0.5000	P = 0.6913	P = 0.3389	
,	SITE : lung TUMOR : bronchiolar—alveola	: lung : bronchiolar-alveolar adenoma,bronchiolar-alveolar carcinoma			
lumor rate					
Overall rates(a)	4/50(8.0)	2/50(4.0)	2/50(4.0)	5/50(10.0)	
Adjusted rates(b)	8.82	4.00	6.25	16.67	
lerminal rates(c)	3/34(8.8)	1/28(3.6)	1/28(3.6)	5/30 (16.7)	
Statistical analysis Peto test					
Standard mothod(d)	P = 1 0000 9				
Demonstration (d)					
Frevalence method(d)	F = 0.1080				
Combined analysis(d)	P = 0.1809				
Cochran-Armitage test(e)	P = 0.4279				
Fisher Exact test(e)		P = 0.3389	P = 0.3389	P = 0.5000	
	TUMOR : malignant lymphoma				
Tumor rate					
Overall rates(a)	12/50(24.0)	16/50 (32.0)	7/50(14.0)	7/50(14.0)	
Adjusted rates(b)	14.71	14. 29	0.0	13. 33	
Terminal rates(c)	5/34(14.7)	4/28 (14.3)	0/28(0.0)	4/30(13.3)	
Statistical analysis					
reto test	0 - 0 0469				
Standard method(d)	F = 0.9462				
Frevalence method(d)	F = 0.5803				
Combined analysis(d)	F = 0.9280				
Cochran-Armitage test(e)	P = 0.0662				
Fisher Exact test(e)		(4), 9(1, 1) == (1	0 = 0		

-
ANIAL VCT
5
-
:
5
7
<
Ξ
=
E
5
_
Ę
4
7
≥
5
=
-
≥
INCLUSION.
2
CINCI
Ξ
'n
-
•
C
_
ξ,
ž
_
2
ς

SITIS TUMC P P P P P	Control : spleen				
SITIE TUMC TUMC TUMC TUMC TUMC TUMC TUMC TUMC		512 ppm	1280 ppm	3200 ppm	
))	٠.				
P P P P P P P P P P P P P P P P P P P					
1) 3) st (e)	1/50(2.0)	1/50(2.0)	3/50(6.0)	0/50(0.0)	
J) J) st (e)	2.94	3, 23	7.32	0.0	
J) J) st (e)	54(-2.9)	0/28(0.0)	2/28(7.1)	0/30(0.0)	
	P = 0.6950				

Fisher Exact test(e)	P = 0. 4818	P = 0.7525	P = 0.3087	P = 0.5000	
ETIS.					
TUMOR Timor rate	: squamous cell papilloma				
Tps (2)	50(0 0)	1/50(20)			
_	0.0	2.70	1/30/1 2.0/	3/30(6.0)	
	0/34(0 0)	(0 0) 86/0	(0 0) 86/0	9.08	
is					
Feto test Standard mathad(d)					
	#02G0 O				
revalence method (d) $\Gamma = 0$ Combined analysis (d) $\Gamma = 0$	0.0273*				
(e) P =	0.0549				
•		P = 0.5000	P = 0.5000	P = 0.1212	
SITE	: liver				V000001-1-0016-0-1-1-1-1
TUMOR	TUMOR : hemangioma				
	2/50(4.0)	1/50(2.0)	2/50(4.0)	4/50(8.0)	
	5.88	3.57	5.13	13, 33	
ates(c) analysis	7,54(5.9)	1/28(3.0)	1/28(3.6)	4/30(-13.3)	
ቷ የ					
Frevalence method (d) $I' = 0$	= 0.0872 =				
(3)	P = 1030				
		P = 0.5000	P = 0.6913	P = 0.3389	

					rage .
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : liver TUMOR : hepatocellular adenoma	o			And the second s
Tumor rate					
Overall rates(a)	5/50(10.0)	6/50(12.0)	4/50(8.0)	3/50(6.0)	
Adjusted rates(b)	14.71	21. 43	11.11	10.00	
Terminal rates(c) Statistical analysis	5/34(14.7)	6/28(21.4)	3/28(10.7)	3/30(10.0)	
Peto test					
Standard method(d)	b = d				
Prevalence method(d)	P = 0.7948				
Combined analysis(d)	d				
Cocuran-Armitage test(e) Fisher Exact test(e)	r = 0.3463	P = 0.5000	P = 0,5000	P = 0.3575	
	SITE : liver				
fumor rate	TUMOR : hemanglosarcoma				
Overall rates(a)	4/50(8.0)	3/50 (6.0)	0/20(0 0)	0/20(0 0)	
Adjusted rates(b)	11.76	6.45	0.0	0.0	
Terminal rates(c)	4/34(11.8)	1/28(3.6)	0/28(0.0)	0/30(0.0)	
Statistical analysis					
reto test	5				
Standard method(d)	V = 0.5483 $V = 0.0046$				
Tevalence method(d)	D = 0 9950				
Cochran-Armitage test(e)	D = 0.9500				
Fisher Exact test(e)		P = 0.5000	P = 0.0587	P = 0.0587	
	CTTT				
	TUMOR : hepatocellular carcinoma	oma			
Tumor rate					
Overall rates(a)	0/50(0.0)	3/50(6.0)	1/50(2.0)	1/50 (2.0)	
Adjusted rates(b)	0.0		3.13		
Terminal rates(c)	0/34(0.0)	2/28(7.1)	0/28(0.0)	0/30(0.0)	
Statistical analysis					
reto test Standard mothod(d)					
Destrations mathod(d)	D = 0.4950				
Combined analysis(d)	D =				
Cochran-Armitage test(e)	P = 0.9335				
		4			

SITE : liver Tumor rate Group Name Control SITE : liver Tumor rate G50 (12.0) Adjusted rates(a) G50 (12.0) Adjusted rates(b) G50 (12.0) G	512 ppm		
at (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f		1280 ppm	3200 ppm
st (e)			
(e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f			
(a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		2/50(-4.0)	4/50(8.0)
11) (a) (b) (c) (d) (d) (d) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f		1/28(3.6)	4/30 (13.3)
at (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f			
a) (a) (b) (c) (d) (d) (d) (e) (e)			
1) 1) 1) 1) 1) 1) 1)			
1) 11) 13 st(e) 10)	0.3703	P = 0.1343	P = 0.3703
1) 14) 15) 16)			
5/50 (10.0) 14.71 5/34 (14.7) P = 19	r carcinoma		
11. 71 5/34 (11.7) 13.	50(16.0)	5/50(10.0)	4/50(8.0)
5/34(14.7) P = 1)	25.81	13.89	11.76
D = 1)	28 (25.0)	3/28(10.7)	3/30(10.0)
P =			
1)			
Str(e) P =			
SITE : pituitary gland TUMOR : adenoma 2/50(4.0) 0/34(0.0)			
SITE : pituitary gland TUMOR : adenoma 2/50(4.0) 0.34(0.0)	0.2768	P = 0.6297	0008 0 = d
SITE : pituitary gland TUMOR : adenoma 2/50(4.0) 0.0 0/34(0.0)			
TUMOK : adenoma 2/50(4.0) 0.0 0/34(0.0)			
2/50(4.0) 0.0 0/34(0.0)			
0,0000	50(14 0)	5/50/ 10 0)	(0 61 /05/9
0/34(0.0)	17.86	5/50/ 10.0/ 19 E0	0/30(15.0)
	28(17.9)	3/28 (10.7)	6/30(20.0)
Peto test			
Standard method(d) $P = 0.9012$			
Trevalence method (d) $F = 0.042/4$ Combined analysis (d) $P = 0.1649$			
(e)			
	0.0709	0010	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

SEA . FEMALE					PAGE: 11
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
	SITE : uterus TUMOR : histiocytic sarcoma				000000
Tumor rate Overall rates(a)	12/50(24 0)	7/50(14 0)	(0 /0 / 01/01		
Adjusted rates(h)	17.65	7.14	7, 14	13/50 (26. 0)	
Terminal rates(c) Statistical analysis Peto test	6/34(-176)	2/28(7.1)	2/28(7.1)	3/30(10.0)	
Standard method(d)	P = 0.0484*				
Prevalence method(d)	P = 0, 7898				
Combined analysis(d)	P = 0.1667				
Cocnran-Armilage test(e) Fisher Exact test(e)	V = 0.4290	P = 0.1540	P = 0.5924	P = 0,5000	
	SITE : Harderian gland TUMOR : adenoma				
Tumor rate					
Overall rates(a)	0/50(0.0)	1/50(2.0)	4/50(8.0)	2/50(4.0)	
Adjusted rates(U) Terminal rates(C)	0.0 0/31(0.0)	3. 57 1/28(3. 6)	9, 30 2/28 (7, 1)	5.71	
Statistical analysis					
sto test Standard method(d)	P =				
Prevalence method(d)	P = 0.1228				
Combined analysis(d)	P =				
Cochran-Arwitage test(e)	P = 0.2968				
Fisher Exact test(e)		P = 0.5000	P = 0.0587	P = 0.2475	

⁽a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.

Prevalence method : Incidental tumor test Standard method : Death analysis

BAIS4 17/50 (34. 0) 10. 00 3/30 (10. 0) 7/50 (14. 0) 13. 33 4/30 (13. 3) 3200 ppm P = 0.3329P = 0.154012/50(24. 0) 7. 14 2/28(7. 1) 7/50(14.0) 0.0 0/28(0.0) 1280 ppm P = 0.4100P = 0.1540NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS 9/50(18. 0) 14. 29 4/28(14. 3) 16/50 (32. 0) 14. 29 4/28 (14. 3) 512 ppm P = 0.1710P = 0.2522SITE : ALL SITE TUMOR : histiocytic sarcoma SITE : ALL SITE TUMOR : malignant lymphoma 14/50 (28.0) 20.59 7/34 (20.6) 12/50 (24. 0) 14. 71 5/34 (14. 7) P = 0.0076** P = 0.9033 P = 0.0837 P = 0.2091 Control P = 0.9462 P = 0.5803 P = 0.9286 P = 0.0662 STUDY No. : 0580
ANIMAL : MOUSE BGD2F1/CrljfCrj:BDF1]
SEX : FEMALE Standard method(d)
Prevalence method(d)
Combined analysis(d)
Cochran-Armitage test(e)
Fisher Exact test(e) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e) Standard method(d) Prevalence method(d) Tumor rate
Overall rates(a)
Adjusted rates(b)
Terminal rates(c)
Statistical analysis Group Name Statistical analysis Terminal rates(c) Overall rates(a) Adjusted rates(b) Peto test Peto test Tumor rate (IIPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

TOWN TO THE PARTY OF THE PARTY					PAGE: 4
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
0	מהוא אווי אוויא			THE REPORT OF THE PARTY OF THE	***************************************
, L	TUMOR : hemangiosarcoma				
	ı				
Overall rates(a)	5/50(10.0)	3/50(6.0)	1/50(2.0)	0/20(0 0)	
Adjusted rates(b)	14.71	6. 45	2.44	0.0	
Terminal rates(c)	5/34(14.7)	1/28(3.6)	0/28(0.0)	0/30(0.0)	
Statistical analysis Peto test					
Standard method(d)	P = 0.5483				
Prevalence method(d)	P = 0.9934				
Combined analysis(d)	P = 0.9945				
Cochran-Armitage test(e)	P = 0.0182*				
Fisher Exact test(e)		P = 0.3575	P = 0.1022	P = 0.0281*	

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend tust.
Standard method : Death analysis
Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

TABLE Q 1

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $B6D2F1/Crlj \ MALE \ MICE$

TABLE Q1 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE

Organs	No. of animals	No. of animals bearing tumor	Incidence	Min Max.
Tumors	examined		(%)	(%)
Stomach Squamous cell papilloma	1946	5	0.3	0 - 2

39 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.: 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206,

 $0211,\,0225,\,0243,\,0268,\,0270,\,0279,\,0285,\,0297,\,0319,\,0329,\,0343,\,0348,\,0366,\,0372,\,0343,\,0348,\,0366,\,0372,\,0366$

 $0402,\,0406,\,0418,\,0422,\,0438,\,0449,\,0458,\,0462,\,0498,\,0515,\,0561$

TABLE Q 2

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $B6D2F1/Crlj \; FEMALE \; MICE$

TABLE Q2 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj FEMALE MICE

Organs Tumors	No. of animals examined	No. of animals bearing tumor	Incidence (%)	Min Max. (%)
Stomach Squamous cell papilloma	1947	8	0.4	0-6 V
Lung Bronchiolar-alveolar carcinoma	1947	55	2.8	0 - 8 V
Pituitary gland Adenoma	1938	277	14.3	2 - 34 V
Uterus Histiocytic sarcoma	1947	401	20.6	10 - 32 🗸
All organ Histiocytic sarcoma	1947	456	23.4	12 - 36 🗸

39 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372,

 $0402,\,0406,\,0418,\,0422,\,0438,\,0449,\,0458,\,0462,\,0498,\,0515,\,0561$

TABLE R

CAUSE OF DEATH OF MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

STUDY NO. : 0580 ANIMAL : MOUSE BEDZI	: 0580 : MOUSE B6D2F1/Crl;[Crj:BDF1]			COUSE OF DEATH (SUMMARY) (0-105W)	
SEX : MALE				PA	PAGE: 1
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
Number of Dead and Moribund Animal	17	16	14	15	
no microscop confirm	0	0		2	Milydd commence consequence or consequence or
digestive sy les	0	1	0	0	
urinary retention	4	1	4	ຄ	
arteritis		0	0	0	
tooth lesion	0	0		0	
hydronephrosis	2	0	0		
peritonitis	0	0	1	0	
tumor dileukemia	0	4	0		
tumor d:subcutis	1	1		0	
tumor d:lung	0	0	2	0	
tumor d:lymph node	1	0	0	0	
tumor d:spleen	0	2	0	-	
tumor d:liver	80	5	က	2	
tumor d:epididymis	0	0		0	
tumor diperiph nerv	0	1	0		
tumor d:Harder gl	0	1	0	0	
(B10120)					BAIS4

SEX : FEMALE SEX	. 0580 : MOUSE B6D2F1/Cr1,[Cr.j:BDF1] : FEMALE		J (COUSE OF DEATH (SUMMARY) (0-105W)	3E: 2
Group Name	Control	512 ppm	1280 ppm	3200 ppm	
Number of Dead and Moribund Animal	16	22	22	20	
no microscop confirm	0	0		0	
cardiovascular les	0	0	0	T-1	
renal lesion	0	0	-	0	
thrombosis	0	0	0	_	
tooth lesion	0	_	0	0	
hydronephrosis	0	0	П	0	
tumor d:leukemia	2	12	7	n	
tumor d:lung		0	0	0	
tumor displeen	_	0	0	N	
tumor d:liver	0		0	W	
tumor d:pituitary	2	1	1	0	
tumor d:ovary	0	1	0		
tumor diuterus	S	D.	11	10	
tumor d:bone	0	1	0	0	
(BI0120)				BAYS	BATS4
					× 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FIGURES

FIGURE 1 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR FEED FIGURE 2 STUDY OF 2-AMINO-4-CHLOROPHENOL BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR FEED FIGURE 3 STUDY OF 2-AMINO-4-CHLOROPHENOL BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR FEED FIGURE 4 STUDY OF 2-AMINO-4-CHLOROPHENOL FIGURE 5 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE FIGURE 6 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

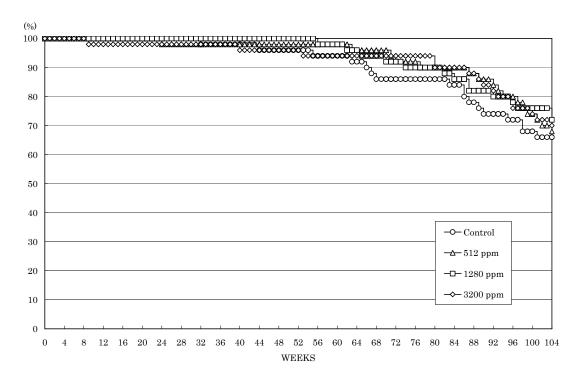


FIGURE 1 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

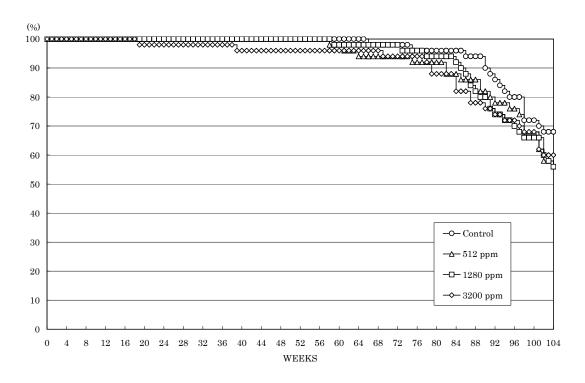


FIGURE 2 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

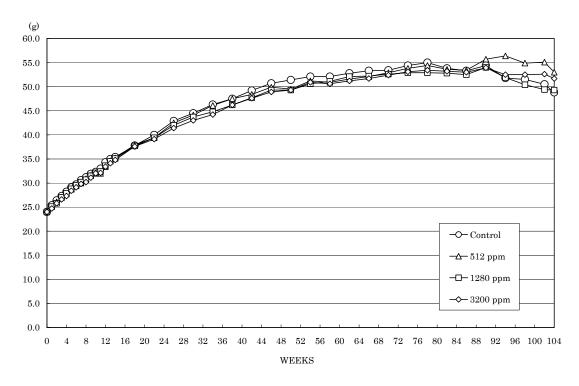


FIGURE 3 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

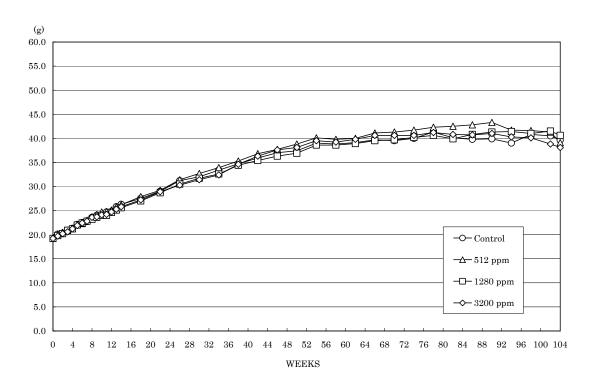


FIGURE 4 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

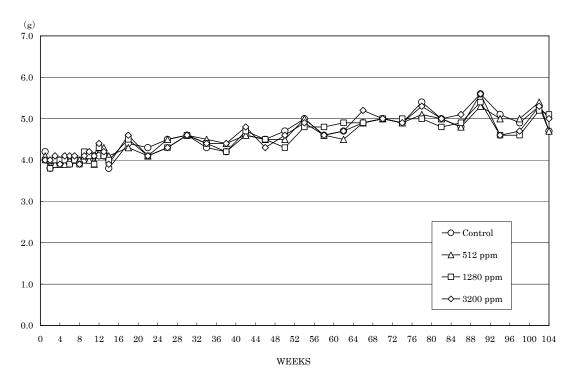


FIGURE 5 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

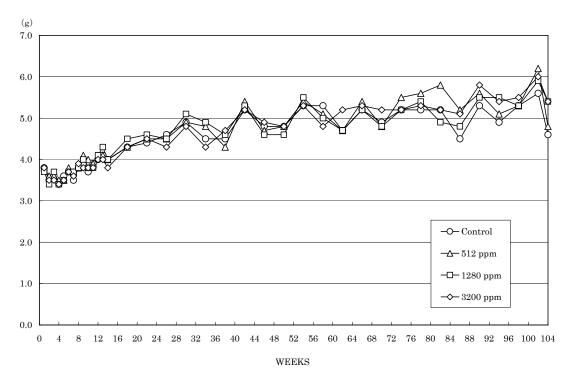


FIGURE 6 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

Photograph 1

Forestomach: Squamous cell papilloma

Mouse, Male, 1280 ppm, Animal No. 0580-1236 (H&E)