Summary of Inhalation Carcinogenicity Study

of 1-Bromo-3-Chloropropane

in F344 Rats

March 2005

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on March 25 2005.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Inhalation Carcinogenicity Study of 1-Bromo-3-Chloropropane in F344 Rats

Purpose, materials and methods

1-Bromo-3-chloropropane (BCP, CAS No. 109-70-6) is a colorless liquid with a boiling point of 143.3°C and a melting point of -58.9°C. It is poorly soluble in water and soluble in methanol and diethyl ether.

The carcinogenicity and chronic toxicity of BCP were examined by inhalation exposure of groups of 50 F344/DuCrj (Fischer) rats of both sexes to BCP vapor at a target concentration of 0 (clean air), 25, 100 or 400 ppm (v/v) for 6 hours/day, 5 days/week for 2 years (104 weeks). The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. BCP was analyzed for purity and stability by both infrared spectrometry and gas chromatography before and after its use. Stainless-steel inhalation exposure chambers (volume: 7600 L) were used throughout the 2year exposure period. BCP vapor-air mixture was generated by bubbling clean air through the BCP liquid, and supplied to the inhalation exposure chambers. Air concentrations of BCP vapor in the inhalation exposure chambers were monitored at 15 min intervals by gas chromatography. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year exposure period underwent complete necropsy. Urinalysis was performed near the end of the exposure period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 μ m thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of the dose-response relation for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present study was conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

As neoplastic lesions, the incidences of hepatocellular adenomas and carcinomas, and hemangiosarcomas in the liver, bronchiolar-alveolar adenomas in the lung, trichoepitheliomas in the skin/appendage were increased in the BCP-exposed groups of both sexes. In the large intestine, both adenomas and adenocarcinoma in the BCP-exposed males and adenomas in the BCP-exposed females were increased. As pre-neoplastic lesions in the liver, the incidences of clear cell foci and acidophilic cell foci in both BCP-exposed males and females, and basophilic cell foci in the BCP-exposed males and females.

As non-neoplastic lesions the incidences in the nasal cavity (inflammation and squamous cell metaplasia in the respiratory epithelium, respiratory metaplasia in the nasal gland, and atrophy, necrosis and respiratory metaplasia in the olfactory epithelium) and the incidence in the kidney (chronic progressive nephropathy (chronic nephropathy)) were increased.

Conclusions

In rats, there was clear evidence of carcinogenic activity of BCP in males, based on the increased incidences of hepatocellular carcinomas and adenomas. The increased incidences of bronchiolar-alveolar adenomas in the lung, adenomas and adenocarcinoma in the large intestine, and trichoepitheliomas in the skin/appendage and hemangiosarcomas in the liver were noted. There was clear evidence of carcinogenic activity of BCP in females, based on the increased incidences of hepatocellular carcinomas and adenomas, and hemangiosarcomas in the liver. The incidences of bronchiolar-alveolar adenomas in the lung, adenomas in the lung, adenomas in the large intestine, and trichoepitheliomas in the skin/appendage were increased.

TABLES

TABLE	1	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
		MALE RATS IN THE 2-YEAR INHALATION STUDY OF
		1-BROMO-3-CHLOROPROPANE
TABLE	2	SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
		FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF
		1-BROMO-3-CHLOROPROPANE
TABLE	9	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL
IADLE	Э	OBSERVATION OF MALE RATS IN THE 2-YEAR INHALATION STUDY
		OF 1-BROMO-3-CHLOROPROPANE
TABLE	4	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL
	_	OBSERVATION OF FEMALE RATS IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	5	FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR
		INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	6	FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR
		INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	7	HEMATOLOGY OF MALE RATS IN THE 2-YEAR INHALATION
	•	STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	8	HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	9	BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	10	BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR INHALATION
		STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	11	URINALYSIS OF MALE RATS IN THE 2-YEAR INHALATION
	~ ~	STUDY OF 1-BROMO-3-CHLOROPROPANE
TABLE	12	URINALYSIS OF FEMALE RATS IN THE 2-YEAR INHALATION
-		STUDY OF 1-BROMO-3-CHLOROPROPANE

)

)

TABLES (CONTINUED)

- TABLE 13ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR INHALATIONSTUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 14ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR INHALATIONSTUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 15INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF MALE RATSIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 16INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF FEMALE RATSIN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 17INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF MALERATS IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE
- TABLE 18INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF FEMALERATS IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE
- TABLE 19CAUSE OF DEATH OF MALE AND FEMALE RATS IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- TABLE 20HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS
IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj MALE RATSTABLE 21HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS
 - IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

	Cor	ntrol			ppm			1	00 pp1	n		40	0 ppr	n
	Av.Wt.	No.of	Av.W			No.of	Av	.Wt.	% of	No.of	Av	Wt.	% of	No.o
Weeks		Surviv.		C	ont.	Surviv.			cont.	Surviv.			cont.	Survi
on Study	<50)>		<5	60>				<50>			•	<50>	
0	112 (50)	50/50	112 (§	50) 1	00	50/50	112	(50)) 100	50/50	112	(50)	100	50/50
1	142 (50)	50/50	141 (8	50)	99	50/50	140	(50)) 99	50/50	131	(50)	92	50/50
2	176 (50)	50/50	176 (§	50) 1	00	50/50	175	(50)) 99	50/50	158	(50)	9 0	50/50
3	202 (50)	50/50	204 (§	50) 1	01	50/50	203	(50)) 100	50/50	179	(50)	89	50/5
4	227 (50)	50/50	228 (5	50) 1	00	50/50	227	(50)	100	50/50	195	(50)	86	50/5
5	245 (50)	50/50	246 (5	50) 1	00	50/50	246	(50)	100	50/50	209	(50)	85	50/5
6	260 (50)	50/50	262 (§	50) 1(01	50/50	262	(50)	101	50/50	221	(50)	85	50/5
7	273 (50)	50/50	275 (§	50) 1	01	50/50	276	(50)	101	50/50	230	(50)	84	50/50
8	284 (50)	50/50	286 (5	50) 1(01	50/50	288	(50)	101	50/50	239	(50)	84	50/50
9	294 (50)	50/50	296 (5	50) 1(01	50/50	299	(50)	102	50/50	251	(50)	85	50/50
10	301 (50)	50/50	306 (5	50) 10	02	50/50	307	(50)	102	50/50	257	(50)	85	50/50
11	309 (50)	50/50	312 (5	60) 1(01	50/50	314	(50)	102	50/50	260	(50)	84	50/50
12	315 (50)	50/50	318 (5	60) 1(01	50/50	322	(50)	102	50/50	266	(50)	84	50/50
13	322 (50)	50/50	325 (5	60) 1(01	50/50	328	(50)	102	50/50	272	(50)	84	50/50
14	327 (50)	50/50	331 (5	60) 1(01	50/50	335	(50)	102	50/50	277	(50)	85	50/50
18	344(50)	50/50	348 (5	60) 1(01	50/50	352	(50)	102	50/50	292	(50)	85	50/50
22	359 (50)	50/50	365(5	60) 10	02	50/50	369	(50)	103	50/50	305		85	50/50
26	372 (50)	50/50	376 (5	0) 10	01	50/50	381		102	50/50	320	(50)	86	50/50
30	377 (50)	50/50	382(4	.9) 1(01	49/50	39 0	(49)	103	49/50	327	(50)	87	50/50
34	389 (50)	50/50	395 (4	9) 10	02	49/50	401	(49)	103	49/5 0	342		88	49/50
38	397 (50)	50/50	401 (4	9) 10	01	49/5 0		(49)		49/50	351		88	49/50
42	403 (50)	50/50	407 (4	9) 1(01	49/50	415	(48)	103	48/50	349		87	49/50
46	412 (50)	50/50	418 (4	9) 10	01	49/5 0	422	(48)	102	48/50	339		82	48/50
50	415 (50)	50/50	421 (4	9) 10	01	49/5 0		(48)		48/50	345		83	48/50
54	414 (50)	50/50	423 (4	9) 10	02	49/5 0		(48)		48/50	347		84	48/50
58	421 (48)	48/50	427 (4	9) 10	01	49/5 0		(48)		48/50	351		83	48/50
62	425 (48)	48/50		9) 10		49/5 0		(48)		48/50	355		84	48/50
66	426 (47)	47/50	432 (4			48/50		(48)		48/50	351		82	47/50
70	428 (47)	47/50	434 (4			48/50		(48)		48/50	352		82	47/50
74	424 (46)	46/50	432 (4			47/50		(48)		48/50	349		82	46/50
78	427 (46)	46/50	435 (4			45/50		(48)		48/50	347		81	45/50
82	424 (45)	45/50	436(4			45/50		(48)		48/50	339		80	45/50
86	427 (43)	43/50	428 (4			44/50		(46)		46/50	338		79	43/50
9 0	429 (43)	43/50	430 (4			40/50		(46)		46/50	334		78	42/50
94	425 (43)	43/50	424 (4			40/50	431			46/50	329		77	41/50
98	420 (42)	42/50	416 (3			39/50	414			44/50	324		$\frac{1}{77}$	38/50
102	414 (40)	40/50	412 (3			35/50	420			39/50	313		76	35/50
104	408 (40)	40/50	405 (3			35/50	412			38/50	305		75	30/50
	f effective													

)

TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

	Control			25 ppm			_	l00 pp		$400 \mathrm{~ppm}$		
-	Av.	Wt.	No.of	Av.Wt.		No.of	Av.Wt	. % 0	f No.of	Av.Wt.	% of	No.o
Weeks			Surviv.			Surviv.			t. Surviv.		cont	. Survi
on Study		<50	>		<50>			<50>	•	•	<50>	
0	91	(50)	50/50	91 (50)	100	50/50	91 (50)) 100	50/50	91 (50)	100	50/50
1	106	(50)	50/50	107(50)	101	50/50	107(50))) 101	50/50	103 (50)	97	50/50
2	121	(50)	50/50	121(50)	100	50/50	123(50)) 102	50/50	115(50)	95	50/50
3	133		50/50	132(50)		50/50	133(50)) 100	50/50	124(50)	9 3	50/50
4	142		50/50	143(50)		50/50	145(50)) 102	50/50	133 (50)	94	50/5
5	148		50/50	150 (50)	101	50/50	153(50)) 103	50/50	140(50)	95	50/50
6	155	(50)	50/50	157 (50)	101	50/50	159(50) 103	50/50	146(50)	94	50/50
7	160		50/50	162(50)	101	50/50	165(50)) 103	50/50	151(50)	94	50/50
8	164	(50)	50/50	166 (50)	101	50/50	169(50) 103	50/50	155(50)	95	50/50
9	169	(50)	50/50	170 (50)	101	50/50	173(50) 102	50/50	158(50)	93	50/50
10	173	(50)	50/50	175(50)	101	50/50	177 (50) 102	50/50	163(50)	94	50/50
11	176	(50)	50/50	179(50)		50/50	182(50) 103	50/50	166(50)	94	50/50
12	178	(50)	50/50	180(50)		50/50	185(50) 104	50/50	168(50)	94	50/50
13	181	(50)	50/50	183 (50)	101	50/50	187(50) 103	50/50	171(50)	94	50/50
14	183	(50)	50/50	185(50)	101	50/50	190(50) 104	50/50	173(50)	95	50/50
18	189	(50)	50/50	191 (50)	101	50/50	196 (50) 104	50/50	180 (50)	95	50/50
22	197	(50)	50/50	199 (50)	101	50/50	204(50)) 104	50/50	187 (50)	95	50/50
26	203	(50)	50/50	205(50)	101	50/50	208 (50) 102	50/50	194 (50)	96	50/50
30	206	(50)	50/50	209 (50)	101	50/50	214(49)) 104	49/50	199(50)	97	50/50
34	212	(50)	50/50	215(50)	101	50/50	221 (49)) 104	49/5 0	206 (50)	97	50/50
38	217	(50)	50/50	218(50)	100	50/50	225(49)) 104	49/5 0	213 (50)	98	50/50
42	220	(50)	50/50	222 (50)	101	50/50	231(49)) 105	49/5 0	213 (50)	97	50/50
46	227	(50)	50/50	228 (50)	100	50/50	238 (49)) 105	49 /50	209 (50)	92	50/50
50	227	(50)	50/50	231 (50)	102	50/50	239 (49)) 105	49/5 0	210 (50)	93	50/50
54	230	(50)	50/50	236 (50)	103	50/50	245(49)) 107	49 /50	215(50)	93	50/50
58	234	(50)	50/50	243 (49)	104	49/5 0	251(49)) 107	49/50	220 (49)	94	49/50
62	236	(50)	50/50	244(49)	103	49/5 0	253 (48)) 107	48/50	220 (49)	93	49/50
66	242	(50)	50/50	250 (49)	103	49/5 0	261(48)) 108	48/50	225(49)	93	49/50
70	247	(48)	48/50	256 (49)	104	49/50	265(48)) 107	48/50	227 (49)	92	49/5 0
74	252	(47)	47/50	259 (49)	103	49/50	270 (48)) 107	48/50	229 (48)	91	48/50
78	255	(47)	47/50	266(49)	104	49/50	275 (48)	108	48/50	230(47)	9 0	47/50
82	259	(44)	44/50	268(49)	103	49/50	279 (48)	108	48/50	229 (45)	88	45/50
86	259	(43)	43/50	270 (48)	104	48/50	281(47)	108	47/50	229 (43)	88	43/50
9 0	269	(42)	42/50	278(47)	103	47/50	290 (46)	108	46/50	230 (42)	86	42/50
94	269	(42)	42/50	283 (45)	105	45/50	295 (45)		45/50	231 (38)	86	38/50
98	273	(40)	40/50	284 (45)		45/50	293 (45)		45/50	228 (33)	84	33/50
102	274	(38)	38/50	282 (45)		45/50	289 (43)		43/50	218 (28)	80	28/50
104	272	(38)	38/50	280 (45)		45/50	295 (39)		39/50	218 (26)	80	26/50

)

TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Time of mass occur	rrence (week)	0~13	$14 \sim 26$	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	66~78	79~91	92~104	0~104
External mass										
	Control	0/50	0/50	0/50	3/50	3/50	5/47	8/46	11/43	11/50 (0/10)
	$25~{ m ppm}$	0/50	0/50	2/50	4/49	6/49	9/48	8/45	12/40	17/50 (7/15)
	100 ppm	0/50	0/50	0/50	1/48	2/48	6/48	9/48	11/46	12/50 (1/12)
	400 ppm	0/50	0/50	0/50	1/49	2/48	3/47	4/45	7/42	7/50 (3/20)
Internal mass										
	Control	0/50	0/50	0/50	0/50	0/50	0/47	1/46	2/43	3/50 (1/10)
	$25~{ m ppm}$	0/50	0/50	1/50	0/49	0/49	1/48	0/45	0/40	2/50 (2/15)
	100 ppm	0/50	0/50	0/50	0/48	0/48	0/48	0/48	0/46	0/50 (0/12)
	400 ppm	0/50	0/50	0/50	0/49	0/48	0/47	0/45	0/42	0/50 (0/20)

TABLE 3INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF
MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

) .

)

TABLE 4INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION OF
FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Time of mass occurrence (week)	0~13	$14 \sim 26$	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	$66{\sim}78$	79~91	92~104	0~104
External mass									
Control	0/50	0/50	0/50	0/50	0/50	0/50	1/47	10/42	10/50 (1/12)
$25~\mathrm{ppm}$	0/50	0/50	0/50	0/50	0/50	1/49	3/49	9/46	9/50 (0/5)
$100 \mathrm{ppm}$	0/50	1/50	0/49	1/49	2/49	2/48	6/48	10/45	12/50 (3/11)
400 ppm	0/50	0/50	0/50	0/50	2/50	3/49	10/46	11/40	14/50 (7/24)
Internal mass									
Control	0/50	0/50	0/50	0/50	0/50	1/50	1/47	1/42	2/50 (2/12)
25 ppm	0/50	0/50	0/50	0/50	0/50	0/49	0/49	0/46	0/50 (0/5)
100 ppm	0/50	0/50	0/49	0/49	0/49	0/48	1/48	1/45	2/50 (1/11)
400 ppm	0/50	0/50	0/50	0/50	0/50	0/49	3/46	4/40	5/50 (8/24)

No. of animals with mass / No. of surviving animals at the first week in each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

	Control	$25~\mathrm{ppm}$	100 ppm	400 ppm
	Av.FC.	Av.FC. % of	Av.FC. % of	Av.FC. % of
Weeks		cont.	cont.	cont.
on Study	<50>	<50>	<50>	<50>
1	14.5 (50)	14.3 (50) 99	14.1 (50) 97	12.6 (50) 87
2	15.9(50)	16.1 (50) 101	16.2 (50) 102	15.0 (50) 94
3	17.3 (50)	17.5 (50) 101	18.1 (50) 105	16.7 (50) 97
4	17.5 (50)	17.6 (50) 101	18.2 (50) 104	17.2 (50) 98
5	17.5 (50)	17.5 (50) 100	17.9 (50) 102	17.3 (50) 99
6	17.1 (50)	17.4 (50) 102	18.1 (50) 106	17.6 (50) 103
7	17.2 (50)	17.3 (50) 101	17.8 (50) 103	17.4 (50) 101
8	16.6 (50)	16.8 (50) 101	17.5 (50) 105	17.5 (50) 105
9	17.2 (50)	17.4 (50) 101	17.7 (50) 103	17.6 (50) 102
10	16.9 (50)	17.3 (50) 102	17.7 (50) 105	17.4 (50) 103
11	16.8 (50)	17.1 (50) 102	17.4 (50) 104	17.4 (50) 104
12	16.9 (50)	17.0 (50) 101	17.4 (50) 103	17.7 (50) 105
13	16.8 (50)	16.9 (50) 101	17.3 (50) 103	17.8 (50) 106
14	16.8 (50)	16.9 (50) 101	17.4 (50) 104	17.9 (50) 107
18	16.4 (50)	16.6 (50) 101	16.9 (50) 103	17.5 (50) 107
22	17.0 (50)	17.0 (50) 100	17.3 (50) 102	18.0 (50) 106
26	16.8 (50)	16.7 (50) 99	16.8 (50) 100	17.6 (50) 105
30	16.2 (50)	16.2 (49) 100	16.7 (49) 103	17.3 (50) 107
34	17.1 (50)	17.5 (49) 102	17.4 (49) 102	17.9 (49) 105
38	16.6 (50)	16.3 (49) 98	16.7 (49) 101	17.1 (49) 103
42	16.6 (50)	16.6 (49) 100	17.0 (48) 102	16.2 (49) 98
46	17.2 (50)	17.2 (49) 100	17.1 (48) 99	17.8 (48) 103
50	17.1 (50)	17.2 (49) 101	17.2 (48) 101	17.7 (48) 104
54	16.5 (50)	17.0 (49) 103	17.2 (48) 104	17.6 (48) 107
58	17.1 (48)	16.9 (49) 99	17.2 (48) 101	17.4 (48) 102
62	17.5 (48)	17.1 (49) 98	17.2 (48) 98	17.0 (48) 97
66	17.4 (47)	17.4 (48) 100	17.4 (48) 100	16.9 (47) 97
70	17.0(47)	17.0 (48) 100	17.3 (48) 102	17.2 (47) 101
74	17.2 (46)	17.0 (47) 99	17.2 (48) 100	17.0 (46) 99
78	17.6 (46)	17.4 (45) 99	17.5 (48) 99	17.2 (45) 98
82	16.8 (45)	17.3 (45) 103	17.5 (48) 104	16.9 (44) 101
86	17.2 (43)	16.9 (44) 98	17.1 (46) 99	16.6 (43) 97
9 0	17.5 (43)	17.1 (40) 98	17.4 (46) 99	16.7 (42) 95
94	16.8(43)	16.7 (40) 99	17.0 (46) 101	16.5 (41) 98
98	17.2 (42)	16.8 (39) 98	16.1 (44) 94	17.2 (38) 100
102	17.6 (40)	16.8 (35) 95	17.3 (39) 98	16.8 (34) 95
104	17.2 (40)	16.3 (35) 95	17.0 (38) 99	16.7 (30) 97

TABLE 5FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

< > : No.of effective animals, () : No.of measured animals

Av.FC. : Averaged food consumption (Unit:g)

)

	Control	$25~\mathrm{ppm}$	100 ppm	400 ppm
	Av.FC.	Av.FC. % of	Av.FC. % of	Av.FC. % of
Weeks		cont.	cont.	cont.
on Study	<50>	<50>	<50>	<50>
1	10.8 (50)	10.7 (50) 99	10.9 (50) 101	9.8 (50) 91
2	11.0 (50)	11.4 (50) 104	11.9 (50) 108	11.2 (50) 102
3	11.4 (50)	11.6 (50) 102	12.3 (50) 108	11.5 (50) 101
4	11.5 (50)	11.7 (50) 102	12.4 (50) 108	11.9 (49) 103
5	11.3 (50)	11.6 (50) 103	12.7 (50) 112	12.2 (50) 108
6	11.2 (50)	11.5 (50) 103	12.1 (50) 108	12.1 (50) 108
7	11.1 (50)	11.4 (50) 103	11.9 (50) 107	12.2 (50) 110
8	10.8 (50)	10.8 (50) 100	11.4 (50) 106	12.2 (50) 113
9	11.2 (50)	11.2 (50) 100	11.4 (50) 102	12.0 (50) 107
10	11.0 (50)	11.0 (50) 100	11.4 (50) 104	12.0 (50) 109
11	11.0 (50)	11.5 (50) 105	12.0 (50) 109	12.4 (50) 113
12	11.3 (50)	11.3 (50) 100	12.1 (50) 107	12.6 (50) 112
13	11.1 (50)	11.3 (50) 102	11.9 (50) 107	12.7 (50) 114
14	11.3 (50)	11.5 (50) 102	12.2 (50) 108	12.8 (50) 113
18	10.8 (50)	11.2 (50) 104	11.4 (50) 106	12.6 (50) 117
22	11.3 (50)	11.6 (50) 103	11.7 (50) 104	12.6 (50) 112
26	11.0 (50)	11.0 (50) 100	11.1 (50) 101	12.3 (50) 112
30	10.9 (50)	10.9 (50) 100	11.4 (49) 105	12.4 (50) 114
34	10.9 (50)	11.5 (50) 106	12.0 (49) 110	12.6 (50) 116
38	11.3 (50)	11.3 (50) 100	11.8 (49) 104	12.3 (50) 109
42	11.2(50)	11.2 (50) 100	12.2 (49) 109	11.7 (50) 104
46	11.7 (50)	11.5 (50) 98	12.0 (49) 103	12.4 (50) 106
50	10.9 (50)	11.4 (50) 105	11.7 (49) 107	12.5 (50) 115
54	11.6 (50)	11.9 (50) 103	12.6 (49) 109	13.0 (50) 112
58	11.5 (50)	11.7 (49) 102	12.2 (49) 106	12.7 (49) 110
62	11.6 (50)	11.5 (49) 99	11.9 (48) 103	12.1 (49) 104
66	12.0 (50)	12.0 (49) 100	12.7 (48) 106	12.9 (49) 108
70	12.0 (48)	12.0 (49) 100	12.6 (48) 105	12.6 (49) 105
74	12.1 (47)	12.0 (49) 99	12.5 (48) 103	12.4 (48) 102
78	12.3 (47)	12.6 (49) 102	13.0 (48) 106	12.7 (47) 103
82	12.2 (44)	12.2 (49) 100	12.9 (48) 106	12.8 (45) 105
86	12.0 (43)	12.4 (48) 103	12.8 (47) 107	13.1 (42) 109
90	12.8(42)	12.5 (47) 98	13.5 (46) 105	13.1 (42) 102
94	12.1 (42)	12.7 (45) 105	13.2 (45) 109	12.8 (38) 102
98	12.6 (40)	13.0 (45) 103	13.2 (45) 105	13.8 (33) 110
102	12.4 (38)	12.6 (45) 102	12.8 (42) 103	13.2 (28) 106
104	12.2 (38)	12.7 (45) 104	12.9 (39) 106	13.3 (26) 100

TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEARINHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

< >: No.of effective animals, (): No.of measured animals

Av.FC. : Averaged food consumption (Unit:g)

)

TABLE 7HEMATOLOGY OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

40			
40	35	38	29
± 1.2	16.3 ± 1.1	16.5 ± 0.9	15.8 ± 0.9 *
± 241	1004 ± 326	1117 ± 241	** 1045 ± 204
	± 1.2 ± 241		± 241 1004 ± 326 1117 ± 241

TABLE 8HEMATOLOGY OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100 ppm	400 ppm
No. of examined animals	36	45	37	26
MCV (fL)	53.9 ± 3.3	53.1 ± 3.0	54.9 ± 8.7	52.1 ± 4.2 **
MCH (pg)	18.2 ± 0.8	17.8 ± 1.0	18.3 ± 1.9	16.9 ± 1.3 **
MCHC (g/dL)	33.9 ± 1.9	33.5 ± 2.0	33.6 ± 1.7	32.4 ± 1.1 **
PLATELET (10 ³ / μ L)	658 ± 92	716 ± 208	721 ± 168	$1041 \pm 284 **$
WBC (10 ³ / µ L)	12.46 ± 57.20	2.98 ± 1.48	3.21 ± 3.38	$11.62 \pm 20.13 **$
Mean ± S.D.				· · · · · · · · · · · · · · · · · · ·

Significant difference: *:p<0.05 **:p<0.01 Test of Dunnett

)

Group Name	Control	25 ррш	100 ppm	400 ppm
No. of examined animals	40	35	38	29
ALBUMIN (g/dL)	$2.9~\pm~0.4$	2.9 ± 0.2	2.8 ± 0.2	2.7 ± 0.2 **
A/G RATIO	0.8 ± 0.1	0.8 ± 0.1	0.7 ± 0.1 **	0.7 ± 0.1 *
T-CHOLESTEROL (mg/dL)	$200~\pm~78$	189 ± 61	241 ± 65 *	$249 \pm 56 **$
TRIGLYCERIDE (mg/dL)	$144 \ \pm \ 150$	108 ± 62	$190 \pm 132 *$	$205 \pm 130 $ **
PHOSPHOLIPID (mg/dL)	$284~\pm~108$	$271~\pm~73$	333 ± 81 **	$352 \pm 66 **$
GPT (IU/L)	39 ± 15	35 ± 10	34 ± 20 *	58 ± 54
ALP (IU/L)	$214~\pm~93$	194 ± 43	176 ± 82 **	$175 \pm 66 **$
G-GTP (IU/L)	6 ± 4	5 ± 3	7 ± 4	11 ± 8 *
CPK (IU/L)	$109~\pm~86$	92 ± 11	93 ± 18	$99 \pm 55 **$
UREA NITROGEN (mg/dL)	24.2 ± 12.8	21.0 ± 4.4	$26.8 \pm 12.2 *$	38.8 ± 70.5 **
POTASSIUM (mEq/L)	3.8 ± 0.4	3.5 ± 0.3 *	3.6 ± 0.3	3.8 ± 0.7
CHLORIDE (mEq/L)	106 ± 2	106 ± 1	107 ± 2	111 ± 4 **
CALCIUM (mg/dL)	10.4 ± 0.5	10.4 ± 0.4	10.8 ± 0.7 **	10.7 ± 0.8
Mean ± S.D.		*******		
Significant difference: *:p<0.05	**:p<0.01 Test of]	Dunnett		

TABLE 9BIOCHEMISTRY OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

TABLE 10BIOCHEMISTRY OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100 ppm	400 ppm
No. of examined animals	37	45	38	26
ALBUMIN (g/dL)	3.6 ± 0.3	3.6 ± 0.2	3.5 ± 0.3	3.1 ± 0.4 **
A/G RATIO	1.1 ± 0.1	1.1 ± 0.1	1.0 ± 0.1 *	0.9 ± 0.1 **
T-BILIRUBIN (mg/dL)	0.14 ± 0.07	0.14 ± 0.04	0.23 ± 0.60	0.20 ± 0.07 **
GLUCOSE (mg/dL)	155 ± 15	159 ± 18	163 ± 20	136 ± 22 **
T-CHOLESTEROL (mg/dL)	124 ± 25	$162 \pm 67 **$	$187 \pm 55 **$	288 ± 85 **
TRIGLYCERIDE (mg/dL)	53 ± 56	$114 \pm 146 **$	118 ± 104 **	$159 \pm 107 **$
PHOSPHOLIPID (mg/dL)	$227~\pm~46$	$287 \pm 110 $ **	321 ± 86 **	$437 \pm 116 **$
GOT (IU/L)	186 ± 194	138 ± 68	143 ± 191	$1015 \pm 1144 **$
GPT (IU/L)	75 ± 38	67 ± 35	63 ± 35	421 ± 622 **
LDH (IU/L)	361 ± 667	$243~\pm~104$	236 ± 110	$618 \pm 759 $ **
ALP (IU/L)	144 ± 61	$116 \pm 53 **$	$109 \pm 64 **$	$384 \pm 284 **$
G-GTP (IU/L)	2 ± 1	2 ± 1	2 ± 2	26 ± 27 **
UREA NITROGEN (mg/dL)	20.0 ± 13.7	18.1 ± 2.6	17.7 ± 2.8	22.2 ± 5.2 **
CREATININE (mg/dL)	0.5 ± 0.0	0.5 ± 0.1	0.5 ± 0.1	0.4 ± 0.1 **
CHLORIDE (mEq/L)	104 ± 2	104 ± 3	106 ± 2	109 ± 5 **
CALCIUM (mg/dL)	10.3 ± 0.4	10.4 ± 0.3	10.5 ± 0.4	10.6 ± 0.5 **

Significant difference: *:p<0.05 **:p<0.01 Test of Dunnett

Group Name		Control	25 ppm	100 ppm	400 ppm
No. of examine	d animals	40	35	38	31
	Grade				
pН	5.0	0	0	0	0
	6.0	0	0	0	0
	6.5	4	2	3	8
	7.0	7	3	5	11
	7.5	17	18	16	11
	8.0	12	12	14	1
	8.5	0	0	0	0
	Chi square tes	t			**
Protein		0	0	0	0
	±	0	0	0	0
	+	0	0	0	0
	2+	0	1	0	0
	3+	12	15	4	5
	4+	28	19	34	26
	Chi square test			*	

TABLE 11URINALYSIS OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF1-BROMO-3-CHLOROPROPANE

TABLE 12URINALYSIS OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

)

Group Name		Control	25 ppm	100 ppm	400 ppm	
No. of examine	d animals	38	45	41	27	
	Grade					
pH	5.0	0	0	0	0	
	6.0	0	0	2	0	
	6.5	2	4	1	6	
	7.0	7	7	5	11	
	7.5	8	11	10	5	
	8.0	17	19	19	4	
	8.5	4	4	4	1	
	Chi square test	;			*	
Protein		1	0	0	0	
	±	2	1	0	0	
	+	7	13	1	0	
	2+	13	10	6	1	
	3+	9	10	18	8	
	4+	6	11	16	18	
	Chi square test			**	**	

Group Name	Control	$25~\mathrm{ppm}$	100 ppm	400 ppm
No. of examined animals	40	35	38	30
Body weight (g)	381 ± 30	378 ± 31	384 ± 45	279 ± 32 **
Adrenals (g)	0.103 ± 0.154	0.106 ± 0.188	0.163 ± 0.528	0.065 ± 0.010 **
Adrenals (%)	0.030 ± 0.056	0.029 ± 0.051	0.041 ± 0.129	0.024 ± 0.006 **
Testes (g)	3.787 ± 1.532	3.685 ± 1.441	3.437 ± 1.460	4.229 ± 1.223
Testes (%)	0.992 ± 0.395	0.979 ± 0.401	0.895 ± 0.367	1.527 ± 0.416 **
Heart (g)	1.251 ± 0.114	1.227 ± 0.099	1.282 ± 0.103	$1.148 \pm 0.100 **$
Heart (%)	0.331 ± 0.040	0.327 ± 0.049	0.337 ± 0.033	0.416 ± 0.050 **
Lungs (g)	1.421 ± 0.102	1.405 ± 0.128	1.462 ± 0.272	1.375 ± 0.146 *
Lungs (%)	0.375 ± 0.037	0.373 ± 0.035	0.387 ± 0.101	0.498 ± 0.069 **
Kidneys (g)	2.772 ± 0.284	2.732 ± 0.235	2.991 ± 0.321	** 2.834 \pm 0.261
Kidneys (%)	0.731 ± 0.086	0.729 ± 0.107	0.789 ± 0.130	* 1.023 ± 0.100 **
Spleen (g)	1.271 ± 2.224	0.930 ± 0.230	0.989 ± 0.250	0.968 ± 0.625
Spleen (%)	0.332 ± 0.575	0.247 ± 0.066	0.262 ± 0.083	0.342 ± 0.207 **
Liver (g)	11.401 ± 2.455	11.149 ± 1.059	13.099 ± 1.687	** 13.581 ± 2.917 **
Liver (%)	2.993 ± 0.600	2.965 ± 0.361	3.442 ± 0.509	** 4.877 ± 1.039 **
Brain (g)	2.056 ± 0.058	2.060 ± 0.045	2.050 ± 0.052	1.958 ± 0.054 **
Brain (%)	0.543 ± 0.044	0.549 ± 0.050	0.540 ± 0.051	0.711 ± 0.092 **

)

TABLE 13ORGAN WEIGHTS OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100 ppm		400 ppm	
No. of examined animals	38	45	39		26	
Body weight (g)	$253~\pm~26$	260 ± 29	275 ± 24	**	199 ± 28	**
Adrenals (g)	0.076 ± 0.015	0.076 ± 0.021	0.073 ± 0.008		0.094 ± 0.090	
Adrenals (%)	0.030 ± 0.007	0.030 ± 0.014	0.027 ± 0.003		0.047 ± 0.040	**
Ovaries (g)	0.131 ± 0.027	0.199 ± 0.494	0.131 ± 0.026		0.104 ± 0.035	**
Ovaries (%)	0.052 ± 0.011	0.077 ± 0.189	0.048 ± 0.010		0.052 ± 0.016	
Heart (g)	0.890 ± 0.084	0.888 ± 0.099	0.936 ± 0.119		0.880 ± 0.081	
Heart (%)	0.355 ± 0.052	0.346 ± 0.065	0.342 ± 0.040		0.448 ± 0.060	**
Lungs (g)	1.034 ± 0.205	0.991 ± 0.072	1.059 ± 0.326		1.156 ± 0.387	*
Lungs (%)	0.415 ± 0.111	0.386 ± 0.058	0.390 ± 0.147		0.601 ± 0.281	**
Kidneys (g)	1.738 ± 0.174	1.776 ± 0.229	1.862 ± 0.204	*	2.071 ± 0.167	**
Kidneys (%)	0.694 ± 0.107	0.692 ± 0.149	0.682 ± 0.093		1.055 ± 0.151	**
Spleen (g)	0.798 ± 1.043	0.646 ± 0.608	0.869 ± 1.957		0.943 ± 1.020	
Spleen (%)	0.336 ± 0.506	0.263 ± 0.304	0.337 ± 0.839		0.481 ± 0.522	**
Liver (g)	6.543 ± 1.056	7.019 ± 0.902	7.937 ± 1.032	** 1	5.357 ± 4.930	**
Liver (%)	2.612 ± 0.541	2.714 ± 0.342	2.899 ± 0.378		7.969 ± 3.238	**
Brain (g)	1.866 ± 0.053	1.855 ± 0.054	1.848 ± 0.048		1.798 ± 0.049	**
Brain (%)	0.745 ± 0.079	0.722 ± 0.089	0.678 ± 0.064		0.918 ± 0.127	**

)

TABLE 14ORGAN WEIGHTS OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF
1-BROMO-3-CHLOROPROPANE

TABLE 15INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100ppm	400ppm	Peto	Cochran-	
Number of examined animals	50	50	50	50	test	Armitage	
						test	
Integumentary system/appandage					-		
skin/appendage	<50>	<50>	<50>	<50>			
trichoepithelioma	0(0%)	1 (2 %)	0(0%)	3 (6%)	Î	ſ	
Respiratory system							
lung	<50>	<50>	<50>	<50>			
bronchiolar-alveolar adenoma	2(4%)	1 (2 %)	1 (2%)	7(14 %)	11	↑ ↑	
bronchiolar-alveolar carcinoma	0(0%)	2(4%)	0(0%)	0(0%)			
Digestive system							
large intestine	<50>	<50>	<50>	<50>			
adenoma	0(0%)	0(0%)	0(0%)	3 (6%)	↑ ↑	↑ ↑	
adenocarcinoma	0(0%)	0(0%)	0(0%)	1 (2 %)			
liver	<50>	<50>	<50>	<50>			
hepatocellular adenoma	1(2%)	1 (2 %)	2(4%)	10 (20 %)**	î î	î	
hepatocellular carcinoma	0(0%)	0(0%)	1(2%)	6(12%)*	11	↑ ↑	
hemangiosarcoma	1(2%)	0(0%)	0(0%)	2 (4 %)			
Significant difference *:p<0.05	** : p<0.01			for neoplastic lesic			
¢(↓)∶p<0.05 (↓)∶p<0.05 Number of animals examined a :> ∶	$\uparrow \uparrow (\downarrow \downarrow) : p<0$.01 Pe	to or Cochran-A	rmitage test for ne	oplastic l	esion	

)

TABLE 16INCIDENCES OF SELECTED NEOPLASTIC LESIONS OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name	Control	25 ppm	100ppm	400ppm	Peto	Cochran
Number of examined animals	50	50	50	50	test	Armitage
						test
Integumentary system/appandage						
skin/appendage	<50>	<50>	<50>	<50>		
trichoepithelioma	0(0%)	0(0%)	1 (2 %)	2(4%)		
Respiratory system						
lung	<50>	<50>	<50>	<50>		
bronchiolar-alveolar adenoma	1 (2%)	0(0%)	1(2%)	5(10%)	↑ ↑	11
Hematopoietic system						
spleen	<50>	<50>	<50>	<50>		
mononuclear cell leukemia	5(10%)	3 (6 %)	5 (10 %)	13 (26 %)*	11	↑ ↑
Digestive system						
large intestine	<50>	<50>	<50>	<50>		
adenoma	0(0%)	0(0%)	0(0%)	2(4%)		
liver	<50>	<50>	<50>	<50>		
hepatocellular adenoma	1 (2 %)	0(0%)	2(4%)	32 (64 %)**	↑ ↑	↑ ↑
hepatocellular carcinoma	0(0%)	0(0%)	0(0%)	38 (76 %)**	↑ ↑	↑ ↑
hemangioma	0(0%)	0(0%)	0(0%)	1(2%)		
hemangiosarcoma	0(0%)	0(0%)	0(0%)	6(12%)*	↑ ↑	↑ ↑
Significant difference *:p<0.05	**:p<0.01			for neoplastic lesic		
¢(↓)∶p<0.05 Number of animals examined at > ∶	$\uparrow \uparrow (\downarrow \downarrow) : p < 0$.01 Pet	to or Cochran-Ai	rmitage test for ne	oplastic le	esion

)

TABLE 17INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name		Control				25 ppm				100	ppm		400ppm			
Number of examined animals		5	0			5	0			5	0			E	50	
Grade of non-neoplastic lesion	1	2	3	4	1	2	3	4		2	3	4		2	3	4
Respiratory system																
nasal cavity		<50	0>			<5)>			<5	0>			<5	60>	
inflammation:respiratory epithelium	0	0	0	0	6	2	0	0 *	5	2	0	0 *	13	13		0 **
squamous cell metaplasia:respiratory epithelium	0	0	0	0	2	0	0	0	1	0	0	0	16	7	0	0 **
hyperplasia with atypia:transitional epithelium	0	0	0	0	0	0	0	0	0	0	0	0	1	3	0	0
respiratory metaplasia gland	15	15	0	0	14	21	0	0	16	22	0	0	2	37	0	0 **
atrophy:olfactory epithelium	0	0	0	0	0	0	0	0	2	0	0	0	11	18	1	0 **
necrosis olfactory epithelium	0	0	0	0	0	0	0	0	1	0	0	0	5	3	0	0 *
respiratory metaplasia olfactory epitheliun	2	2	0	0	4	1	0	0	0	0	0	0	7	9	0	0 *
ang		<50	>			<50	>			<5()>			<5	0>	
bronchiolar-alveolar cell hyperplasia	0	0	0	0	1	0	0	0	2	0	0	0	3	0	0	0
Iematopoietic system																
pleen		<50	>			<50	>			<50)>			<50	0>	
deposit of hemosiderin	10	22	0	0	8	25	2	0	5	30	0	0	7	32	3	0 *
Digestive system																
ver		<50	>			<50	>			<50	>			<5()>	
clear cell focus	7	9	0	0	9	4	0	0	17	12	0	0 *	0	13	27	0 **
acidophilic cell focus	0	1	0	0	0	0	0	0	2	1	0	0	7	13	0	0 **
basophilic cell focus	2	1	0	0	0	1	0	0	2	5	0	0	1	8	0	0 *
rinary system																
idney		<50	>			<50	>			<50	>			<50	>	
chronic nephropathy	6	28	6	2	5	35	3	1	1	27	13	5	2		14	2

)

TABLE 18INCIDENCES OF SELECTED NON-NEOPLASTIC LESIONS OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Group Name		Control			25ppm			100ppm				400ppm				
Number of examined animals		5	0			5	0			50				50		
Grade of non-neoplastic lesion	1	2	3	4		2	3	4		2	3	4		2	3	4
Respiratory system						<u>.</u>										
nasal cavity		<5	0>			<5	0>			<{	50>			<5	0>	
inflammation:respiratory epithelium	0	0	0	0	3	0	0	0	4	0	0	0	12	1	0	0 *
squamous cell metaplasia:respiratory epithelium	0	0	0	0	0	1	0	0	2	0	0	0	16	9	0	0 *
hyperplasia with atypia:transitional epithelium	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0
respiratory metaplasia:gland	17	15	0	0	22	16	0	0	25	18	0	0 *	3	30	0	0 *
atrophy:olfactory epithelium	0	0	0	0	0	0	0	0	0	0	0	0	21	16	2	0 *
necrosis:olfactory epithelium	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0 *
Iematopoietic system																
one marrow		<5	0>			<5()>			<5	0>			<50)>	
increased hematopoiesis	2	0	0	0	3	0	0	0	2	0	0	0	11	0	0	0 *
pleen		<5)>			<50)>			<5	0>			<50)>	
deposit of hemosiderin	2	38	4	0	1	43	1	0	1	38	2	0	1	28	0	0 **
Digestive system																
iver		<50)> '			<50)>			<5	0>			<50)>	
clear cell focus	3	1	0	0	0	0	0	0	7	0	0	0	1	12	20	1 **
acidophilic cell focus	0	0	0	0	0	0	0	0	1	0	0	0	4	9	0	0 **
basophilic cell focus	15	8	0	0	9	5	0	0	11	9	0	0	1	5	0	0 **
bile duct hyperplasia	1	3	0	0	4	7	0	0	17	12	0	0 **	13	9	0	0 **
granulation	7	13	1	0	5	5	0	0	0	3	0	0 **	1	2	0	0 **
rinary system																
idney		<50	>			<50	>			<50)>			<50	>	
chronic nephropathy	20	2	0	0	11	12	1	0 *	19	17		1 **	9	31		0 **

TABLE 19CAUSE OF DEATH OF MALE AND FEMALE RATS IN THE 2-YEAR
INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

)

			Μ	ale		Female					
Group name		Control	25 ppm	100 ppm	400 ppm	Control	25 ppm	100 ppm	400 ppn		
Number of de	Number of dead or moribund animals		15	12	20	12	5	11	24		
No microscopi	ical confirmation	1	0	1	3	2	3	1	0		
Respiratory s	ystem lesion	0	0	0	1	0	0	0	0		
Chronic neph	ropathy	0	0	2	0	0	0	1	0		
Renal lesion		0	0	0	0	1	0	0	0		
Urinary reten	tion	0	0	0	1	0	0	0	0		
Central nervo	us system lesion	0	0	0	1	0	0	0	0		
Hemorrhage		0	0	0	0	1	0	0	0		
Fumor death	leukemia	2	2	2	1	3	1	3	8		
	skin/appendage	0	0	1	1	0	0	0	0		
	subcutis	0	2	0	0	0	0	1	0		
	brown fat	0	1	0	0	0	0	0	0		
	nasal cavity	0	0	0	1	0	0	1	0		
	spleen	1	1	0	0	0	0	0	0		
	heart	0	0	0	1	0	0	0	0		
	oral cavity	0	0	0	2	0	0	0	0		
	stomach	0	0	0	0	0	0	0	1		
	small intestine	0	0	1	0	0	0	0	0		
	large intestine	0	0	0	1	0	0	0	0		
	liver	0	0	0	3	0	0	0	8		
	pituitary gland	3	4	2	1	5	0	3	1		
	thyroid	0	0	0	0	0	0	0	1		
	adrenal gland	2	1	0	0	0	0	0	0		
	epididymis	0	0	0	1	0	0	0	0		
	uterus					0	1	0	2		
	mammary gland	0	1	0	0	0	0	0	0		
	preputial/clitoral gland	0	0	0	1	0	0	0	1		
	brain	0	1	1	0	0	0	1	1		
	Zymbal gland	0	1	0	0	0	0	0	1		
	bone	1	1	1	0	0	0	0	0		
	peritoneum	0	0	1	1	0	0	0	0		

TABLE 20

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj MALE RATS

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Liver	1749			
Hepatocellular adenoma		30	1.7	0-8
Hepatocellular carcinoma		6	0.3	0-2
Hemangiosarcoma		0	0.0	0-0
Lung	1749			
Bronchiolar-alveolar adenoma		62	3.5	0 - 10
Large intestine	1749			
Ădenoma		0	0.0	0-0
Adenocarcinoma		0	0.0	0-0
Skin/appendage	1747			
Trichoepithelioma		14	0.8	0-4

35 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No. : 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0278, 0284, 0288, 0294, 0296, 0318, 0328, 0342, 0347, 0365, 0371, 0396, 0399, 0401, 0407

TABLE 21

)

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma	1597	20 2 1	$1.3 \\ 0.1 \\ 0.1$	$\begin{array}{cccc} 0 & - & 6 \\ 0 & - & 2 \\ 0 & - & 2 \end{array}$
Lung Bronchiolar-alveolar adenoma	1597	30	1.9	0 - 10
Spleen Mononuclear cell leukemia	1597	209	13.1	2 - 26
Large intestine Adenoma	1597	0	0.0	0-0
Skin/appendage Trichoepithelioma	1597	3	0.2	0-2

32 carcinogenicity studies examined in Japan Bioassay Research Center were used.


Study No. : 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0278, 0284, 0296, 0303, 0318, 0328, 0342, 0347, 0365, 0371, 0399, 0401

FIGURES

- FIGURE 1 1-BROMO-3-CHLOROPROPANE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM
- FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

)

- FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE
- FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

Ì

)

FIGURE 1 1-BROMO-3-CHLOROPROPANE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM

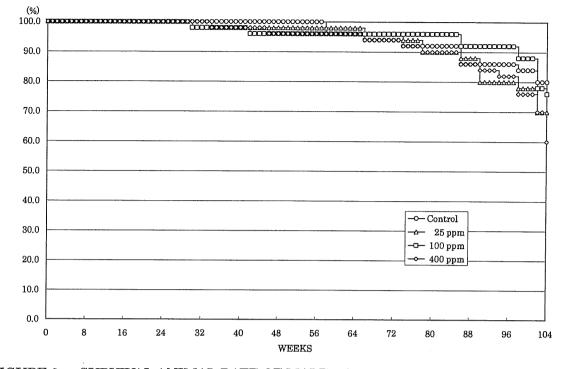


FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

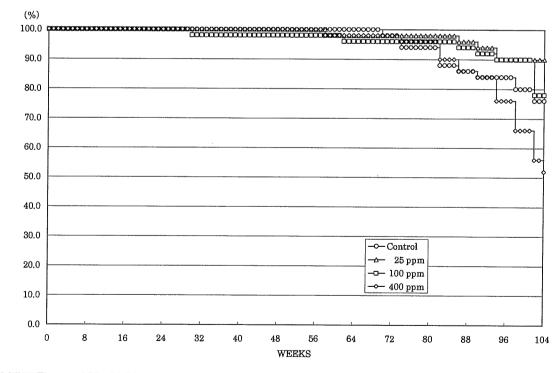


FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

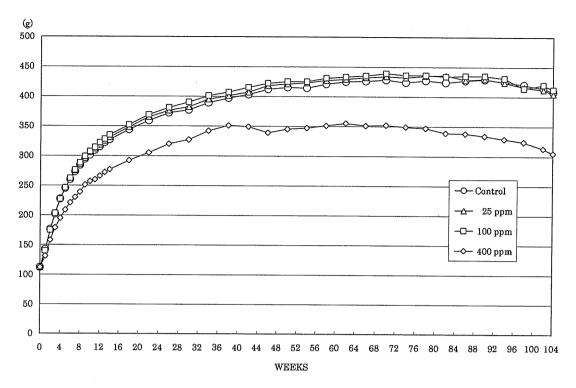


FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

)

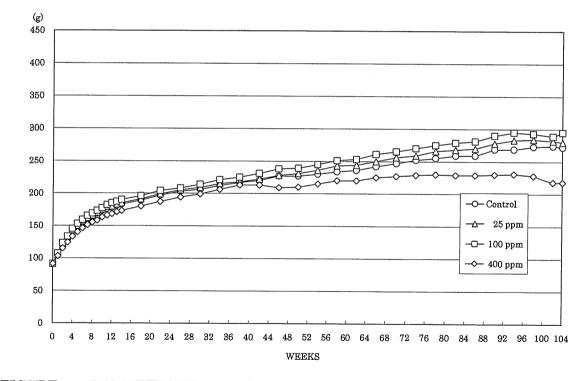


FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

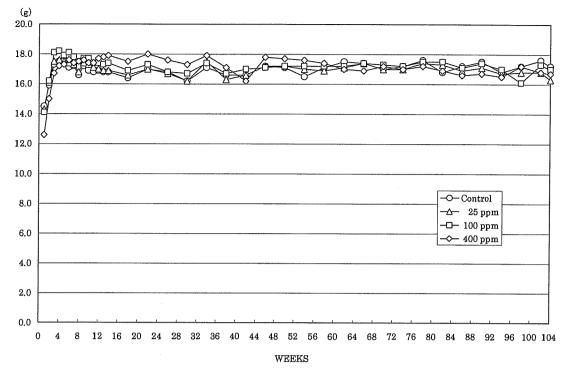
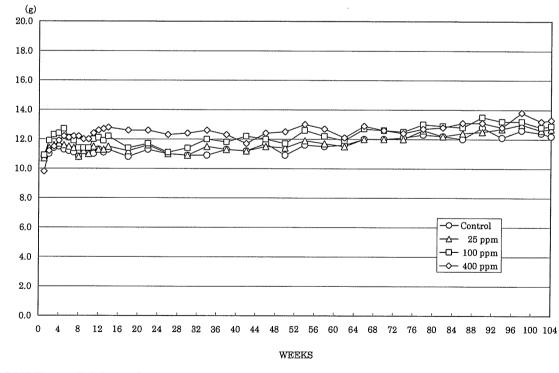
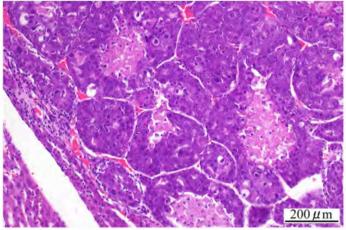
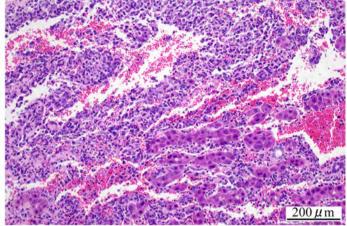
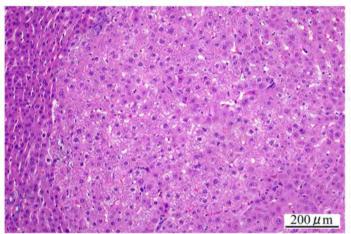
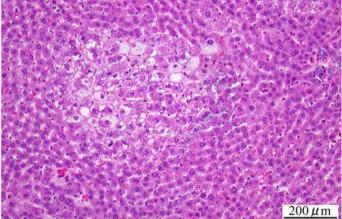
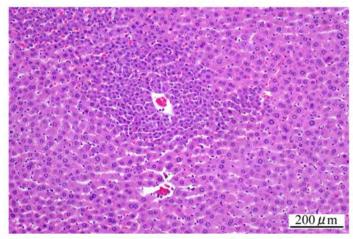


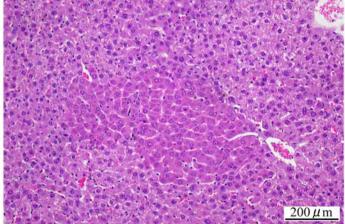
FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

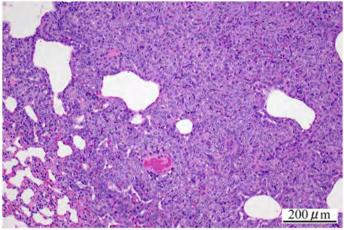




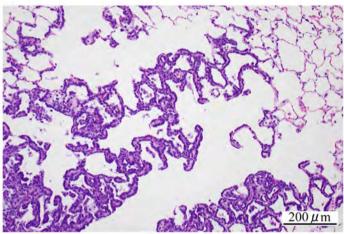

FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 1-BROMO-3-CHLOROPROPANE

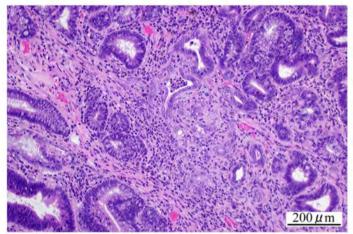

200 μr Photograph 1 Liver: Hepatocellular carcinoma Rat, Female, 400 ppm, Animal No. 0417-2318 (H&E)

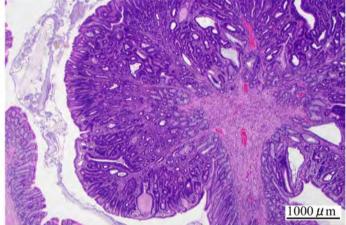

Photograph 2 Liver: Hemangiosarcoma Rat, Female, 400 ppm, Animal No. 0417-2341 (H&E)

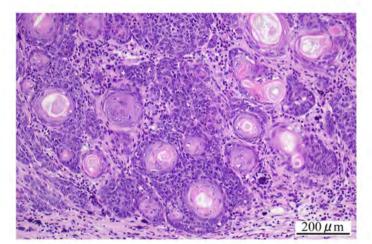

Photograph 3 Liver: Hepatocellular adenoma Rat, Female, 400 ppm, Animal No. 0417-2316 (H&E)


Photograph 4 Liver: Clear cell focus Rat, Female, 400 ppm, Animal No. 0417-2332 (H&E)


Photograph 5 Liver: Basophilic cell focus Rat, Male, 400 ppm, Animal No. 0417-1304 (H&E)


Photograph 6 Liver: Acidophilic cell focus Rat, Female, 400 ppm, Animal No. 0417-2304 (H&E)


Photograph 7 Lung: Bronchiolar-alveolar adenoma Rat, Male, 400 ppm, Animal No. 0417-1344 (H&E)


Photograph 8 Lung: Bronchiolar-alveolar cell hyperplasia Rat, Male, 400 ppm, Animal No. 0417-1346 (H&E)

Photograph 9 Large intestine: Adenocarcinoma Rat, Male, 400 ppm, Animal No. 0417-1318 (H&E)

Photograph 10 Large intestine: Adenoma Rat, Male, 400 ppm, Animal No. 0417-1344 (H&E)

Photograph 11 Skin/appendage: Trichoepithelioma Rat, Male, 400 ppm, Animal No. 0417-1349 (H&E)