3·アミノフェノールのラットを用いた 経口投与によるがん原性試験(混水試験)報告書

試験番号:0711

TABLES

TABLES

TABLE A 1	SURVIVAL ANIMAL NUMBERS: MALE
TABLE A 2	SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE B 1	CLINICAL OBSERVATION: MALE
TABLE B 2	CLINICAL OBSERVATION: FEMALE
TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE E 2	WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE E 3	WATER CONSUMPTION CHANGES: MALE
TABLE E 4	WATER CONSUMPTION CHANGES: FEMALE
TABLE F 1	CHEMICAL INTAKE CHANGES: MALE
TABLE F 2	CHEMICAL INTAKE CHANGES: FEMALE

TABLES (CONTINUED)

TABLE G 1	HEMATOLOGY: MALE
TABLE G 2	HEMATOLOGY: FEMALE
TABLE H 1	BIOCHEMISTRY: MALE
TABLE H 2	BIOCHEMISTRY: FEMALE
TABLE I 1	URINALYSIS: MALE
TABLE I 2	URINALYSIS: FEMALE
TABLE J 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE J 2	GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
TABLE J 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
TABLE J 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE J 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE J 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
TABLE K 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE K 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
171DEE IX 2	OWAIN WEIGHT, ABOOLOTE TENNIEL
TABLE L 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE L 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE M 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: ALL ANIMALS
TABLE M 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: DEAD AND MORIBUND ANIMALS
TABLE M 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

TABLE M 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
TABLE M 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE M 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS
TABLE N 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
TABLE N 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
TABLE O 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
TABLE O 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
TABLE P 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE P 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE Q 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
TABLE Q 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
TABLE R	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrl MALE RATS
TABLE S 1	CAUSE OF DEATH: MALE
TABLE S 2	CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj]
REPORT TYPE : A1 104

SURVIVAL ANIMAL NUMBERS

SEX : MALE

PAGE: 1

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0
625 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
1250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100. 0	100. 0
2500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SURVIVAL ANIMAL NUMBERS

SEX : MALE

PAGE: 2

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50 100. 0													
625 ppm	50	50/50 100. 0													
1250 ppm	50	50/50 100. 0	50/50 100.0	50/50 100. 0	50/50 100. 0	50/50 100. 0									
2500 ppm	50	50/50 100. 0	50/50 100.0	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0								

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50 100. 0													
625 ppm	50	50/50 100.0	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0							
250 ppm	50	50/50 100. 0													
2500 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCriCrij [F344/DuCrj]

SURVIVAL ANIMAL NUMBERS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	49/50 98. 0													
625 ppm	50	49/50 98. 0													
1250 ppm	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0							
2500 ррт	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE

SURVIVAL ANIMAL NUMBERS

PAGE: 5

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0
625 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 · 98.0	49/50 98. 0								
1250 ppm	50	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	47/50 94. 0						
2500 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE

SURVIVAL ANIMAL NUMBERS

PAGE: 6

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	49/50 98. 0	48/50 96. 0												
625 ppm	50	49/50 98. 0	48/50 96. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0							
1250 ppm	50	47/50 94. 0	46/50 92. 0												
2500 ppm	50	48/50 96. 0	47/50 94. 0												

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 7

Group Name	Animals	Administ	ration (Wee	ks)				·							
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	48/50 96. 0	47/50 94. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0						
625 ppm	50	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0	44/50 88. 0	43/50 86. 0	43/50 86. 0					
1250 ppm	50	46/50 92. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	43/50 86. 0	42/50 84. 0	39/50 78. 0	39/50 78. 0	38/50 76. 0	36/50 72. 0	36/50 72. 0
2500 ppm	50	47/50 94. 0	45/50 90. 0	45/50 90. 0	42/50 84. 0	41/50 82. 0	40/50 80. 0	40/50 80. 0	40/50 80. 0	39/50 78. 0					

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 8

Group Name	Animals	Administ	tration (Wee	ks)				
	At start	98	99	100	101	102	103	104
Control	50	43/50	43/50	43/50	42/50	42/50	42/50	40/50
		86. 0	86. 0	86. 0	84. 0	84. 0	84. 0	80. 0
625 ppm	50	43/50	43/50	41/50	41/50	40/50	39/50	39/50
		86. 0	86. 0	82. 0	82. 0	80. 0	78. 0	78. 0
1250 ppm	50	36/50	35/50	34/50	34/50	34/50	34/50	33/50
		72. 0	70. 0	68. 0	68. 0	68. 0	68. 0	66. 0
2500 ppm	50	39/50	38/50	38/50	38/50	36/50	34/50	34/50
		78. 0	76. O	76. 0	76. 0	72. 0	68. 0	68. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCriCrij[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

SURVIVAL ANIMAL NUMBERS

PAGE: 9

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50 100. 0													
625 ppm	50	50/50 100. 0													
1250 ppm	50	50/50 100. 0													
2500 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT_TYPE : A1 104

SEX : FEMALE

PAGE: 10

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50 100. 0													
625 ppm	50	50/50 100. 0													
1250 ppm	50	50/50 100. 0													
2500 ppm	50	50/50 100. 0	50/50 100.0	50/50 100. 0	50/50 100. 0	50/50 100. 0									

Number of survival/ Number of effective animals
Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 11

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0
625 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
1250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
2500 ppm	50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
Job phil		100. 0	100. 0	100. 0	100.0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0

Number of survival/ Number of effective animals
Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 12

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50 100. 0													
625 ppm	50	50/50 100. 0													
1250 ppm	50	50/50 100. 0													
2500 ppm	50	49/50 98. 0	48/50 96. 0												

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 13

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0
625 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0											
250 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0									
2500 ppm	50	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0	46/50 92. 0								

SURVIVAL ANIMAL NUMBERS

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

SURVIVAL ANIMAL NUMBERS

PAGE: 14

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	49/50 98. 0	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0									
625 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	47/50 94. 0								
1250 ppm	50	48/50 96. 0													
2500 ppm	50	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	42/50 84. 0	42/50 84. 0	39/50 78. 0	39/50 78. 0	39/50 78. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 15

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	47/50 94. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0						
625 ppm	50	47/50 94. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0					
1250 ppm	50	48/50 96. 0	48/50 96. 0	47/50 94. 0	46/50 92. 0	45/50 90. 0									
2500 ppm	50	39/50 78. 0	38/50 76. 0	38/50 76. 0	38/50 76. 0	37/50 74. 0	36/50 72. 0	36/50 72. 0	36/50 72. 0						

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT_TYPE : A1 104

SEX : FEMALE

PAGE: 16

Group Name	Animals	Administ	ration (Wee	ks)				
	At start	98	99	100	101	102	103	104
Control	50	44/50	44/50	44/50	44/50	43/50	43/50	43/50
		88. 0	88. 0	88. 0	88. 0	86. 0	86. 0	86. 0
625 ppm	50	42/50 84. 0	42/50 84. 0	42/50 84. 0	42/50 84. 0	41/50 82. 0	40/50 80. 0	40/50 80. 0
1250 ppm	50	45/50	45/50	45/50	44/50	44/50	43/50	42/50
1200 pp.iii	00	90. 0	90. 0	90. 0	88. 0	88. 0	86. 0	84. 0
2500 ppm	50	35/50	35/50	35/50	35/50	35/50	35/50	35/50
		70. 0	70. 0	70. 0	70.0	70.0	70. 0	70. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE B 1

CLINICAL OBSERVATION: MALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Adminia	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	•	٥
CATH	625 ppm	0	0	0	0		0	0	0	-	0	0	0	U	0
	1250 ppm	0	0		0	0 .	0	0	0	0	0	0	0	0	0
		-		0	0	0	-	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	1250 ppm	0	0	0	0	0	0	0	0	0	Ö	Ō	0	0	Ō
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL DEGREE TO SECOND	625 ppm	ñ	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	n	0	0	0	0	0	0	0	0	0	0	0	_	-
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 bhiii	U	U	U	U	U	U	U	U	U	U	U	U	0	0
UNCHBACK POSITION	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	Ō	ō	Ö	Õ	Ŏ	Ö	Õ	Ŏ	Ö	Ö	Ö	Ö	Õ	Û
	1250 ppm	ō	Ö	Ŏ	ő	Ŏ	ő	Ö	Ö	Ö	Ö	Ö	Õ	0	n
	2500 ppm	ñ	å	Õ	0	Ö	0	0	0	0	0	0	0	n	n
	Lood ppiii	U	Ü	U	v	U	υ	U	U	U	U	U	U		U
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	n	0	0	n	0	0	0	0
	625 ppm	ñ	0	0	0	0	0	0	0	0	0	Ð	0	0	0
	1250 ppm	ñ	Ö	0	Ô	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Ö	0	0	Ö	0	0	0	0	0	0	0	0	0
ILED	Control	Δ.	•	•	•	_			_	_	_	_		-	-
TILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō	Ö	Õ	Ŏ	Õ	0	n	Ö	n	0	0	0	0	0
	1250 ppm	Ö	Ö	Õ	Ö	Ö	0	0	Ö	Õ	0	0	0	0	0
	2500 ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

															I AUL .
Clinical sign	Group Name	Admini	stration W	eek-day							•				
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DEATH	Control	0	0	0	٥	0	•	0	0	0	0		0	٥	0
DEATH	625 ppm	0	0	0	0 0	0	0 0	0	0 0	0 0	0	0 0	0	0 0	0
	1250 ppm	ŏ	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	Ö	Ö	Ŏ	Ö	Ö	Õ	Ô	ő	ő	Ö	ő	ő
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0 -	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm 2500 ppm	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
	2000 ppiii	U	U	U	Ü	0	0	U	0	0	0	0	U	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2500 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrICrIJ[F344/DuCrJ] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41 -7	42-7
ATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	625 ppm	ñ	Ö	Ö	Ö	0	Ŏ	Ö	0	0	. 0	0	Ö	0	ò
	1250 ppm	n	n	Õ	Ö	0	0	0	0	0	. 0	n	0	0	0
	2500 ppm	Ö	Ö	Ö	ő	0	Ö	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	1250 ppm	0	0	Ō	Ō	Õ	Ö	Ö	Ö	. 0	Ö	Ò	ò	Ò	Ö
	2500 ppm	0	0	0	0	0	0	Ō	0	0	Ō	Ō	0	Ö	Ō
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ó	Ō	. 0	Ō	Ö	Ö	Ō	Ō	Ō	Ō
	1250 ppm	0	0	0	0	Ō	0	Ō	Ō	Õ	Ö	Ö	0	Ō	Ō
	2500 ppm	0	Ō	Ö	Ö	ő	Ö.	Ö	ŏ	Ö	Ö	ŏ	Õ	Ö	Ö
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	Ō
	2500 ppm	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Õ	Ö	Ö	Õ	Ō
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	1	1	0	0	0	Ō	Ō	ō
	1250 ppm	0	0	0	0	0	Ō	0	Ô	Ō	Ō	Ō	ō	Ŏ	Õ
	2500 ppm	0	0	0	. 0	0	Ō	Ō	Ö	Ö	Ö	Õ	Ö	ŏ	Ŏ
CITEMENT	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	625 ppm	0	0	0	0	0	0	Ô	Ō	Ō	ō	Ó	Ô	Ö	ñ
	1250 ppm	0	Ö	Õ	ŏ	Ö	ŏ	Õ	Ö	- 0	Ô	Ö	0	0	0
	2500 ppm	Ö	Ö	Ö	ő	ő	ŏ	Ö	ő	Ö	Ö	Ö	Ö	Ô	0.
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ō	Ō	Ö	Õ	Ö	Ö	Õ	Õ	ñ	Ô	Ö	Õ	Ô
	1250 ppm	Ō	Ō	Ŏ	ŏ	Õ	Ö	Ö	Õ	Ö	0	n	Ö	Ö	0
	2500 ppm	Õ	Ö	Ö	Ö	Õ	Ö	0	Ô	Ö	Ö	0	0	0	0
LED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ö	Ö	Ŏ	Õ	ŏ	Õ	Õ	Ö	Ö	Ô	ñ	Ö	Ö	Ö
	1250 ppm	ō	Ö	ŏ	Ö	ŏ	0	0	Ö	0	0	0	0	0	0
	2500 ppm	Ö	Ö	Õ	0	Ö	0	0	Ö	0	0	0	0	0	0
OERECTION	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	625 ppm	0	Ö	Ö	ő	Õ	Ō	Ö	1	Ö	. 0	Õ	0	0	0
	1250 ppm	ō	Õ	Ö	Ö	0	Ö	0	Ö	0	0	0	0	0	0
	2500 ppm	ŏ	Ö	Ö	0	0	0	0	0	0	0	0	0	0	. 0

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE															PAGE: 4
Clinical sign	Group Name	Admini	stration \	Week-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DEATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	Ò	Ó	Ö	Ò	Ö	ò	ò	ò	ò	ò	Ó	Ó	ò	Ö
	1250 ppm	ñ	Õ	Ö	1	1	2	2	2	2	2	2	2	2	2
	2500 ppm	0	0	0	Ö	0 .	ō	Ō	ō	0	0	0	Ō	Ō	Ō
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	Ô	0	Ô	0	0	0	0	Ó	Ó
	2500 ppm	0	0	0	0	0	Ō	0	0	Ō	0	Ö	Ö	Ō	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOTION TOUTTON	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	Ö	0	Ō	0	Ō	Ō
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō
	1250 ppm	0	0	0	0	0	0	Ô	Ō	Ö	Ō	Ō	Ō	Ö	0
	2500 ppm	. 0	0	0	0	0	0	0	0	0	Ō	0	Ō	Ō	Ö
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	Ō	Ō	Ō	Ö	Ö	Ö	ō	Ö
	1250 ppm	0	0	0	0	Ö	Ō	Ŏ	Ō	Ö	Ö	Ö	Ö	ŏ	ō
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

SEA - MALL															FAGE .
Clinical sign	Group Name	Admini	stration W	eek-day _											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
															-
DEATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0
	1250 ppm	2	2	2	2	2	2	3	3	3	3	3	3	3	3
	2500 ppm	1	1	1	ī	2	2	2	2	2	2	2	2	2	2
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	Ô	Ô	Ö	Ò	Ò	Ö	ò	Ö	Ö	Ò	ò	Ó	'n	à
	2500 ppm	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Ö	Ö	Ö
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	n	0	0	0	n	0	0	0	n	0
	625 ppm	Õ	ő	ŏ	Ŏ	Ö	Ö	Ö	Ö	0	Ö	0	ñ	Ô	ñ
	1250 ppm	ñ	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	U N	0	0	0	0	. 0	0	0	0	U
	2000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
IUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	Ô	0	Ō	Ō	Ô	Ō	ñ	ō	ñ
	1250 ppm	ñ	Ō	Ō	Ö	ŏ	Ö	Ö	ŏ	Ö	Ö	Ö	Õ	Ö	ñ
	2500 ppm	Ŏ	Ŏ	Ö	Ö	Ö	Ö	ő	Õ	Ö	0	Ö	0	Ö	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	ñ	ŏ	ő	ő	Ö	Õ	Ö	0	0	0	0	Ô	0	ก
	1250 ppm	n	0	Ö	Ö	0	Ö	0	0	0	0	0	0	0	v
	2500 ppm	0	n	0	0	0	0	0	0	0	0	0	0	0	U
	2300 ppiii	U	v	U	U	U	U	U	U	U	U	U	U	U	U
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	ñ	Ō
	1250 ppm	0	n	Ö	Ö	ō	Õ	Õ	Ö	Ö	. 0	Ö	ñ	Õ	ŏ
	2500 ppm	Õ	Ö	Ö	Ŏ	ő	Ö	Õ	ő	Ö	0	Ö	Ö	ő	Ö
ASTING	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	625 ppm	0	Ö	0	0	0	0	0		0		0	0	0	•
	1250 ppm	0	0	0				-	0	_	0	•	•	-	0
	2500 ppm	0	0	0	0 0	0	0	0 0	0	0	0	0	0 0	0	0
OILED	Control	0	0	0	0	•		•		•		•	•	-	-
OILLD		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	Ö	Ō	0	Ō	Ō	Ō
	1250 ppm	0	Ō	Ō	Ö	Ö	Ö	Õ	ő	Õ	Ö	Õ	Ö	Õ	ŏ
	2500 ppm	Ō	ō	Ö	Ô	Ö	Õ	Õ	Ô	Õ	Õ	0	Ô	ก	n
	-000 PPM	U	U	U	U	U	U	U	U	U	U	U	U	U	U

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name														
_		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1
	625 ppm	i	i	i	i	i	i	i	i	i	i	2	2	2	2
	1250 ppm	3	3	3	3	3	3	4	4	4	4	4	4	4	4
	2500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	625 ppm	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	1250 ppm	0	0	0	0	0	Ó	0	0	0	0	Ō	Ö	Ö	Ō
	2500 ppm	0	0	0	0	1	1	1	1	1	1	1	1	ĺ	1
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	Ō	Ō
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Õ	Ō
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	625 ppm	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	Ö	Ō	Ō	Ō	Õ	Ŏ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	1	1	0	Ō	Ō	Ō	Ö	Ō
	1250 ppm	0	0	0	0	Ó	Ō	Ó	Ö	Ō	Õ	Ö	Ō	Ö	Ö
	2500 ppm	0	0	0	0	Ō	0	0	0	Ō	0	Ō	0	Ö	Ö
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ô	Ō	Ō	1	ĭ	1	1	Ŏ	Õ	Õ	Ö	Ö	ő
	1250 ppm	0	Ō	Ö	ŏ	Ö	ò	ò	ò	Ö	Ö	Ŏ	1	Ö	Ö
	2500 ppm	0	0	Ō	Ō	ŏ	Ö	Õ	Ö	Õ	Ŏ	Õ	ò	Ö	Ö

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name														
	aroup name	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EATH	Control	1	1	1	1	1	,	0	2	4	4	•	c	c	c
CAIR	625 ppm	1 2	2	1 2	1	1	1	2	3	4	4	6	6	6	6
		_			2	2	3	3	3	3	3	3	3	3	3
	1250 ppm	4	4	4	5	5	6	7	7	9	9	10	11	11	11
	2500 ppm	2	2	2	2	2	3	3	5	6	6	6	6	6	6
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	2	2	2	2	2	2	2	2	3	3	3	4	4	4
	1250 ppm	0	0	0	Ō	Õ	ō	Ō	1	2	2	2	3	3	3
	2500 ppm	1	1	ĺ	1	1	2	2	3	3	4	4	4	5	5
OCOMOTOR MOVEMENT DECR	Control	0	0	0		•	0	0	0		0	•	0	0	
SOUNDION MOVEMENT DECK	625 ppm	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0
	1250 ppm	0		-			-	0	•	0	0		0	0	Ü
		-	0	0	0	1	1	1	0	0	0	0	0	0	U
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ō	Õ	ō	Ö	Õ	Ö	Ö	Ö	Ö	õ	Õ	Ö.	Ö
	1250 ppm	Ō	Ö	Ö	Õ	ŏ	ŏ	Ö	Ö	Ö	1	1	1	1	1
	2500 ppm	Õ	Ö	Ö	Ö	ŏ	Ö	Ö	ŏ	ŏ	ò	Ö	Ö	Ö	Ö
ARALYTIC GAIT	Control	0	0	0	0	1	1	,	0	0	0	0	0	0	0
Add Little Will	625 ppm	0	0	0	0	0	Ó	0	_		-	-	0	_	0
	1250 ppm	0	-					•	0	0	0	0	•	0	
	2500 ppm	0	1 0	1 0	1	1	1	0	0	0	0	0	0	0	0
	2900 ppm	U	U	U	0	0	0	0	0	0	0	0	0	0	0
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ō	Ô	Ō	Ō	Ō	Ō
	1250 ppm	0	0	0	Ō	Ō	Ö	Ō	Õ	Ö	Õ	Ö	Õ	Ö	Õ
	2500 ppm	0	0	Ō	Ö	Ö	Ö	Ŏ	ŏ	ő	Ö	Ö	Ö	ŏ	ŏ
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	•	•
	625 ppm	0	0	0	0	0	0	0	0	_	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0 0	0	υ 0	U N	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	U N	0	0 0
		•	•	•	U	Ü	U	v	v	· ·	U	v	U	U	U
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ō	Ō	Õ	Ö	Ö	Õ
	1250 ppm	0	0	0	0	Ō	Ö	Ō	Ŏ	Ö	Ō	Ö	Ŏ	Ö	ŏ
	2500 ppm	0	0	0	0	0	0	0	0	Ō	Ö	Ö	Ö	Ō	Ö
LOERECTION	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	n	0	0	0	0	0	0	0	0	1	0	0	0	0
	1250 ppm	n	1	1	1	1	U 1	0	0	_	ı	•	-	-	-
	2500 ppm	0	Ů	0	0			-		0	0	0	0	0	0
	TOOO bhiii	U	U	U	U	0	0	0	0	0	0	U	0	0	0

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr[Cr]j [F344/DuCrj] . REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day					,
		99-7	100-7	101-7	102-7	103-7	104-7		
· · · · · · · · · · · · · · · · · · ·									
EATH .	Control	6	6	7	7	7	8		
LATTI	625 ppm	3	4	4	5	6	6		
	1250 ppm	12		12					
	2500 ppm	6	12 6		12 8	12	12		
	2500 ppm	D	ь	6	8	9	9		
ORIBUND SACRIFICE	Control	1	1	1	1	1	2		
	625 ppm	4	5	5	5	5	5		
	1250 ppm	3	4	4	4	4	5		
	2500 ppm	6	6	6	6	7	7		
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0		
	625 ppm	ő	Õ	Ö	Ö	0	Ö		
	1250 ppm	Ö	0	ŏ	Ö	0	Ö		
	2500 ppm	Ö	Ö	Ö	0	0	Ö		
UNIOUDAOK POCITION				_	_				
UNCHBACK POSITION	Control	0	0	0	0	. 0	0		
	625 ppm	0	0	0	0	0	0		
•	1250 ppm	1	0	0	0	0	1		
	2500 ppm	0	0	. 0	0	0	0		
ARALYTIC GAIT	Control	0	0	0	0	0	0		
	625 ppm	0	0	0	1	ī	í	'	
	1250 ppm	Ō	Ō	Ö	Ö	Ö	Ö	· ·	
	2500 ppm	1	1	1	ĩ	ŏ	Ö		
XCITEMENT	Control	0	0	0	0	0	0		
	625 ppm	ñ	0	0	0	0	-		
	1250 ppm	0	0	0			0		
	2500 ppm	0	0	0	0 0	0	0		
			-	·	·	Ū	·		
STING	Control	0	0	0	0	0	0		
	625 ppm	0	0	0	0	0	0		
	1250 ppm	1	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
ILED	Control	0	0	1	2	2	1		
	625 ppm	Ô	Ö	i	2	1	i		
	1250 ppm	Ö	0	Ö	0	Ó	Ó		
	2500 ppm	ő	1	1	1	Ö	0		
ILOERECTION	Control	0	0	0					
LOUILOT TON	625 ppm	•	0	0	ļ	l	1		
		0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name														
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	Ō	Ō	Ō	Õ	Ö	Õ	Ö	Ō	ō	ō	Ō
	2500 ppm	0	0	Ō	0	0	Ō	Ō	Ō	Ö	Ö	Ŏ	Õ	Ö	Ö
ATARACT	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	625 ppm	Ŏ	ŏ	ŏ	Ö	Ŏ	Õ	ŏ	. 1	1	i	i	i	i	1
	1250 ppm	ñ	0	0	0	Ö	0	0	Ó	Ö	ò	'n	ก่	ò	'n
	2500 ppm	Ö	Ö	0	0	0	0	Ô	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	n	0	0	0	0
ONIVERE OF NOTE	625 ppm	0	0	Ö	0	. 0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0							-	-		_	-	•
	2500 ppm	0	0	0 0											
NTERIOR CHAMBER OPACITY	Control	n	0	0	•	0	•	•	•		•	•	•		
WILKIOK CHAMBER OFACITI	625 ppm	U	-	0	0	0	0	0	0	0	0	0	0	0	U
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ō	Ō	Ŏ	Ö	Õ	Õ	Õ	Õ	ñ	ŏ	Ö	Õ
	1250 ppm	Ō	Ö	Ö	ŏ	ŏ	ŏ	Ö	ő	Ö	Ö	ñ	Ö	Ö	Ö
	2500 ppm	Ö	Õ	Ö	Õ	Ö	Ö	0	Õ	0	Ö	0	0	Ö	ő
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ô	0	0	0	0	0		0			0 N		-	_
	2500 ppm	0	0	0	0	0	0	0	-	0	0	•	0	0	0
		U	U	U	U	U	U	0	0	0	0	0	0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ü	0	0	0	0	0	0	0	U	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name		stration W	la alc day											
TIMICAL SIGN	Group Hame	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
OLLED DEDL OFWEATH	• • •	•	_		_										
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
	1250 ppm	0	0	0	Ō	Ö	Ö	ō	Ŏ	Ö	Ö	Õ	ŏ	Ŏ	Õ
	2500 ppm	0	0	0	Ō	Ō	Ö	Ö	Ö	Ö	Ö	ŏ	Ö	Ŏ	ŏ
ATARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	
ATTIMIOT	625 ppm	i	i	i	<u> </u>	i	i	1	i	1	;	<u> </u>	1	-	
	1250 ppm	0	1	i	•	•		1		1	1	1	1	1	1
	2500 ppm	. 0	0	•	1	1	1	ı	1	ı	I	ļ	ı	I	ı
	2500 կիա	U .	U	. 0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	.0	0	0	0	0	0	0	0	. 0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	n	n	n	0	0	n
	625 ppm	0	0	Ō	Ō	Ö	ō.	ō	Õ	ŏ	ñ	Õ	Ö	ŏ	ő
	1250 ppm	1	1	1	1	ĭ	1	1	1	Ô	Õ	Ŏ	Ö	Õ	Ô
	2500 ppm	'n	Ò	ò	ó	ò	ò	'n	ò	0	n	0	0	0	0
	Lood pp	v	v	v	Ū	U	U	U	U	U	U	U	U	U	U
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ITERNAL MASS	Control	0	0	0	0	0	0	0	0	. 0	n	0	0	0	n
	625 ppm	Ō	Ö	Ö	Ŏ	ŏ	Ö	Ö	0	0	n	0	0	n	n
	1250 ppm	ő	Ö	Ö	Ö	Ö	Ö	0	0	0.	n	0	0	0	0
	2500 ppm	Ö	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0	0
NOSE	Control	n	0	٥	0	n	٥		•				•		
11001	625 ppm	0	-	0	-	ū	0	0	0	0	0	0	0	0	U
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ö	Ō	ō	Ö	Ō	Ō	Õ	Ö	Õ	ō
	1250 ppm	0	0	Ō	Ö	Ö	ŏ	Ö	ŏ	ŏ	ŏ	ő	Ö	Ö	Ö
	2500 ppm	0	Ō	Ō	Ö	Ö	Ŏ	Ö	ŏ	ő	. 0	Ö	0	Ö	0

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	up Name Administration Week-day													
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41 -7	42-7
		_													
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
ATARACT	Control	1	. 1	1	1	1	1	1	1	1	1	1	1	1	2
	625 ppm	i	ż	ż	ż	2	ż	ż	ż	2	ż	2	ż	ż	2
	1250 ppm	i	ī	1	ī	ī	1	2	2	2	2	2	2	2	2
	2500 ppm	Ö	ò	Ö	ò	Ó	Ö	Õ	0	0	0	0	0	Õ	Õ
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	n	O	n	0	0
SMILE OF MOTT	625 ppm	n	Ö	0	0	0	0	0	0	0	0	•	0	-	•
	1250 ppm	1	1	1		1			1	1	U	0	_	0	0
	2500 ppm	0	0	0	1 0	0	1 0	1 0	1	ı	1	ı	1	l	ı
,	2000 ppili	U	U	U	U	U	U	U	U	0	U	0	U	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ŏ	Ö	Ö	ŏ	ő	Ö	Ö	Ŏ	Õ	0	Õ	0	0	0
	1250 ppm	ñ	ŏ	Õ	Ö	o ·	1	1	1	1	1	1	1	1	2
	2500 ppm	Ö	ŏ	Ö	Ŏ	Ö	ò	Ö	Ò	ò	Ó	Ó	Ó	Ó	0
NTERNAL MASS	Control	n	0	0	0	0	0	٥	٥	•	0	٥	0	0	0
	625 ppm	0	0	0	0	0		0	0	0	0	0	0	0	0
	1250 ppm	n	0	0		-	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0
				U	U	υ	U	· U	U	U	U	U	U	U	U
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	Ó	Ö	Ō	Õ	Õ	Õ	Õ	Õ	Ŏ	Ŏ	Ö
	1250 ppm	0	0	Ō	ō	Ö	Ö	Ŏ	Ö	ŏ	Õ	Õ	Ŏ	Ŏ	Ö
	2500 ppm	0	0	Ō	Ö	Ö	Ö	ŏ	ő	ŏ	Ö	ŏ	0	0	0
EYE	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	0	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0		-
	2500 ppm	ő	0	. 0	0	0	0	0	0	0	0	. 0	0	0 0	0

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

															Trial.
Clinical sign	Group Name	Admini	stration W	eek-day _							•				
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7 	54-7	55-7	56-7
OILED PERI-GENITALIA	Control .	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	. 1	1	1	1	1	1	1	1
ATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
•	625 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	3
	1250 ppm	2	2	2	2	2	3	3	3	3	3	3	3	3	3
	2500 ppm	Õ	ō	0	0	ō	0	0	0	Ö	0	0	0	0	1
ORNEAL OPACITY	Control	. 0	O	0	0	0	0	0	0	. 0	0	n	0	0	n
3,110,111	625 ppm	ñ	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	1	1	i	1	1	i	. 1	1	1		;	!	- !	:
	2500 ppm	Ó	Ó	Ó	0	Ó	Ó	0	0	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	. 0	0	0	•	0	0	n		•	•
MIERIOR OFMINER OFFICE	625 ppm	0	0	-			-	•	0	0	0	U	Ü	0	0
		U	-	0	.0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	1
	625 ppm	0	0	0	0	0	1	1	1	1	1	2	2	2	3
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	2
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
ITERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	625 ppm	0	0	0	Ō	Ō	Ō	ō	Ŏ	Ö	Ô	ñ	Õ	Õ	ñ
	1250 ppm	0	Ö	Ö	ŏ	ŏ	ő	Ö	Ö	0	0	Ŏ	0	0	0
	2500 ppm	0	Ō	Ö	Ö	Ö	Ö	Ö	0	0	Ö	Ö	Ö	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	Ð	0	0	0	0
•	625 ppm	ñ	Ö	Ö	0	0	0	0	0	0	0	1	1	1	U 1
	1250 ppm	n	0	0	0	0	0	0	-	_	0	1		l n	ı
	2500 ppm	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0 0	0 0
EYE	Control	0	0	0	0	0	0	0	0	٨	0	0	0	0	0
	625 ppm	0	0	_		-		-	0	0	•	-	•	0	U
	1250 ppm	U		0	0	0	0	0	0	0	0	0	0	0	U
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

OLA . MINEL															FAGE . I
Clinical sign	Group Name	Admini	stration We	ek-day _										*	
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CATARACT	Control	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	625 ppm	3	3	3	3	3	3	4	4	5	5	5	5	5	6
	1250 ppm	3	4	4	4	4	4	4	5	5	5	5	5	5	5
	2500 ppm	ĭ	i	1	2	2	2	2	2	2	2	2	2	2	2
CORNEAL OPACITY	Control	n	n	0	Λ	0	0	0	0	0	n	a	n	0	O
TOTAL CONTROL OF	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	1	i	1		i	- 1	i	i	1	1	1	1	!	1
	2500 ppm	i	i	i	1	1	1	1	1	1	1	1	1	1	0 1
ANTERIOR CHAMBER OPACITY	Combust	٥	•	•			•	•		_	_	_	_		
ANTERIOR CHAMBER UPACITY	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	1	1	1	1	1	2	3	3	3	3	3	4	3	3
	625 ppm	3	3	2	2	2	2	2	2	2	2	3	3	4	4
	1250 ppm	2	2	3	3	3	3	3	3	3	3	3	3	4	4
	2500 ppm	1	1	1	1	1	1	Ō	1	1	1	1	1	Ö	1
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ó	ō	Ö	Ö	Õ	Õ	Ö	Ö	0	0	Ô	0	0	ñ
	1250 ppm	Ö	ŏ	Ö	Ö	Ö	1	0	0	0	0	0	0	0	0
	2500 ppm	Ö	ő	Ö	Ö	. 0	Ö	0	0	0	0	0	0	0	0
. NOSE	Control	0	0	0	0	0	0	0	0	•	0	0		0	0
	625 ppm	1	1	1	1	U 1			0	0	0	-	0 1	0	0.
	1250 ppm	'n	0	1	0	ı	1	1	1	ı	ı	1		ı	l o
	2500 ppm	บ ถ	0	0	0	0	0	0	0	0	0	0	0	0	0
	7900 bhii	U .	U	0	0 .	0	0	0	0	0	0	0	0	0	0
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	. 0	0	0	0 (0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

SEX . MALE															PAGE :
Clinical sign	Group Name	Admini	stration W	eek-day _										, , , , , , , , , , , , , , , , , , , ,	
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ATARACT	Control	3	3	3	3	3	3	3	3	3	3	3	3	4	5
	625 ppm	6	6	6	6	6	6	6	6	Ğ	6	6	6	6	6
	1250 ppm	5	5	5	5	5	5	4	4	4	4	4	4	4	5
	2500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	'n	ò	Ö	Ö	Ö	Ó	Ó	Ó	Ó	Ó	Ů	0	Ö	Ó
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
The state of the s	625 ppm	ñ	Ö	Ö	0	0	0	0	n	0	0	0	0	0	0
	1250 ppm	Ů	0	0	n	0	0	0	0	0		0	0	0	-
	2500 ppm	0	n	0	0	0	0	0	0	0	0	-	0	0	0
	2300 Ppiii	υ	U	. "	U	U	U	U	U	U	0	0	U	U	0
XTERNAL MASS	Control	3	3	4	5	5	5	4	5	5	6	6	6	8	8
	625 ppm	3	4	. 4	5	5	5	5	5	5	6	6	6	6	5
	1250 ppm	5	5	5	5	6	7	6	6	6	6	6	ě	6	6
	2500 ppm	2	2	ī	ĭ	Ŏ	Ó	ŏ	Ö	ĭ	ĭ	ĭ	ĭ	ĭ	ĭ
NTERNAL MASS	Control	0	0	0	0	0	0	0	1	0	0	0	0	O	0
	625 ppm	Ō	Ŏ	ő	Ö	Ö	Ö	0	ò	Ö	Ö	0	Ö	0	0 -
	1250 ppm	Ō	Ö	Õ	Ö	Ô	Ö	0	0	Ö	Ö	0	0	0	0
	2500 ppm	Ō	Ö	Ö	Ö	Õ	Ö	0	Ö	Ö	Ö	0	0	Ö	0
NOSE	Control	a	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	υ 1	U 1	U 1	1	-	1	U	1	0	0
	1250 ppm	1	Ó	1	•	•	•	•		1		ı	l	l	I
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	U	U	U	0	0	0	0	0	0	0	0	0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

linical sign															
	Group Name	85-7	stration W 86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TEED TERT GERTINETA	625 ppm	n	0	Ö	Ö	0	0	Ö	1 .	1	1	0	0	0	0
	1250 ppm	n	0	Ö	Ö	0	0	0	Ó	Ó	Ó	0	0	0	0
	2500 ppm	Ö	0	0	0	0	0	0	0	0	Ö	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0.	0	0	0	0	0	0	1
	625 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TARACT	Control	5	5	5	5	5	5	- 5	5	4	4	5	5	5	5
	625 ppm	6	6	6	6	6	5	5	5	5	5	5	5	5	5
	1250 ppm	5	5	5	5	5	5	5	5	5	5	5	5	5	7
	2500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
DRNEAL OPACITY	Control	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	, 1	1	1	1	1	1	1	1	1
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	Ö	0	0	Ô	Ö	Ō	Ō	0	Ö	Õ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	Ō	Ō	0	Ō
(TERNAL MASS	Control	9	9	9	9	9	9	10	10	11	11	10	10	11	11
	625 ppm	5	6	6	7	7	7	7	7	8	9	9	11	11	11
	1250 ppm	6	6	6	6	7	8	8	8	7	7	8	8	8	8
	2500 ppm	2	4	5	5	5	5	5	6	5	5	5	5	4	5
NTERNAL MASS	Control ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	1	1	1	2	1	1	ī	ŏ	Õ	ĭ	1	1	1
	1250 ppm	Ō	Ó	Ò	Ò	ō	Ö	ò	i	ŏ	Õ	i	i	1	i
	2500 ppm	0	0	0	Õ	ĭ	Ô	ő	ò	ő	ő	ò	Ö	ò	Ó
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	ī	1	1	ī	ĺ	1	ĺ	1	1	1	ĭ	ĭ	1	1
	1250 ppm	Ô	Ö	Ö	Ö	ò	Ö	Ö	ò	ò	ò	ò	ò	ò	'n
	2500 ppm	Ō	0	Ö	Ö	Ô	ŏ	Ö	ŏ	0	Ö	ő	Ö	0	1
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	Õ	Õ	Ö	Ŏ	0	0	0	0	n	0	0	0	0	n
	1250 ppm	ő	Ö	Ö	Õ	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	υ 1	1	1	U 1	U 1	บ 1	1	1	U	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day _			
		99-7	100-7	101-7	102-7	103-7	104-7
SOILED PERI-GENITALIA	Control	0	0	0	0	1	1
	625 ppm	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0
	2500 ppm	1	1	1	1	Ō	ō
EVODUTUAL MOC				_	_	_	_
EXOPHTHALMOS	Control	1	1	0	0	0	0
	625 ppm	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1
CATARACT	Control	5	E	-		_	_
On Diagnos	625 ppm	5 5	5 5	5 5	5	5	5 5
					5	5	
	1250 ppm	7	7	7	7	7	7
	2500 ppm	2	2	3	2	2	2
CORNEAL OPACITY	Control	0	0	1	1	1	1
	625 ppm	1	1	2	3	2	2
	1250 ppm	Ö	ò	0	0	0	0
	2500 ppm	1	1	บ 1	1	1	1
	EGGG PPIII	•	,	'	'	ı	ı
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0
	625 ppm	Ō	Ö	Ö	1	ŏ	ő
	1250 ppm	Ö	Ö	Ö	Ö	Ö	0
	2500 ppm	Ö	Ö	Ö	ő	Ö	0
	, , , , , , , , , , , , , , , , , , , 	•	•	•	•	•	v
EXTERNAL MASS	Control	12	12	13	13	13	12
	625 ppm	11	9	10	10	11	12
	1250 ppm	7	7	8	8	8	7
	2500 ppm	5	6	6	4	4	6
		-	-	-	•	•	Ť
INTERNAL MASS	Control	1	1	4	4	4	3
	625 ppm	1	Ó	Ö	1	i	1
	1250 ppm	Ò	Ö	Õ	Ö	ò	Ö
	2500 ppm	Ö	Ö	Ö	Ö	Ö	Ö
H NOCE							
M. NOSE	Control	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1
M. EYE	Control	0	0				0
	625 ppm	0		1	1	1	0
	1250 ppm	0	0	0	0	0	0
	2500 ppm	0	0 0	0	0	0	0
	5000 bhill	U	U	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Adminis	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DED L MOUTH			_	_	_										
I. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Ō	0	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö
1. PERI EAR	Control	0	0	0	0	0	0	0	0	n	0	0	0	0	O
	625 ppm	Õ	ő	ŏ	Õ	Ö	Ö	Õ	Õ	0	n	0	0	Ö	n
	1250 ppm	ő	Ö	Õ	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	. 0	0
I. NECK	Control	n	0	0	0	0	0	۸	0	0	n	0	0	0	0
HEON	625 ppm	0	0	-	-	•	-	0 .	-	-	•	•	-	•	0
		Ü	-	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	,0	0	0	0
FOREL IMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	0
	625 ppm	ñ	Õ	Õ	ŏ	Ö	Ö	Ô	0	0	ñ	Õ	Õ	0	0
	1250 ppm	n	0	0	0	0	0	0	-	-		-	-	-	U
	2500 ppm	0	n	0	0	0	0	0	0	0	0	0	0	0	0
		U	U	U	U	U	U	U	U	0	U	U	U	0	U
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	Ö	Ō	Ō	Ö	Ō	Ō
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	O
	625 ppm	õ	Ö	Ö	0	Ö	Ô	0	0	0	0	0	0	0	0
	1250 ppm	ñ	Ö	0	0	0	0	0	0	0	0	0	0	0	-
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. POSTERIOR DORSUM	Control	n	0	0	0	0				•		•	•	•	
TOUR DONOUN		U	0	0	0	0	0	0	0	0	U	0	0	0	Ü
	625 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ω	0	Ö	Ō	Ō	Ö	Ō	Õ	Ŏ	Õ	ñ	Õ	Ö

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

2EX : WALE		•													PAGE: 1
Clinical sign	Group Name	Admin	istration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
M. PERI-MOUTH	Control	0	0	0	0	0	n	0	0	0	0	n	0	0	0
III. I EKT WOOTH	625 ppm	0	0	0	0	0 0	0	0	0	0	0 0	0	0 0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. FORELIMB	Contro!	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Ö	.0	Ö	Ö
	1250 ppm	0	0	0	0	0	0	Ö	Ō	Ō	Ō	Ö	Ö	Ö	Ō
	2500 ppm	0	0	0	0	0	0	0	0	. 0	Ō	0	Ō	Ō	Ō
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ō	Ō	Ō	ō	Ŏ	Ö	Ō	Ö	ō	Õ
	1250 ppm	0	0	0	Ô	Ō	Ō	ō	Ö	Ö	Ö	Ŏ	Ŏ	Ö	Ö
	2500 ppm	0	. 0	0	0	0	Ō	Ö	Ō	Ō	Ö	Ď	Õ	ก	ñ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

															IAGE
Clinical sign	Group Name	Admini	istration W	leek-day	,										
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DER LIGHT															
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	2500 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ō	Ö	Ō	Ö	Ö	Ŏ	Ö	Ö	Ö	ŏ	ŏ	ŏ	ŏ
	1250 ppm	0	Ō	Ō	Ō	Ô	Ö	Õ	Õ	Õ	Ö	Õ	Õ	ŏ	Ö
	2500 ppm	0	Ō	Ö	Ō	Õ	Ö	ŏ	ŏ	Ö	ő	ő	Ö	ő	Ö
I. NECK	Control	0	0	0	0	0	0	0	. 0	0	0	n	0	0	0
	625 ppm	ñ	Ō	Ö	Ö	Ö	Õ	ŏ	Ô	Ô	ň	Ô	. 0	Õ	Õ
	1250 ppm	ő	Õ	Õ	0	Ö	0	Ö	0	0	n	0	0	0	0
	2500 ppm	0	Ö	0	0	Ö	0	0	0	0	0	0	0	0	0
I. FORELIMB	Control	n	0	0	0	O	0	0	0	a	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	-	-	
	1250 ppm	0	0	0	0		-		-	_	•	_	0	0	0
	2500 ppm	0	_			0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ó	Ō	Ō	Ō	Õ	Ō	Ö	Ö	Õ	ō
	1250 ppm	0	0	0	Ō	Ō	Ŏ	Ö	Õ	Õ	ŏ	Ŏ	Ö	ő	Ö
	2500 ppm	0	Û	Ö	Ŏ	Õ	Ö	Ŏ	Õ	ő	Ö	Ô	0	0	Ö
ANTERIOR. DORSUM	Control	0	0	0	n	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	Ö	0	0	Ö	0	0	0	0	0	0	0	0	U N
	1250 ppm	ñ	Ö	Õ	Ö	0	0	-	-	•	-				U
	2500 ppm	0	0	0	0			0	0	0	0	0	0	0	1
		U	U	U	U	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0.	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	O	0	0
	2500 ppm	0.	0	0	0	0	0	0	. 0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-day											
	4	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
PER I-MOUTH	Control	٥	0	0	0		0	0	0	0	0	٥		٥	
FERT-MOUTH	625 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	U	0
		0		0	0	0	0	0	0	0	0	0	0	0	ı
	1250 ppm	-	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1.	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ö	ŏ	Ö	ŏ	Ö	ŏ	ŏ	Õ	Ŏ	Ö	Õ	ŏ	Õ	ŏ
	1250 ppm	Ō	ō	Ö	Ö	Ö	ŏ	Õ	Õ	Ö	Ö	Ö	. 0	Ö	ñ
	2500 ppm	Ö	ŏ	Õ	Ö	ŏ	Ö	Ö	0	0	0	Ö	Ö	0	0
I. NECK	Control	0	0	0	0	0	0	0	ß	n	0	n	0	0	n
. NEOK	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	1250 ppm	0	-	-		-		_	-	•	•	•	-	-	U
	2500 ppm	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0
	2000 թիլո	U	U	U	U	U	U	U	U	0	U	U	U	U	U
. FOREL IMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	Ō	Ō	Ō	Ö	Ö	Ö	ō	Ō	Ö	Ö
	2500 ppm	0	0	Ō	Ō	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ŏ	Ö	Ö
. BREAST	Control	0	0	0	0	0	•	0	0		^	•			•
- DKENST	625 ppm	0	. 0	-			0	U N	0	0	0	0	0	0	0
	1250 ppm	•	•	0	0	0	0		0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0
	2000 թիու	U	U	U	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	625 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	Λ
	625 ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ô	n	0	0	0	0	0	0	0	0	0	U 1	U	U
	2000 ppili	v	U	υ	υ	U	U .	U	U	U	U	U	ı	ı	ı
POSTERIOR DORSUM	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	· 0	0	0	0	0	0	0	Ö	Ō	Ō	Ō
	2500 ppm	n	0	0	0	0	0	0	0	0	Ō	0	ñ	Ō	Ō

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 21 Clinical sign Group Name Administration Week-day

Clinical sign	Group Name	Admini	stration W	leek-day _											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0		•	0
M. FERT-MOUTH		1	U	0	0	0	0	0	0	0	0	0	1	0	0
	625 ppm	ı	ı	0	0	0	0	0	0	0	0	0	0	0	0
•	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	U	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	Ð	0	0	0	0	0	0	0	0	0	n	n
	625 ppm	0	Ō	Ō	Ō	Ō	Ö	Ö	Ö	Ö	Ö	ō	Õ	Ď	ñ
	1250 ppm	Õ	Õ	ŏ	Ö	Ö	Õ	Ŏ	Ö	Ö	Ö	ŏ	Õ	Õ	õ
	2500 ppm	Ö	Ö	Ö	Ŏ	ő	Ŏ	ŏ	1	1	1	1	1	ŏ	1
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
III HEOR	625 ppm	0	n	. 0	0	0	0	0	0	0	Ö	n	n	0	n
	1250 ppm	0	0	0	-			-	-	-	•	U	0	0	0
	2500 ppm	0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	U
	2300 ppiii	U	U	U	U	0	U	U	U	U	U	U	U	U	U
M. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	1	1	1	i	1	1	1	1
	625 ppm	0	0	Ō	0	Ō	Õ	Ö	Ò	ò	'n	'n	'n	'n	'n
	1250 ppm	Ō	Ō	Ö	Ö	ŏ	ŏ	ŏ	Ö	ŏ	Õ	Õ	ñ	n	ñ
	2500 ppm	Ō	ō	Ö	Ö	ŏ	ő	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Ö
M. ABDOMEN	Control	1	1	1	1	1	2	2	2	2	2	2	2	9	2
	625 ppm	i	i	1	1	i	1	1	1	1	1	2	1	2 2	2
	1250 ppm	i	i	1	1	- 1	1	i	i	1		1	1	4	4
	2500 ppm	Ö	Ó	Ö	ò	Ó	0	Ó	Ó	0	0	n	0	'n	0
				Ť	•	·	Ū	·	·	Ü	v	·	·		Ū
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	O	n	n
	625 ppm	Ō	Ö	Ö	Õ	ŏ	Ö	Ö	Ô	Ö	0	ñ	n	n	ñ
	1250 ppm	ŏ	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Õ	Ö	0	0	0	0	0	0	0	0	0	0	0
		ŭ	·	U	U	U	v	v	U	v	v	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	ak-dav				· · · · ·							
Timical Sign	uroup italie	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
															
PERI-MOUTH	Control	0	0	0	1	1	1	0	0	0	0	0	0	0	0
	625 ppm	Õ	Ö	Õ	ò	ò	ò	Ö	Ö	Ö	Ö	Ô	Õ	Ö	Õ
	1250 ppm	ő	Ö	Õ	Ö	0	Ö	Ö	Ö	0	0	Û	Õ	0	ñ
	2500 ppm	1	1	0	0	0	Ô	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	i	1	ī	ĩ	Ĭ	ĭ	ī	ī	1	i	1	1
	2500 ppm	0	Ö	Ó	ò	0	Ö	ò	Ö	0	Ö	Ö	ò	Ö	ò
PERI EAR	Control	0	0	0	0	0	0	0	Ð	0	0	0	0	1	1
•	625 ppm	Ô	Ō	Õ	Ö	Ō	Ö	Ŏ	ñ	ō	Õ	ñ	Ō	ò	'n
	1250 ppm	Ö	Ö	Õ	Ö	Õ	Ö	0	Õ	Ö	Ö	ñ	Ô	Ô	0
	2500 ppm	- 1	1	1	1	0	0	0	0	0	0	0	0	0	0
NECK	Control	a	a	0	0	0	0	0	0	0	0	O	0	0	0
	625 ppm	ñ	ő	Ö	Ö	Ö	0	0	Ô	Ô	0	Õ	0	0	0
	1250 ppm	0	Ö	0	0	0	0	0	0	•	_	-	_	0	_
	2500 ppm	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORELIND	625 ppm	0	0	0	0	0		0	0	-	0	-	0		0
	1250 ppm	0	0		-		0	-	-	0	-	0	-	0	_
		U	-	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	2	2	2	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	625 ppm	2	2	2	3	3	3	3	3	3	3	3	3	3	2
	1250 ppm	1	1	ī	Ĭ	ī	1	Ŏ	Õ	ŏ	ŏ	ŏ	ŏ	Õ	ō
	2500 ppm	0	Ô	0	Ô	Ö	ò	ő	Ö	Ö	ŏ	ŏ	Ö	ŏ	Ö
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	1	1	2	2	2	2	2
	625 ppm	Ō	Õ	ŏ	Ö	Ö	Ö	Ŏ	ò	ò	Ō	Õ	Õ	Õ	Ō
	1250 ppm	1	1	1	1	1	2	2	2	2	2	2	2	2	2
	2500 ppm	ò	Ò	Ó	Ö	Ó	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	n	0	1	1	1	1 .	1	1	1	1		1	1	1
DONOUM	625 ppm	u n	1	1	1		!	•		I 4	!	1	!	1	l
	025 ppm 1250 ppm	U	•	!	!	!	!	1	1]	1	1	1	1	1
		ı	1	l	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration We	ek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	947	95-7	96-7	97-7	98-7
					•	· •									
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	Ô	Ô	Ö	Ö	Ò	Ò	Ò	Ö	ó	Ö	Ö	ò	ò	Ò
	1250 ppm	0	Ō	Ō	Ō	Ö	Ö	Õ	Ö	Ŏ	ŏ	Ŏ	Ŏ	Ö	Ö
	2500 ppm	Õ	Õ	Ö	Ö	Ő	Ö	Ö	Ö	ő	ő	ĭ	1	1	1
NECK	Control	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	625 ppm	Ō	Ō	Ö	ō	Õ	Ō	Ö	Ö	ò	ò	ò	Ö	Ö	Ö
	1250 ppm	ñ	Ö	0	0	0	0	0	0	0	Ö	0	0	0	0
	2500 ppm	ő	ĭ	1	1	1	1	1	1	0	0	0	0	0	0
FORELIMB	Control	a	0	0	0	0	0	0	0	1	1	1	1	1	1
	625 ppm	ŏ	ő	Ö	ő	Ö	Ö	Ö	0	ò	ò	Ó	Ó	ò	Ó
	1250 ppm	Ö	Õ	Ŏ	ő	Ö	Ö	Ö	0	0	Ö	0	Ö	0	0
	2500 ppm	Ö	Ö	Ö	Ö	0	0	0	0	0	Õ	0	Ö	Ö	Ö
BREAST	Control	1	1	1	1	1	1	1	1	1	1	. 1	1	1	
Siterior	625 ppm	2	2	2	2	2	2	2	2	3	3	3	4	4	<u> </u>
	1250 ppm	'n	0	Õ	Û	Ó				3 1	3 1	ა 1	1	•	4
	2500 ppm	1	1	2	2	2	1 2	1 2	1 2	2	2	2	ι 2	1 2	2
ABDOMEN	Control	2	3	3	3	3	3	4	4	4	A	9	3	2	2
	625 ppm	2	3	3	4	3 4	3 4	4	4 4	4	4	3	3 4	3 4	3 4
	1250 ppm	0	0	0	0	0	0	0	4	4	4	4 1	4	4	4
	2500 ppm	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	3	3	3	3	3	3	2	2	2	2	2	2	9	2
	625 ppm	n	0	0	ა 0	3 0	ა 0		2	2			_	2	_
	1250 ppm	2					-	. 0	0	0	0	0	0	0	0
	2500 ppm	0	2 0	2	2	2	2	2	2	2	2	2	2	2	2
	2000 իիա	U	U	0	0	0	. 0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	2	2	2
	1250 ppm ·	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	2500 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day
Clinical sign Group Name Administration Week-day 99-7 100-7 101-7 102-7 103-7 104-7
1. PERI-MOUTH Control 0 0 0 0 0
625 ppm 0 0 0 0 0
1250 ppm 0 0 0 0 0 0
2500 ppm 0 0 0 0 0 1
EAR Control 1 1 1 1 1 1
625 ppm 0 0 0 0 0
1250 ppm 1 1 1 1 1 1 1
2500 ppm 0 0 0 0 0 0
PERIEAR Control 1 1 1 1 1
625 ppm 0 0 0 0 0
1250 ppm 0 0 0 0 0 0
2500 ppm 1 1 1 0 0 0
NECK Control 1 1 1 1 1 1
625 ppm 0 0 0 0 0
1250 ppm 0 0 0 0 0 0
2500 ppm 0 0 0 0 0
FORELIMB Control 1 1 1 1 1
625 ppm 0 0 0 0 0
1250 ppm 0 0 0 0 0
2500 ppm 0 0 0 0 0
L BREAST Control 1 1 1 1 2 2
2500 ppm 2 2 2 1 1 2
LABDOMEN Control 4 4 4 4 4
625 ppm 4 2 2 1 1 2
2500 ppm 0 0 0 0 0
I ANTERIOR DORSUM Control 2 2 2 2 2 2
625 ppm 0 0 0 0 0
2500 ppm 0 0 0 0 0
I POSTERIOR DORSUM Control 1 1 1 1 1 1
625 ppm 2 2 3 3 3 3
1250 ppm 2 2 2 2 2 2 2500 ppm 1 1 1 1 1 1
. Состория 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

															FAGE . 2
Clinical sign	Group Name	Adminis	tration We	ek-day _											
		1-7	2-7	3-7	4–7	5-7	6-7	7-7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
M IIINDI IMD			•						_	_	_		_	_	_
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm 2500 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ö	Ō	Ō	Ō	Ō	0
	1250 ppm	0	0	0	0	0	Ō	Ō	Õ	Ö	Ö	ō	Ö	ō	Ö
	2500 ppm	0	0	0	0	0	0	0	Ō	Ō	0	Ō	0	Ō	Ō
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JAUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	Ô	Ö	Ō	Ō	Õ
	1250 ppm	0	0	0	0	0	0	Ö	Ö	0	Ō	Ō	Ō	Ō	ō
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō	Ō
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	Ö	Ō	Ō	Ö	Ö	Ö	Ö	Õ	ŏ	Ö	ŏ
	1250 ppm	0	0	0	Ō	Ō	Ö	Ŏ	Ö	Ö	Ŏ	ŏ	Ŏ	Ö	Ŏ
	2500 ppm	0	0	0	0	0	Ō	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ö
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ō	Ö	Ö	Ö	Õ	Ö	Ô	0	Õ	Õ	ñ	0	ñ
	1250 ppm	Ō	Õ.	Ö	Ö	Õ	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	0
	2500 ppm	0	0	Ō	Ō	Ō	Ö	Ö	Ŏ	Ö	Õ	Ŏ	ň	Ô	Õ

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
I. HINDLIMB	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
. IIINDE IND	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	O D	0	. 0
	2500 ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ô
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ō	Ö	Ō	Ō	Ö	Ö	Ō	Ö	Ŏ	ŏ
	1250 ppm	0	Ō	Ō	ō	ŏ	Ö	ŏ	ŏ	ŏ	Ö	ŏ	ŏ	ŏ	ő
	2500 ppm	n	n	0	Ō	Ō	ō	Õ	Õ	Õ	Õ	ŏ	ŏ	Õ	Õ

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
HINDLIMB	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
III NOE IMO	625 ppm	0	0	0	0	0	0	0	ı 1	0	0	0	0	0	0
	1250 ppm	0	0	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	ő	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	625 ppm	0	0	0	0	0	Ō	Ō	Ö	0	ō	ō	Ŏ	Õ	Ō
	1250 ppm	0	0	Ō	Ö	Ŏ	ō	ŏ	ŏ	Ö	ŏ	ŏ	Ö	Ö	ŏ
	2500 ppm	0	a	Ô	0	Ō	Õ	Õ	Õ	ŏ	Õ	Õ	Ö	Õ	ŏ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

DEA . MALE															PAGE
Clinical sign	Group Name		stration W	eek-day _											
	· · · · · · · · · · · · · · · · · · ·	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0,	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ö	ō	ŏ	Ö	Ö	Ö	Ö	Õ	Ö	Õ	Ö	Ô	ñ	Õ
	1250 ppm	Ō	Ō	ō	Ō	Ö	Ö	Ŏ	Õ	Õ	Õ	Õ	Ô	Ô	ő
	2500 ppm	Ö	ŏ	ő	Ö	Ö	Ŏ	0	0	0	0	0	Ö	0	Ö
IEM I A	Control	n	O	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Ö	Õ	0	0	0	0	0	0	Ô	0	0	0	0
	1250 ppm	Õ	Ö	Ö	0	0	0	0	0	0	0	0	0	0	. 0
	2500 ppm	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Ö	0	Ô	0	0	0	0	0	0	0	n	0	0
	1250 ppm	n	0	0	0	0	0	0	0	-	0	0	0		•
	2500 ppm	0	0	0.	0	0	0			0	-	-	-	0	0
	2000 ppiii	U	U	U	U	U	U	0	0	0	0	0	0	0	0
.CER	Control	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô
	1250 ppm	0	0	0	0	0	0	0	Ö	0	0	Ō	ō	ō	Ō
	2500 ppm	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	ō	Ö	ŏ
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	0	Ō	Ō	Õ	Ö	Õ	ŏ	ŏ	Ö	Ö	Õ	n	Ö	0
	1250 ppm	1	ĭ	ĭ	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	Ô	Ö	Ö	ò	ò	ò	ò	Ö	Ö	Ö	Ó	Ô	ò	ò
MORRHAGE	Control	n	0	0	0	0	0	0	0	n	n	0	0	n	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	U	0	0
	1250 ppm	0	0		-			-		0	0	0	U	0	0
	2500 ppm	0	U D	0	0	0	0	0	0	0	0	0	Ü	0	0
	ակկ սսեշ	U	U	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

															TAUL .
Clinical sign	Group Name	Admin	istration W	leek-day _											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
L IIINDI IND		_	_				_								
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	625 ppm	Ô	Ö	Õ	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ö	Ö	0	Õ	0	Õ	0	0	. 0	0	0	0	0
ANEMIA	Cantual	n	0	•			•			•				_	_
ANEMIA	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JAUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	Ō	0	0	Ō	Ō	Ō	Ō	Õ	Õ
	1250 ppm	0	0	0	Ō	Ō	Ō	Ō	Ö.	Ō	Ö	Ö	Ö	Õ	Õ
	2500 ppm	0	0	0	0	0	Ō	0	0	Ō	Ö	Ö	ō ·	Õ	Ō
JLCER	Control	. 0	O	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	n	0	0	0	0	0	0	0				0	_
	1250 ppm	0	0	0	0	0	0	-	0	_	0	0	0		0
	2500 ppm	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0
	2000 ppiii	U	U	U	U	U	U	U	U	U	0	U	U	U	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	Ō	Ö	Ö	Ö	Ö	Ö	Ö	n	0	0	0	Ö	0	Û
	1250 ppm	Õ	Õ	Ö	Ö	0	Ö	0	0	0	0	0	0	0	0
	2500 ppm	Ŏ	Ŏ	Ö	0	0	Ö	0	0	Ö	0	0	0	0	0
TORTICOLLIS	Control	n	0	0	0	0	٥	0	0	0	•	•			
	625 ppm	n u	0	0	o O	0	0	0	0	0	0	0	0	ļ	1
	1250 ppm	U N	0	_	-	0	0	0	0	0	0	U	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2000 թթու	U	U	0	0	0	0	0	0	. 0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

															FAUE .
Clinical sign	Group Name		stration We												
		71-7	72-7	73-7	74-7	75–7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
.HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0 ·	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ö	ñ	Ō	Ō	ō	Ō
	1250 ppm	Ô	Ö	Ō	Ö	1	1	1	1	ĭ	1	1	1	1	1
	2500 ppm	Ö	Ö	ŏ	ő	ò	ò	ò	Ö	Ò	ò	Ó	Ö	Ö	Ó
IEMIA	Control	0	0	0	0	0	0	0	1	0	0	0	0	0	1
	625 ppm	ñ	Ö	ŏ	ő	Ö	Ö	Ô	ò	0	ñ	0	0	Ö	Ó
	1250 ppm	ň	Ö	Ö	Ŏ	0	Ö	0	0	0	0	0	. 0	0	0
	2500 ppm	0	0	ő	0	0	Ö	0	0	0	0	0	0	0	0
UNDICE	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Ö	Ö	0	Ö	0	0	0	Ö	0	0	0	0	0
	1250 ppm	ņ	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U U	0	0							-			-	-
	2900 ppm	U	U	U	0	0	0	0	0	0	0	0	0	0	0
.CER	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	Ô	Ô	Ó	Ô	Ó
	1250 ppm	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Õ	Ö	Ö	Õ	Õ
	2500 ppm	0	Ō	Ō	Ö	Ö	Ö	Ö	Ö	ŏ	ŏ	ő	ŏ	ő	ŏ
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō ·	Ö	Ö	Ö	Õ	Ö	Ö	0	Ö	Õ	0	Ö	Ö	Ö
	1250 ppm	ñ	Ö	0	0	0	Ö	0	0	0	0	0	0	0	0
	2500 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	a	0	0	0	0	٥	٥
· · · · · · ·	625 ppm	n	0	0	0	0	0	0	•		-	-		0	0
	1250 ppm	0	0						0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

															TAGE .
Clinical sign	Group Name	Admini	stration W	ek-day											
	·	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
HINDLIMB	0 1 1	•			_			_	_		_		_		_
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	O
	1250 ppm	1	1	1	1	2	2	2	2	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô
	2500 ppm	0	0	0	0	0	0	0	1	1	1	0	0	0	Ō
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	625 ppm	ŏ	ŏ	Õ	Ö	Ö	Ŏ	Ö	0	Õ	Õ	0	Ö	ò	Ó
	1250 ppm	1	1	1	1	ĭ	1	1	1	1	1	1	1	1	1
	2500 ppm	0	Ö	Ó	Ó	Ö	Ó	Ö	Ö	Ö	Ó	Ö	Ó	Ó	Ó
NEMIA	Control	0	0	۸	٥	•	•		٥.	0		•		•	
CMIX		U		0	0	0	0	0	0.	0	1	0	0	0	1
	625 ppm	U	0	1	1	1	0	0	0	0	3	2	2	0	1
	1250 ppm	0	0	0	0	0	0	0	1	0	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	Ō	1	1	1	1
	2500 ppm	0	0	0	Ō	ō	ō	ō	Ö	ŏ	ŏ	ò	Ò	Ö	ò
.CER	Control	1	1	1	1	1	1	1	1	1	1	0	0	0	0
	625 ppm	'n	Ö	Ó	ò	Ö	ò	Ö	Ö	Ó	Ó	1	1	ų,	1
	1250 ppm	0	0	Ö	0		-			o n	-	1	•	ı	1
	2500 ppm	0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0
	2000 ppiii	U	υ	v	U	U	U	0	0	U	0	I		0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	Ö	ō	ŏ	ŏ	ŏ	Ŏ	Õ	Ô	ñ	Ö	0	0	n
	1250 ppm	ñ	Ö	Ö	ŏ	Ö	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	Ö	ŏ	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control											-	_	_	
MITOULLIG		1	ı	!	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCr|Cr|j [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Adminis	stration W	leek-day	100.7	400.7		
72-1-1		99-7	100-7	101-7	102-7	103-7	104-7	
M. HINDLIMB	Control	0	0		•	0	0	
W- IIINULIMD		0	0	0	0	0	0	
	625 ppm	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
M.GENITALIA	Control	0	0	0	0	0	0	
	625 ppm	1	1	1	1	1	1	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	1	1	1	1	1	
M. TAIL	Control	1	1	1	1	1	1	
	625 ppm	Ö	Ò	Ö	ò	Ò	ò	
	1250 ppm	i	1	ĭ	1	1	i	
	2500 ppm	0	Ò	Ö	ò	Ö	Ö	
ANEMIA	Control	1	n	2			2	
SINCHIA	625 ppm	2	2 2	3	4	4	3	
	1250 ppm	_		2	2	2	2	
		0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	1	
JAUNDICE	Control	0	0	0	. 0	1	1	
	625 ppm	1	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
ULCER	Control	0	0	0	0	0	0	
	625 ppm	1	1	1	1	1	1 .	
	1250 ppm	ò	Ö	ò	Ö	Ö	Ö	
	2500 ppm	Ö	Ö	0	0	Ö	Ö	
CRUSTA	Control	0	•	•	•			
JKU3 I K	625 ppm	0	0	0	0	0	0	
		0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
1 EMORRHAGE	Control	0	0	0	0	0	0	
	625 ppm	0	0	0	Ö	Ō	ĺ	
	1250 ppm	0	0	Ō	Ō	Ō	Ö	
	2500 ppm	0	0	0	0	Ö	Ō	
TORTICOLLIS	Control	1	1	1	1	1	1	
	625 ppm	'n	ò	Ó	Ö	Ó	0	
	1250 ppm	0	Ö	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	TOOG PPIII	U	U	U	U	U	U	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	la alc. day											
illitai Sigii	Group Name	1-7	2-7	eek-day 3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	Ó	Ō	Ó	Ō	0	Ō
	1250 ppm	0	0	0	Ô	Ō	Ō	Ö	Ö	Ō	ō	Ō	ō	ō	ō
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	Ō	Ö
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0 ,	0	0	0	0	0	0	0
EEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0
	2500 ppm	47	50	50	50	50	50	50	50	50	50	50	50	50	50
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	.0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0
,	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	49	49	49	49	49
	625 ppm	50	50	50	50	50	50	50	49	49	49	49	49	49	49
	1250 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	49
	2500 ppm	3	0	0	0	0	0	0	0	Ö	Ö	0	0	0	Ö

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
·		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	Ö	Ö	Ö	Ö	Õ	Ö	Õ	Õ	Õ	ň	Ö	Ô	0
	1250 ppm	ñ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Õ	Ô	Ö	0	Ô	0
	2500 ppm	ñ	Õ	Ö	Ô	0	Ô	0	0	0	0	n	0	0	0
	2000 PP.III	ŭ	•	·	·	•	v	Ü	Ü	Ü	v	Ů	v	v	·
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	Ō	Ō	Ō	Ô	Ď	Õ	Ö	ō	ñ
	1250 ppm	. 0	Ō	Ö	Ö	Ŏ	Ö	Õ	Ŏ	ő	Ö	Õ	Õ	Ö	Ö
	2500 ppm	Ď	Ď	Ö	Ö	Õ	ñ	Õ	Ö	0	Û	Û	0	0	0
	LOGG PPIII	Ü	U	U	U	U	U	υ	U	U	v	. "	U	U	U
EP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ō	Ō	Õ	ō	Ö	Ŏ	Ö	Õ	ŏ	Ŏ	Õ	ō
	1250 ppm	Õ	ŏ	Ö	Ö	Ö	Õ	Ö	Ö	0	Û	Ö	Ö	n	n
	2500 ppm	ñ	Ö	0	0	0	0	0	0	0	n	0	0	0	0
	LOGO PPIII	v	v	U	U	U	υ	U	U	U	U	U	U	U	U
LLOW URINE	Control	0	0	0	0	0	0	0	0	n	Λ	0	0	0	0
	625 ppm	Ô	Ō	ō	ō	Ö	Ō	Ŏ	ñ	ñ	ň	Ö	Ö	Õ	ň
	1250 ppm	. 0	Ö	Ö	Ö	Ö	Ö	0	0	Û	Ô	0	Õ	Ö	0
	2500 ppm	n	Ô	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	2000 ppm	Ū	·	U	U	U	U	U	U	v	U	U	U	U	U
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Ŏ	Õ
	1250 ppm	0	0	Ō	Õ	Ö	Õ	Õ	Ö	ő	Ö	Ŏ	Ŏ	Ö	Ö
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
						••		• • •		• • • • • • • • • • • • • • • • • • • •	•••	•	00	•••	•
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0 ·	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	Ö	Ō	Ō	Ō	Ó
	2500 ppm	0	0	0	0	0	Ō	Ō	Ŏ	Õ	ō	ō	Ö	Õ	Ö
ICO CTOOL				_	_										
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	40	40	40	40	40									
IN NEMARKADLE	Control	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	625 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	1250 ppm	49	48	48	48	48	48	48	48	48	48	48	48	48	48
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

inical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
COLAPSE OF PENIS	Control	0	0	0		0	0	0	0	0	•	•		•	
COLAFSE OF PENTS	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	. 0	0		_	_	-	-	0	U	0	0	0	U
	2500 ppm 2500 ppm	0	0	0	0	0	0	0	0	0	U	0	0	0	U
	2500 ppm	U	U	U	0	0	0	0	0	0	0	0	0	0	U
EGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	Ō	0	Ō	Ö	Ō	ō
	1250 ppm	0	0	0	Ō	Ō	Ö	Ö	Ō	Ō	ñ	Ŏ	ō	Ō	Ö
	2500 ppm	0	0	0	Ō	Ö	Ō	Ö	Ö	0	Õ	Ö	Ö	Ö	ŏ
P BREATHING	Control	0	0	0	0	0	0	0	0	0	a	0	٥		0
I BREATHING	625 ppm	0	0	0	0	0		0	0	0	U	0	0	0	U
	1250 ppm	0	0	0		_	0	-	0	•	U	-	0	0	U
	2500 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
	2300 ppm	U	U	U	0	0	0	0	0	0	0	0	0	0	0
LOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	Ö	0	Ō	Ō	Õ	Ō	Ō	Ō
	1250 ppm	0	0	Ō	Õ	Ö	Ō	Õ	Ö	Ö	Ö	Õ	ŏ	Ö	Ö
	2500 ppm	0	ō	Ö	Õ	Ö	Õ	ŏ	ŏ	ŏ	Ö	Ŏ	Ö	Ö	Ö
WN URINE	Control	n	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ö	ŏ	Ö	Ö	Ö	Ô	ŏ	0	n	0	0	0	0	0
	1250 ppm	ő	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
LL STOOL	Control		0	•		_	_	_	_	_	_	_	_	_	
ILL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	1250 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ō	Ō	Ö	Õ	Ö	ŏ	Ö	Ö	Õ	Õ	Õ	ő
	1250 ppm	Ō	ŏ	Ö	Ö	Ö	ŏ	Ö	Ö	0	0	Ŏ	n	0	Ö
	2500 ppm	Ö	Ö	Ö	ő	0	ŏ	Ô	0	0	0	Ö	0	0	0
REMARKABLE	Control	40	40	40	40	40	40	40		40					
KEMAKKADLE		49	49	49	49	49	49	49	49	49	49	48	48	48	47
	625 ppm	49	48	48	48	48	48	47	47	47	47	47	47	47	47
	1250 ppm	48	48	48	48	-48	47	46	46	46	46	46	46	46	45
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	aroup numb	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	. 0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	n	n	0	0	0	0
	625 ppm	0	0	0	Ō	Ō	Ŏ	Ö	Ö	ŏ	Ŏ	Õ	ŏ	Õ	Õ
	1250 ppm	0	0	Ö	Ō	Ö	Ö	Ö	Ŏ	Ŏ	Õ	Ô	Ö	Ö	Ö
	2500 ppm	0	Ō	Ö	Ö	Õ	Ö	Ö	Ö	ŏ	Ö	Ö	Ö	Ö	ő
YELLOW URINE	Control	0	0	0	0	0	O	0	0	0	0	0	0	0	n
	625 ppm	0	Ō	Ö	Ō	. 0	Ö	Õ	Õ	ñ	ő	ñ	Ď	Õ	ñ
	1250 ppm	ō	Ō	Ö	Ō	Ö	Ö	Ö	Ŏ	Õ	Ô	Õ	Ô	Ö	Ô
	2500 ppm	ō	Ö	Ö	ŏ	Ö	ŏ	ŏ	ŏ	ŏ	Ö	Ö	Õ	Ö	Ô
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	O	0	0	0	0
	625 ppm	Ō	Ō	ō	Õ	Ö	Ö	ő	Ö	ň	ñ	ő	Õ	0	ő
	1250 ppm	Õ	ŏ	Ö	ő	Ö	Ö	Ô	Ö	n	Ô	Ö	Ö	0	Ö
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SMALL STOOL	Control	O	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Õ	Ö	Ö	Õ	Õ	Ö	Õ	0	Ô	Ö	0	0	0
	1250 ppm	ñ	Ö	Ö	0	Ö	0	0	0	0	0	0	. 0	0	0
	2500 ppm	ő	ŏ	Ō	0	Ö	0	0	0	Ö	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	0
	625 ppm	õ	.0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ď	Ô	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	0	Ö	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	47	46	47	47	47	47	47	47	47	47	47	47	47	46
	625 ppm	47	46	46	46	46	47 45	47	47 45	41 45	4 <i>1</i> 45	44	41 44	41	
	1250 ppm	45	45	45	44	44	42								42
	2500 ppm	43	0	0	0	0	42 0	42	42	42	42	42	42	42	42
	2300 PPIII	U	υ	U	U	U	U	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	laak-day								*****			
orringar orgin	di oup italie	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ō	Ō	Ō	Ō	Õ	Ö	Ö	ō	ñ	ñ	Õ	ň
	1250 ppm	ก	ñ	Õ	ő	Ŏ	ŏ	Ŏ	Ö	Ö	Ö	ñ	ñ	Õ	ñ
	2500 ppm	ő	ŏ	0	Ö	Ö	0	0	0	0	0	0	0.	0	0
DEEP BREATHING	Control	n	n	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	ñ	Ô	Ô	0	0	0	0	0	0	n n	0	n	0	0
	1250 ppm	ñ	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	n	0	0	0	0	0	0	0 N	0	0	0	0	0	0
	2000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	1250 ppm	0	0	0	0	0	1	0	0	Ó	0	0	0	0	Ō
	2500 ppm	0	0	Ō	Ō	Ō	Ô	ō	ō	Ö	Ö	Õ	Ŏ	Ŏ	Ö
ROWN URINE	Control	0	0	0	0	0	. 0	0	0	0	0	0	Ð	0	0
	625 ppm	0	0	0	0	0	Ō	Ō	Ŏ	Ö	ñ	ō	ñ	Ŏ	Õ
	1250 ppm	0	Ō	Õ	ō	Õ	Ö	Ŏ	Õ	Õ	Õ	Ŏ	ő	Õ	ñ
	2500 ppm	49	49	49	49	48	48	48	48	48	48	48	48	48	48
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	Ō	Ö	Ö	Ö	Ö	Ö	0	Ô	0	0	Ö	0	0	0
	1250 ppm	Ď	0	Ö	0	0	1	0	0	0	0	0	0	0	0
	2500 ppm	ň	Õ	Ö	0	Õ	Ó	Û	0	0	0	0	0	0	n n
	2000 PPIII	U	Ü	U	U	υ	U	U	U	U	U	U	U	U	U
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ō	Ō	Ö	Ö	Ö	Ö	ō	Ď	Ô	1
	1250 ppm	Ö	ő	Õ	Õ	Ö	ĭ	Ö	Ŏ	Ŏ	0	ñ	Õ	0	Ö
	2500 ppm	Ō	Ö	ō	Ö	Ö	ò	ő	Ŏ	. 0	Ô	Ö	Ö	0	0
ON REMARKABLE	Control	46	46	46	46	46	45	44	43	43	43	43	42	42	42
_	625 ppm	42	42	43	43	43	43	42	42	42	42	43 42	42	41	39
	1250 ppm	42	41	41											
	2500 ppm	0	0		41	41	40	40	40	40	40	40	40	39	39
	2000 իիա	U	U	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name		stration W										ı		
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
PROLAPSE OF PENIS	Control	n	0	0	0	0	0	0	0	0	٥	0	0	0	0
TROUBLE OF PENTS	625 ppm	υ n	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	n U	0	0	0	0	0	0	0	0	0	0	ı 1	n	0
	2500 ppm	u n	ถ	0	0	0	0	0	0	0	0	0	0	0 N	U
	2300 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ō	Ō	Ö	Ö	ō.	ī	Ď	ñ	Ŏ	ñ	Ŏ	Ō
	1250 ppm	Ō	Ō	Ö	Ŏ	Ö	Ö	ŏ	ò	Ö	Õ	Ö	Õ	ŏ	Õ
	2500 ppm	Õ	ō	Õ	ŏ	Ö	Õ	Õ	Õ	Õ	Õ	Õ	ñ	ň	ñ
		_	_	-	_	•	•	•	·		•	•	·	·	Ü
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	n	. 0	0	0	0	0	1	0	. 0	0	0	0	0
	625 ppm	Ů	Ö	0	0	0	0	0	Ó	0	0	0	0	0	0 -
	1250 ppm	n	Õ	0	0	0	-			0		0	0	-	0
	2500 ppm	n	n	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0
	2000 PPM	•	·	U	Ü	v	U	U	v	v	U	U	U	U	U
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	48	48	48	48	47	47	47	47	47	47	47	47	47	47
SMALL STOOL	Contro!	n	0	0	0	0	0	0		0	O	0		0	0
	625 ppm	o o	0	0	1	1	1	1	;		0	0	0	0	0
	1250 ppm	n	0	0	Ö	Ů	Ó	1	Ö	0 0	•	•	O ·	Ū	
	2500 ppm	n	n	0	0	0	0	0 0	0	0	0	0	0	0	0
	ESOC PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	U
DL1G0-STOOL	Control	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	625 ppm	0	0	0	1	1	1	1	1	0	1	Ô	n	Ō	Ō
	1250 ppm	0	0	0	Ô	0	Ò	Ò	ò	ŏ	ò	Õ	ĭ	Õ	ñ
	2500 ppm	0	0	0	Ō	Ŏ	Ō	ŏ	ŏ	ŏ	Ŏ	Ö	Ö	Ö	Ö
ION DEMARKABLE															
NON REMARKABLE	Control	42	42	41	41	41	41	41	40	40	39	39	38	36	35
	625 ppm	39	38	38	36	36	36	36	36	36	34	34	34	34	35
	1250 ppm	38	38	38	38	37	36	36	36	36	36	36	35	36	35
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

															TAGE . O
Clinical sign	Group Name	Admini	istration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	•	0	0	•	•		0
FRULAFSE OF FENTS	625 ppm	U	0	•	0	0	0	0	0	0	0	0	0	0	0
		U	-	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ô	Ō	1	i	ī	2	í	1	1	1	1	1
	1250 ppm	Ō	Ĭ	ĭ	1	ż	ż	i	ō	Ö	ò	ò	ò	2	ż
	2500 ppm	Ō	ò	ò	ò	ō	1	ż	Ö	Ö	Ö	ő	n	'n	ñ
	-4	•	•	ŭ	·	Ū	•	-	Ü	v	U	٠	v	Ů	ŭ
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	O	0	0	1	1	1	1	0	0	1	1
	1250 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	n	n	ก	0	0	0	0	0	0	0	n	0	•	0
TEEEOW OK THE	625 ppm	0	0	0	0	1	_	U 1	1	1	U 1	U	U	U	0
	1250 ppm	0	0	-		1	0	ı	ı	!	1	1	!	1	
	1250 ppm 2500 ppm	U. N	U N	0	0	0	0	0	0	1	2	2	1	1	1
	2000 ppiii	U	U	U	0	0	0	0	0	0	0	0	0	U	U
BROWN URINE	Control	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	Ō	Ō	Ō	Ō	ñ	Ŏ	ō	ñ
	2500 ppm	47	47	47	47	47	45	45	42	41	40	40	40	39	39
SMALL STOOL	Control	Λ	0	0	0	•		•	•	•	•		•		
JMREE STOOL	625 ppm	0	_			0	0	0	0	0	0	0	0	0	U
	1250 ppm	U	0	0	1	2	2	2	3	2	3	1	0	1	1
	1250 ppm 2500 ppm	0	0	0	1	3	2	1	1	0	1	1	0	1	1
	2300 ppm	U	0	0	0	1	1	2	3	2	1	1	1	1	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	n	0	1	0	0	0	n
	625 ppm	0	0	Ō	í	2	2	2	3	2	2	ñ	Ö	2	2
	1250 ppm	ā	1	1	2	3	3	2	3	1	2	2	1	2	2
	2500 ppm	Õ	ò	ò	ō	3	2	2	3	2	1	1	1	1	2
		-	•	٠	•	v		L	J	L	'	1	ı	ı	۷
NON REMARKABLE	Control	34	34	34	34	33	33	31	31	30	29	28	28	28	26
	625 ppm	35	34	34	33	32	31	31	30	29	26	28	26	26	26
	1250 ppm	35	34	34	32	30	28	28	26	26	25	23	22	22	20
	2500 ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
		•	·	v	v	U	v	U	U	U	U	υ	υ	U	υ

SEX : MALE

PAGE: 40

Clinical sign	Group Name	Admini	stration	Week-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
PROLAPSE OF PENIS	Control	0	0	0	0	0	0		
	625 ppm	1	1	1	1	1	1		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
IRREGULAR BREATHING	Control	0	0	0	1	1	1		
	625 ppm	i	Ō	ō	2	i	i	•	
	1250 ppm	i	1	ĭ	1	i	i		
	2500 ppm	ò	ò	Ö	ó	Ö	Ö		
			•	-	·	ū	·		
DEEP BREATHING	Control	0	0	0	0	0	0		
	625 ppm	1	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
YELLOW URINE	Control	0	0	0	2	2	2		
	625 ppm	1	ő	Ö	Õ	Õ	Õ		
	1250 ppm	ò	Ö	Ö	0	0	0		
	2500 ppm	0	0	0	0	0	0		
	2000 ppiii	U	U	U	U	U	U		
BROWN URINE	Control	0	0	0	0	0	0		
	625 ppm	0	0	0	0	0	0		
	1250 ppm	0	0	0	Ō	Ō	Ō		
	2500 ppm	38	38	38	36	34	34		
SMALL STOOL	Control	0	0	. 0	0	3	2		
0.000	625 ppm	2	1	1	2	0	0		
	1250 ppm	0	0	0		0			
	2500 ppm	0	0	0	1 1	1	0		
	2000 ppili	U	U	υ	'	ı	ı		
OLIGO-STOOL	Control	0	0	0	2	3	2		
	625 ppm	2	0	0	4	2	3		
	1250 ppm	1	0	0	0	0	0		
	2500 ppm	1	1	1	1	1	1		
NON REMARKABLE	Control	25	24	21	20	20	20		
	625 ppm	25	26	24	20	20	18		
	1250 ppm	20	19	19	19	19	19		
	2500 ppm	0	0	0	0	0	0		
	2000 Phili	U	U	υ	U	U	U		

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

TABLE B 2

CLINICAL OBSERVATION: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
LATII	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0		. 0
	2500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2000 ppiii	U	U	U	U	U	U	U	Ū	U	U	U	U	U	U
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	Ō	0	Ō	0	Ö	Ō
	2500 ppm	0	0	0	0	0	Ō	Ō	0	Ō	Ō	Ō	Ō	Ö	Ō
UNCHBACK POSITION	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
5.15.15.10K 1001110H	625 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	U n
	2500 ppm	0	0	0	0	0	0	0	0	0	n D	0	0	0	0
	7900 bbu	υ	U	U	U	U	U	U	U	U	U	U	U	U	U
KCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	Ó	Ō	Ō	Ō	Ō	Ö	Ö	Ö	ō
	2500 ppm	0	0	Ō	Ō	Ö	Ö	Õ	Ö	Ö	ō	Ö	Ö	Õ	Ŏ
OILED	Contro!	0	0	0	0	0	0	0	0	•	0	0	•	0	•
01220	625 ppm	ň	0	0	0	0	0	0	-	0	0	0	0	0	0
	1250 ppm	0							0	0	•	0	0	0	0
	2500 ppm	O O	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	U	υ	0	0	0	0	0	0	0	. 0	0	0	0	0
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ö	Ō	Ō	Ŏ	Ō	Õ	Õ	0	Ŏ	ñ
	1250 ppm	Ö	0	Ō	Ö	Ö	Ö	Ö	Ö	ŏ	Ŏ	Õ	Õ	Ö	ñ
	2500 ppm	Ö	Ō	Ö	Ö	Ö	Ö	ő	Ö	Ö	ĭ	1	1	1	1
ILOERECTION	Control	0	0	0		•			•	•	•	•	•		
ILULALGI IUN	625 ppm	0	_	0	0	0	0	0	0	0	0	0	0	0	0
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	Ö	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0
	1250 ppm	Õ	Õ	Ö	Û	Ö	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Õ	0	n	0	0	n	0	0	0	0	0	0	0
		-	-	•	·	v	Ü	Ü	v	v	v	U	u	v	U
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

															I AUL . T
Clinical sign	Group Name	Admini	stration W	eek-dav			.								
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DEATH	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	o	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ō	Õ	Õ	ŏ	Ŏ	Ö	Õ	Ŏ	ŏ	ŏ	ň	ň	Ö	ñ
	1250 ppm	Ō	ō	Õ	Ŏ	Ö	Ö	Ö	Ŏ	0	Ö	ő	Õ	0	ñ
	2500 ppm	Ö	Ö	ŏ	Ö	ŏ	Ö	Ö	ŏ	Ö	Ö	Ö	Ö	Ô	Ö
EXCITEMENT	Control	Λ	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	ñ	Ö	Ö	0	Ö	Ö	0	0	Ö	Ö	0	0	0
	1250 ppm	Ů	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	Λ	n	0	0	0	0	0	0	0	0	0	0	•	
401220	625 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0			-	•			•	•		0
	2500 ppm	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
	2000 ppm	Ů	U	U	U	0	U	U	0	0	0	U	0	0	0
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	4	4	7	7	8	8	8
PILOERECTION	Control	0	0	0	0	0	0	0	0	n	0	n	0	0	0
	625 ppm	0	0	Ō	Ō	Ō	Ŏ	Ö	Õ	Õ	Ö	Õ	Õ	ñ	ō.
	1250 ppm	0	Ō	Ō	Ö	Õ	Ŏ	Ö	ŏ	Õ	Ö	Ö	Ö	Õ	Õ
	2500 ppm	0	0	Ō	Ö	Ö	Ö	Õ	Ö	Ö	Ö	Ö	Ö	ő	Ö
LOSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	. 0	n	0	0	٥
	625 ppm	n	0	0	0	0	0	0	0			0	-	•	0
	1250 ppm	0	0	0	0	0			_	0	0	0	0	0	0
	2500 ppm	0	0	0	0		0	0	0	0	0	0	0	0	U
	2000 ppili	U	U	U	U	0	0	U	0	0	0	0	0	U	U
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Group Name	Admini 29-7	stration W 30-7	eek-day 31-7											
	29-7	30-7	217											
			31-1	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41 –7	42-7
	_			_	_									
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ü	•									-			0
	U	•				0				0	0	0		0
2500 ppm	U	0	0	1	1	1	1	1	1	1	1	1	1	1
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	n	n	Λ	n	n	α	n	n	n	n	0	Λ	0
	ñ	-				-	-			_	-			Ö
	õ	-	_				-		-	-		•		0
2500 ppm	Õ	Ö	Ö	Ô	Ö	0	0	0	0	0	0	0	0	0
		•	_	_	_	_						-	-	•
	U	•	•		•	-	_	•	-	·	•		•	0
	U	-	-	_	-	_	-	•	-	•	•	•	_	0
	U	-						_		-	-	-		0
2500 ppm	U	U	Ü	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0		Ō
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0
Control	n	n	n	n	0	Λ	n	0	0	٥	n	0	٥	0
	n	_	_	_				-	_				-	0
	n	-	-	-				-			-			0
	8	_	•					_	-					0
2000 ppm	Ü	3	J	3	3	10	10	10	10	11	11	11	11	11
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	-						_	0	0	0	0	0	0
	-	_							0	0	0	0	0	0
2500 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	n	O	0	0
625 ppm	0	0	0	Ō	Ŏ	Ö	Õ	Õ			ŏ	-	-	Õ
1250 ppm	0	Ō	Ō			-	-	-		-	•		-	Ö
2500 ppm	0	0	Ō	0	Ŏ	Ö	Ö	Ö	0 .	Ö	Ö	Õ	Ö	0
Control	n	n	n	Λ	0	0	0	0	0	0	0	n	0	0
	ñ	•	-	-				-	-		0		-	0
	n	•						-	-	-	U	-	-	-
	_													0
	625 ppm 1250 ppm 2500 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	625 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	625 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	625 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ref. pom 0	625 ppm	625 pom

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0
	2500 ppm	1	1	1	1	1	1	1	1	2	2	2	2	2	2
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	1250 ppm	0	0	0	0	0	Ō	0	Ō	Ō	Ō	Ö	Ö	Ō	Ö
	2500 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	Ō	Ō
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ö	Ŏ	Ö	ő	Õ	Ŏ	Ô	Õ	Õ	Ö	n	0	Ö	Ô
	1250 ppm	Õ	Ö	Ô	Ö	0	0	0	ñ	ñ	0	n	0	0	0
	2500 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
XCITEMENT	Control	n	Ð	0	0	0	0	0	0	O	n	a	0	0	0
NOT TEMENT	625 ppm	n	0	0	0	0	-		•	•	•	U	-	-	•
	1250 ppm	0				_	0	. 0	0	0	0	0	0	0	0
	1250 ppm 2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	U	U	U	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Õ	Ō	Ō	Ō	Õ	ō	ō
	1250 ppm	0	0	0	0	0	0	Ō	Ō	Ö	ō	Ö	Õ	Õ	Ö
	2500 ppm	0	0	0	0	0	0	Ō	0	Ō	Ö	Ō	ō	Ö	Õ
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō	Ö	Ö	Ŏ	ŏ	Õ	ő	Õ	Ô	0	Ô	Õ	0	0
	1250 ppm	Õ	Ö	Õ	Ö	ŏ	Õ	Ö	Ö	0	0	0	0	0	0
	2500 ppm	11	11	12	12	12	12	12	12	12	12	12	13	13	13
ILOERECTION -	Control	0	0	0	0	0	0	0	0	0	0	0			•
	625 ppm	0	0	0	0		0	0		0	0	-	. 0	0	0
	1250 ppm	0	0	0 .	0	0 0			0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 1	0 1
OSS OF HAIR	Control	n	0	0	•							_	_	_	_
NIAII IO DOO		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0
	1250 ppm	0	0	0	0	0	0	0	0	0	Ö	Ō	Ŏ	Ō	Ō
	2500 ppm	0	0	0	0	0	Ō	Ö	Ō	Ö	ñ	Õ	Õ	Ŏ	ñ

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	1	•	1	1	4	•	4		•				•	
EAIR	625 ppm	1	ļ	1	ı	1	1	1	1	ı	1	ı	!	l l	
		U	0	0	0	0	0	0	0	0	0	0	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	2	2	2	2	3	3	3	3	3	3	3	3	3	3
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	Ô	Ō	Ō	0	1	1	ĺ	i	1
	2500 ppm	0	0	0	Õ	Ō	Õ	ŏ	1	Ĭ	i	i	i	i	i
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	٥	0	0	0	n	0
	625 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	1250 ppm	0	0	0	0		0		-		-	0	_	_	_
	2500 ppm	0	0	_		0	_	0	0	0	0	•	0	0	0
	2000 ppm	U	U	0	0	0	0	0	0	0	0	0	0	0	0
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	Ō
	2500 ppm	0	0	0	0	Ō	0	1	Ō	Ō	Ō	Ō	Ō	Ö	Ō
OILED	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Õ	Ö	Õ	Ö	ŏ	ŏ	Ö	ŏ	Õ	Õ	Ö	Ŏ	Õ
	1250 ppm	Ō	Ö	Ö	ŏ	Ŏ	Ö	ŏ	Ö	Ŏ	Ŏ	Ö	Ö	Õ	Ö
	2500 ppm	Ô	Ö	Ö	Ô	Ŏ	Ö	0	. 0	0	0	0	n	n	ก
	2000	U	v	U	U	v	U	U		U	U	U	υ	U	υ
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	13	13	13	13	8	8	8	9	9	8	8	8	8	7
ILOERECT ION	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	n
	625 ppm	Ō	Õ	Ö	Ö	Ö	0	0	Ö	0	0	0	0	0	n
	1250 ppm	Õ	Õ	Ö	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ĭ	1	1	1	0	0	0	0	0	0	0	0	0	0
OSS OF HAIR	Control	O	0	0	0	0	0	•	٨		0	0	0		•
200 01 111111	625 ppm	0	0	-	-	0	0	0	0	0	0	0	0	0	0
	025 ppm 1250 ppm	0	_	0	0	0	0	0	0	0	0	.0	0	0	0
		•	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	.0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ö	Ö	ō	Õ	Ö	Ō
	1250 ppm	0	0	0	0	Ō	Ŏ	ō	Ŏ	Ö	Ö	Ö	Õ	ŏ	Ö
	2500 ppm	0	Ō	Ō	Õ	Õ	Ö	ŏ	Ö	Ö	Ö	Ö	ñ	Ô	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
_		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	1	1	1	1	1	2	2	2	2	2	2	2	2	2
E/(11)	625 ppm	i	i	1	2	2	2	2	2	2	2	2	2	2	2
	1250 ppm	i	i	1	1	1	1	1	1	1	1	1	1	4	
	2500 ppm	3	4	4	4	4	6	6	6	7	7	9	9	9	9
ORIBUND SACRIFICE	0	0	•		_	•	_		_	_	_	_			
KIDUND SACKIFICE	Control	-	0	0	0	0	0	0	0	0	0	1	1	1	1
	625 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	0
	1250 ppm	0	0	0	0	0	0	Ō	Ō	Ō	Õ	ō	ō	ō	ō
	2500 ppm	0	Ō	Ō	Ö	Ö	Ö	ŏ	Ö	ŏ	Ö	Ö	ŏ	ŏ	Ŏ.
CITEMENT	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	0
	625 ppm	ñ	Õ	Õ	Ö	Õ	Ö	Õ	Õ	Õ	Ô	Õ	0	Ô	n
	1250 ppm	n	Õ	0	0	0	0	_		-	0	-	-	•	0
	2500 ppm	n	0	0	0	0	0	0 0	0	0 0	0	0 0	· 0	0	0
	2000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LED	Control	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
	1250 ppm	0	0	0	Ō	Ö	ō	Õ	Õ	Ö	ก	ŏ	Õ	ő	Ö
	2500 ppm	0	0	0	0	0	Ö	Õ	ō	0	. 0	Ö	Ö	Ö	ő
LORED	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	Ŏ	Ö	0	0	Ô	0	0	0	0	0	0	0	0
	1250 ppm	ñ	Ö	0	0	0	0	0	0	_	•	-	-	_	-
	2500 ppm	7	7	7	9	9	8	8	0 8	0 8	0 8	0 5	0 6	0 6	0 6
LOERECTION	Combined			•	_	_	_	_	_	_	-	-	-		•
LULNEUTIUN	Control	0	0	0	1	Ī	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	Ö	Õ	Ō	Ö	Õ	Õ	Ö	ñ	Ö	Õ	ő
	1250 ppm	Ō	ō	Ö	Õ	Ö	Ö	Ö	0	Ö	Ö	Ö	Ö	Ö	0
	2500 ppm	Ō	Ö	Ö	Õ	Ö	Ö	0	Ö	Ö	Ö	0	0	0	0
G BELLY	Control	0	0	0	0	0	0	0		•	0	•	•		•
	625 ppm	0	0	υ 1	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	-		0	0	0	0	0	0	0	0	0	0	0
	1250 ppm 2500 ppm	_	0	0	0	0	0	0	0	0	0	0	0	0	0
	2300 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name		istration V									***			
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEATH	Control	a	0	0	0		•	•	•		•		_	_	_
DEATH	625 ppm	2 2	2 2	2 2	2	2	2	3	3	3	3	4	5	5	5
	1250 ppm	2	2	3	2 3	2	3	4 3	4	5	5	5	5	5	5
	2500 ppm	9	9	3 9	3 9	3 9	3 9	3 9	3 9	. 3 . 9	3 10	3 10	3 10	3 10	3 10
MORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	i	1	1	i	i	1	i	i	i i	2	ż	ż	2	3
	1250 ppm	i	1	i	2	ż	2	ż	ż	2	2	2	2	2	ž
	2500 ppm	2	2	2	2	2	2	3	3	3	3	4	4	4	5
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
EXCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	6	3	3	4	4	4	4	4	4	4	4	4	4	4
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
	625 ppm	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	1250 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	1	1	1	0	0	0	0	0	0	0	0
LOSS OF HAIR	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	Ó	0	Ö	Ō
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	1	1	1	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCr[Crlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admin	istration \	Week-day		·		
	ar oup name	99-7	100-7	101-7	102-7	103-7	104-7	
'H	Control	5	5	5	5	5	5	
	625 ppm	5	5	5	6	6	6	
	1250 ppm	3	3	4	4	4	4	
	2500 ppm	10	10	10	10	10	10	
RIBUND SACRIFICE	Control	1	1	1	2	2	2	
	625 ppm	3	3	3	3	4	4	
	1250 ppm	2	2	2	3 2	3	4	
	2500 ppm	5	5	5	5	5	5	
NCHBACK POSITION	Control	0	0	0	0	0	0	
	625 ppm	ŏ	Ö	ŏ	. 0	Ö	Ö	
	1250 ppm	ő	0	Ö	Õ	0	0	
	2500 ppm	Ö	Ö	Ö	0	0	0	
CITEMENT	Control	0	0	0	0	0	0	
	625 ppm	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
LED	Control	0	0	0	0	0	0	
	625 ppm	0	0	0	0	0	0	
	1250 ppm	0	1	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
LORED	Control	0	0	0	0	0	0	
	625 ppm	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	Ō	Ō	
	2500 ppm	4	4	4	4	4	4	
LOERECTION	Control	0	0	0	0	0	0	
	625 ppm	0	0	1	1	Ö	Ō	
	1250 ppm	0	Ô	0	Ó	Ŏ	Ö	
	2500 ppm	. 0	0	0	0	0	0	
S OF HAIR	Control	0	0	0	0	0	0	
	625 ppm	0	Ö	Ö	Ö	Ŏ	Ö	
	1250 ppm	ī	1	1	1	1	1	
	2500 ppm	Ô	Ö	Ö	i	i	i	
G BELLY	Control	0	0	0	0	0	0	
	625 ppm	Ö	Ö	Ö	ő	ŏ	Ö	
	1250 ppm	ŏ	Ö	Ö	ő	Ö	0	
	2500 ppm	ŏ	0	Ö	ŏ	0	0	

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	ek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	2	2	3	2	2	2	2	1	2	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	Ó	. 0	0	Ō	Ō
	2500 ppm	. 0	0	0	0	1	1	1	i	1.	ī	1	ĺ	Ĭ	1
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	O
	625 ppm	Õ	Ö	Ŏ	ŏ	Ö	Ŏ	ŏ	Ö	0	Ô	Ö	Õ	Õ	Ö
	1250 ppm	ő	Ö	Ö	0	0	Ö	Ö	n	n	0	0	0	0	n
	2500 ppm	Ö	Ö	0	Ö	0	0	0	0	0	0	1	1	1	1
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	O	0
ONIVERE OF NOTE	625 ppm	0	0	0	0	0	0	0	0	•	-	_	-	-	U
	1250 ppm	0	0		-		-	_	_	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0
MITCHIOD OUTSIDED ODEOLEN		_		_			_	•	-	-	_	-	•	-	-
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	O	0	0
	625 ppm	0	0	0	0	Ö	Ō	Ō	Õ	Õ	ñ	Ö	Õ	Õ	ñ
	1250 ppm	Ō	Ö	Ö	Ŏ	ŏ	ŏ	Ö	Ô	Ö	Ö	Õ	Ô	Ö	n
	2500 ppm	Ö	Ö	· ŏ	Ŏ	ŏ	ŏ	Ö	0	Ö	Ö	0	Ö	Ö	Ö
NTERNAL MASS	Control	Π	0	0	0	0	0	0	0	0	n	0	0	0	٥
	625 ppm	ñ	0	0	0	0	0	0	0		0	O O	0	•	U
	1250 ppm	0	0	0	0	. 0	0	0	_	0 0	0	U 0	-	0	0
	2500 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0 0	0 0
NOSE	Control	0	0	0	0	0	•		•	•	•		•	_	_
, HOOL		U	•	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	.0	0	0	0	0	0	0	0	0	0	0
PER I-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō
	1250 ppm	0	0	0	Ō	Ö	Ŏ	Ö	Ŏ	Ŏ	ŏ	Ö	Ö	ŏ	ŏ
	2500 ppm	0	0	ō	Ö	Ö	Ö	Ö	Ŏ	Ö	Ö	Õ	ñ	Ö	Õ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

															PAGE :
linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
OILED PERI-GENITALIA	Control	0	0	0	0	0	0.	0	•	٥	•	0	0	•	à
UILED PERITGENITALIA		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	1	1	1	1	0	0	0
KOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0
	2500 ppm	1	1	1	1	1	1	ĺ	Ĭ	ī	Ĭ	ĺ	1	ĺ	ĺ
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	n	0	0	. 0	0	0	0	0	0	0	Մ 1	U 1	1	1
	1250 ppm	n	0	0	0		0		0	-	0	1	1	l n	l n
	2500 ppm	U 1	บ 1	1	U 1	0 1		0	-	0	-	U	0	0	0
	2300 իհա	'	ı	I	I	I	1	1	1	1	1	1	1	1	1
ORNEAL OPACITY	Control	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	n	n
	625 ppm	Ō	Ŏ	Ö	Ö	ŏ	Õ	Õ	Ô	Õ	Õ	0	Ô	Ô	Ô
	1250 ppm	ñ	Ŏ	ŏ	0	Ö	Ö	0	0	0	0	0	0	0	0
	2500 ppm	n	0	0	0	0	0	0	ถ	0	0	0	n	0	0
	2000 ppii)	U	U	U	U	U	U	U	U	U	U	U	U	U	U
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	n	n	n	0	n	n
	625 ppm	ō	Õ	Õ	Ö	0	Õ	Ö	0	0	0	0	0	0	0
	1250 ppm	ŏ	ñ	Õ	Ö	0	Ö	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Ö	Ö	0	0	0	0	0	0	Ö	0	0	0	0
NOSE	Control	n	0	0	0	0	•	0	•	•	٥	•	•	•	
·	625 ppm	O O	0	-	0	0	0	0	0	0	0	0	0	0	0
	625 ppm 1250 ppm	Ū	-	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PER1-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	Ö	Õ	Ō	ō	Õ	Õ	ŏ	Õ	ň	ñ	Ö	ñ
	1250 ppm	Ō	Ö	Ö	Ö	Ö	Ö	ŏ	Ö	Ö	Ö	0	0	Ö	0
	2500 ppm	ñ	ň	Ŏ	Ö	Ö	Ŏ	Ô	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

JEA . I LNIALE															PAGE .
Clinical sign	Group Name		stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7 ——	38-7	39-7	40-7	41-7	42-7
SOILED PERI-GENITALIA	Cantual	0	0	•	•	0	•	•		•				•	
SUILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	0	0	0	0	0 -	0	0	0	0	0	0	0	0
CATARACT	Control	0	0	. 0	0	0	0	0	0	0	0	n	o	0	0
	625 ppm	Ĭ.	ĩ	ĭ	1	1	1	1	2	2	2	2	2	2	2
	1250 ppm	'n	'n	Ö	ò	Ö	Ö	Ö	Õ	1	1	1	1	2	2
	2500 ppm	1	1	1	1	1	1	1	1	i	i	i	1	1	1
CORNEAL OPACITY	Control	n	n	0	0		n		Δ.	^	Α.	•	•	•	^
OMERE OFACTIT	625 ppm	0	0	-	-	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	-	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0 N	0
NETTO LOS COLUMNISTOS COLUMNIS		•	-	-			-	·	· ·	·	·	·	ŭ	Ü	Ü
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	Ō	0	ō	Ō	1	1
	1250 ppm	0	0	Ō	Õ	Ō	Ö	Õ	Õ	Ö	Ö	ň	Õ	i	i
	2500 ppm	Ō	Ō	Ĩ	ĭ	ĭ	1	ĭ	ĭ	1	1	1	i	i	i
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	625 ppm	Ô	Õ	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	U N
	2500 ppm	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0
. Nose	Control	0	0	۸	•	0	0	0	•	•	•	•	•		
i iiooL	625 ppm	U		0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0	0	0	0	. 0	0	0	0	0	0	0
I. PERI-MOUTH	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	Ō	0	Ō	Ō	Ō	Ō
	2500 ppm	0	0	0	0	0	0	0	Ö	Ö	Ō	Ō	Ō	Ō	Ō

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DILED PERI-GENITALIA	0	٥			٠										
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	1250 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2500 ppm	1	1	1	1	1	1	1	ī	1	ī	1	1	1	1
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	625 ppm	. 0	Ō	ō	Ö	Ŏ	Ö	Ö	ò	ò	ò	Ċ	ò	Ò	Ò
	1250 ppm	Ō	Ö	Ô	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Ö	Ö	0	0	1	1	1	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Ö	n	Ö	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0					_		-
	2500 ppm	0	Ö	O A	0	0	0	0	0	0	0	.0	0	0	0
	2300 ppiii	U	U	U	U	U	U	U	0	U	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	2	2
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ITERNAL MASS	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	1 .
	625 ppm	0	0	Ō	Ö	Õ	Ö	Ò	ò	Ö	Ö	ò	ò	Ö	ò
	1250 ppm	Ō	Ö	Ö	ŏ	ŏ	Ö	Ö	Õ	Ö	Ö	Õ	Ö	Ŏ	0
	2500 ppm	Ō	Ō	Ŏ	Ō	Ö	Ö	Ö	ő	Ö	Ö	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	625 ppm	Ď	0	0	0	0	0	0	0	0	0	0	0	0	-
	1250 ppm	n	0	0	0		-		-	-	_	-	-	-	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 իիա	U	U	U	U	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	O	0	Ð	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

															That .
Clinical sign	Group Name	Admin	istration W	leek-day									•		
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
SOILED PERI-GENITALIA	Control	1	1	1	1	1	1	1	. 0	0	0	1	1	1	0
	625 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	1250 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	Ó	0	Ô	Ó	Ô	Ò	Ò	Ó	Ó	0
	2500 ppm	0	0	0	0	0	0	. 0	0	Ō	Ō	0	Ō	Ō	0
CATARACT	Control	0	0	0	0	1	1	1	1	1	1	1	1	2	2
	625 ppm	3	3	3	3	3	3	3	3	3	3	3	ż	3	3
	1250 ppm	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	2500 ppm	ī	1	ĩ	1	ĭ	ĭ	ĭ	1	1	1	1	1	1	1
CORNEAL OPACITY	Control	1	1	1.	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	'n	ò	Ó	ò	ò	Ö	ò	Ö	Ö	Ċ	ò	ò	'n	Ó
	1250 ppm	ñ	Ö	. 0	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ANTERIOR CHAMBER OPACITY	Control	n	n	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	Õ	Ô	0	Ö	0	0	0	0	Ö	0	0	0	0
	1250 ppm	ñ	0	0	0	0	0	0	0	0	-	0	_		-
	2500 ppm	Ü	0	n	0						0		0	0	0
	2300 ppm	U	U	U	U	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	1	1	2	2	2	2	2	2	2	2	2	1	2	2
	1250 ppm	2	2	2	3	3	3	3	3	3	2	2	2	3	2
	2500 ppm	1	1	1	1	0	0	1	1	1	1	1	1	1	2
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	a	0
	625 ppm	0	0	0	0	0	0	Ö	Ö	Ō	Ō	0	ñ	Õ	Õ
	1250 ppm	0	0	0	Ō	Ō	Ō	Ŏ	Ö	Ö	ŏ	Ö	Õ	Õ	ŏ
	2500 ppm	0	0	0	. 0	Ō	Ö	Ö	Õ	ŏ	ő	Ö	ŏ	Ö	Ö
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	n
	625 ppm	Õ	Ŏ	Ö .	. 0	Ö	Ö	0	0	0	0	0	0	0	n
	1250 ppm	ñ	Ö	0	0	0	0	0	0	0	-	-	. 0	0	0
	2500 ppm	0	Ö	0	0	0	0	0	0	0	0 0	0 0	0	0	0
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	. 0	0	0	0	n	0	Λ
	625 ppm	0	0	0	0	0	0	-		-	_	-	-	_	U O
	1250 ppm	. 0	0	0				0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	1	1	1	1	1	1	1	1	1	2	1
	7900 bhill	U	U	U	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE															PAGE: 5
Clinical sign	Group Name		stration V	Veek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
SOILED PERI-GENITALIA	Control	n	n	0	0	0	0	0	0	O	n	0	0	n	n
OUTED TENT GENTINETA	625 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	n n
	1250 ppm	Ů	Ö	0	0	0	0	0	0	0	n	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VODUTUM NOO			_	_	_					_	-	•		•	_
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1 -	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Contro!	2	2	2 .	2	2	2	2	2	2	2	2	2	2	2
	625 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	1250 ppm	3	3	3	3	3	3	3	3	3	3	3	3 .	3	2
	2500 ppm	ĭ	Õ	Ů.	0	0	0	0	0	n	0	1	1	1	1
			-	•	Ü	•	Ū	Ū	·	J	J	•	,	•	•
CORNEAL OPACITY	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
MITERIOR OFFINEER OFFICE	625 ppm	0	0	0	0	0	0	_	-	-	-	•	-		U
	1250 ppm	0	_			_	-	0	0	0	0	0	0	0	U
		u	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	1	1	1	1	2	1	2	2	2	2	3	5	5	5
	625 ppm	2	3	4	3	3	3	3	3	4	4	4	4	5	5
	1250 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2500 ppm	2	2	2	2	2	2	2	2	2	2	2	3	3	4
INTERNAL MASS	Control	0	0	0	0	0	•	0	•	•		•	•		
WIEWINE MOO	625 ppm	0		_	-	_	0	0	0	0	0	0	0	0	0
•		•	0	1	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	2500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
1. NOSE	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	n
	625 ppm	0	Ō	Ō	Ö	Õ	ŏ	ŏ	Ö	Ď	Õ	Õ	Õ	0	ñ
	1250 ppm	ő	ő	Ö	Ö	Ö	0	0	0	0	0	0	0	0	n n
	2500 ppm	Ö	Ö	Ö	Ö	0	0	0	0	0	0	.0	0	0	0
A DEDI MOUTU	• • •				-	-	-		-	·	•	•	ū	ŭ	·
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	625 ppm	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	n	0	0	n	0	0	Ô	n

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
OUED DEDUCEDUTALLA		_				_									
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	625 ppm	3	3	4	4	4	4	4	4	4	4	4	4	4	4
	1250 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	2500 ppm	ĭ	1	1	1	2	3	3	3	3	3	3	3	3	3
ORNEAL OPACITY	Control	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	625 ppm	1	1	1	1	1	1	, 1	-	1	1	1	1	•	- 1
	1250 ppm	'n	Ö	ò	Ö	Ó	0	Ó	Ó	0	Ö	0	Ò	'n	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0 1
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	•		•	•	•			•	•
WILKION CHAMBER OFACITI	625 ppm	1	1	0 1	0 1	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	•		•	1	1	2	2	2	2	2	2	2	2
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	5 `	5	5	5	5	5	5	5	5	7	6	6	6	6
	625 ppm	5	6	6	7	7	6	6	6	5	7	8	10	10	9
	1250 ppm	2	2	2	2	3	4	4	4	5	5	5	6	6	6
	2500 ppm	4	4	4	4	4	4	3	3	4	3	4	4	4	4
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō	Ō	Ö	2	2	2	1	2	1	0	ñ	Ö	0.	0
	1250 ppm	ĺ	ŏ	Ŏ	ō	ō	ō	Ó	ō	ó	ñ	ñ	Ö	0	n
	2500 ppm	Ô	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	0	Ö	0	0	0
. NOSE	Control	0	0	0	0	0	0	0	0	0	1	0	0	n	O
· · · -	625 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	•	-
	1250 ppm	0	0	0	0			-	_	-	_	•	•	0	0
	2500 ppm	O N	n n	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppiii	U	U	U	U	U	U	U	0	0	0	0	0	0	0
PERI-MOUTH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

1250 ppm

2500 ppm

Control

625 ppm

1250 ppm

2500 ppm

Control

625 ppm

1250 ppm

2500 ppm

Control 625 ppm

1250 ppm

2500 ppm

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE PAGE: 56 Clinical sign Group Name Administration Week-day 103-7 99-7 100-7 101-7 102-7 104-7 SOILED PERI-GENITALIA Control 625 ppm 1250 ppm 2500 ppm **EXOPHTHALMOS** Control 625 ppm 1250 ppm 2500 ppm CATARACT Control 625 ppm 1250 ppm 2500 ppm CORNEAL OPACITY Control 625 ppm 1250 ppm 2500 ppm ANTERIOR CHAMBER OPACITY Control 625 ppm 1250 ppm 2500 ppm EXTERNAL MASS Control 625 ppm

(HAN190)

M. PERI-MOUTH

INTERNAL MASS

M. NOSE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Adminis	tration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	. 0	0	. 0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ď	Ô
	2500 ppm	0	0	0	0	0	0	Ō	0	0	0	Ō	Ö	Ō	Õ
. FORELIMB	Control	0	0	0	0	0	0	0	0	n	0	0	0	n	O
	625 ppm	0	Ö	Ö	ŏ	Ŏ	ŏ	ŏ	ŏ	ň	Õ	ñ	ŏ	ň	Õ
	1250 ppm	Ō	Ö	ŏ	Ŏ	Ö	Ö	Õ	Ö	Õ	Ö	n	n	Ô	n
	2500 ppm	Õ	Ö	ŏ	Ŏ	Õ	0	0	0	0	Ö	0	0	0	0
I. BREAST	Control	0	0	0	n	0	0	0	0	0	0	O	0	n	O
	625 ppm	ñ	ñ	Ŏ	Õ	Õ	Ô	0	Ö	0	Ö	n	n	n	0
	1250 ppm	ñ	ก	0	0	Ö	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Ö	0	0	0	0	Ö	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	ñ	Ö.	ñ	ŏ	Ö	0	0	0	0	n	0	0	0	n
	1250 ppm	0	Ô	0	Ö	Ö	0			_	-	•	-	•	U
	2500 ppm	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0
. ANTERIOR. DORSUM	Control	n	n	0	0	ก	0	n	0	0	0	•		•	•
- MILKION DONOOM	625 ppm	0	n	0	•	•	Ū	·	0	0	U	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0 0	0	0 0	0 0							
. GENITALIA	Control	٥	0	0	0	0		0	0	0	•		•	•	•
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	-	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0 0	0	0 0	0 0	0	0	0	0	0	0	0 ถ
hi=14.4		u	Ū	Ū		U	v	U	U	U	U	U	v	U	U
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	. 0	0	0	0	0	O	Ô	Ö	ō	Ō	Ö	Õ	Ö
	2500 ppm	0	0	0	0	0	0	Ō	Ō	Ö	Ö	Õ	Ö	ō	Ö
CER	Control	0	0	0	0	0	0	0	0	0	0	0	n	0	n
	625 ppm	0	Ō	Õ	Ö	Ô	Õ	Ö	Ö	Ö	Õ	ñ	ñ	0	n
	1250 ppm	Ō	Ŏ	Õ	.0	Ö	Ö	Ö	0	Ö	Ö	0	0	0	0
	2500 ppm	ñ	Õ	Ô	Ö	Ô	Ô	Ö	0	0	0	0	Ô	n	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

															TAGE .
Clinical sign	Group Name	Admini	stration We	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
I. PERT EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FOREL IMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ö	Ö	Ō
	1250 ppm	0	Ō	Ō	Õ	Ö	Ō	Ö	Ö	Ö	O.	ñ	Ŏ	Ö	Ö
	2500 ppm	Ö	ŏ	Ö	Õ	ő	0	Ö	Ö	Ö	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	ถ	n	0
	625 ppm	Ō	Ö	Ŏ	Ö	Ö	Õ	0	Õ	Ö	Ô	Ď	Õ	Õ	ñ
	1250 ppm	ñ	Ŏ	Ö	Ö	0	Ö	Ö	0	0	0	0	O O	0	0
	2500 ppm	ő	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	n	. 0	0	0
	625 ppm	ñ	Ö	0	Ô	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0			-				•	-	_	•
	2500 ppm	0	0			0	0	0	0	0	0	0	0	0	0
	2300 ppiii	Ü	U	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	Ô	0	Ō	Ō	ō	ō	Ö	ŏ	Ö	ŏ
	2500 ppm	0	0	0	0	Ō	Ō	Ō	Ō	0	Ö	Ö	Ö	Ö	Ö
NEM I A	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ŏ	Ö	Ŏ	Õ	Ö	Õ	Õ	0	Ö	Ô	0	0	0	0
	1250 ppm	Ö	ő	Ö	ŏ	Ö	0	0	0	0	0	0	0	0	0
	2500 ppm	ŏ	Ö	0	0	0	0	0	0	0	0	0	0	0	0
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	n	0
	625 ppm	Ů	Ö	Ö	0	0	0	0	. 0		-	-	_	0	-
	1250 ppm	0	0				-		-	0	0	0	0 .	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 PPIII	U	U	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

OCK : I CHINGE															FAUE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
I PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	Ó	Ō	Ō	0	Ō
	1250 ppm	0	0	0	0	Ó	Ō	0	Ö	Ö	Ō	ō	ñ	Ō	ñ
	2500 ppm	0	Ō	0	Ö	0	Ō	Ö	Ö	Ö	0	Ö	Ö	Ŏ	Õ
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0 -	0	0	0	0	0	0	0	0	Ô	Ō	Ō	0
	1250 ppm	0	0	0	Ō	Ō	Õ	Ö	Ö	Ö	ō	Õ	ō	ñ	Õ
	2500 ppm	0	Ō	Ō	Ö	Ö	Ö	Ö	Ŏ	Ö	Õ	ŏ	Ö	ő	ő
FOREL IMB	Control	. 0	0	. 0	0	0	0	0	0	0	0	n	0	0	0
	625 ppm	0	0	0	0	0	Ó	Ō	Ō	Ō	Ö	ñ	Ō	ō	ō
	1250 ppm	Ō	ō	Ō	Ö	Õ	Ŏ	Ö	Õ	Ö	ŏ	Õ	Ô	Ö	Ö
	2500 ppm	Ö	Ö	Ö	Ö	0	ŏ	0	0	Ö	Ö	0	Ö	Ö	Ö
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	O
	625 ppm	n	0	Ö	Ō	Ö	Ō	Ö	Õ	ŏ	ŏ	Õ	Ŏ	Ö	ň
	1250 ppm	Ŏ	Õ	Ö	Ö	Õ	ŏ	Ô	Ö	Ö	0	0	0	Ö	n
	2500 ppm	Õ	ŏ	ŏ	Ô	Ö	0	0	Ö	Ö	. 0	Ö	0	0	0
ABDOMEN	Control	a	0	0	0	0	0	0	0	0	0	0	0	0	a
	625 ppm	ñ	ő	Õ	Ö	Ö	Ö	Õ	Ö	Ö	0	Ö	0	1	1
	1250 ppm	ñ	0	Õ	0	Ö	Ö	0	0	0	0	. 0	0	- 1	1
	2500 ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	Ó
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	D	0	0	n
	625 ppm	Ŏ	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0	•
	1250 ppm	0	0	0	0				-	•	_		_		0
	2500 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
GENITALIA	0								J	ū	•	Ū	·	·	·
GENTTALTA	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō
	1250 ppm	0	0	0	0	Ō	Ö	Ō	Õ	Ō	Ô	Ŏ	Ö	Ö	ő
	2500 ppm	0	Ō	Ö	Ō	Õ	Ö	Ö	Ö	ő	1	1	1	1	1
.CER	Control	0	0	0	0	0	0	0	. 0	0	0	0	n	0	0
	625 ppm	0	Ō	Ō	Ö	Ŏ	Õ	Õ	Ö	Ô	ñ	ñ	n	0	n
	1250 ppm	ñ	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	n	n	0	0	0.	0	0	0	0	0	O O	O D		
	LOGO PPIII	U	U	U	U	U	U	U	U	U	U	U	U	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

SEA . I LINIALL															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1. NECK	Control	0	0	0	0	0	0	0	0	0	.0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2500 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
M. FORELIMB	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	Ō	0	Ö	Ō	Ō	Õ	Ŏ	Ö	Ö	Ō	ñ
	1250 ppm	0	Ô	Ō	Ō	Ō	Ö	Ö	Ö	Ŏ	Ô	Õ	Ö	Ö	ő
	2500 ppm	Ō	Ō	Ö	Ŏ	Ö	õ	Ö	Ö	Ö	ŏ	ŏ	Ŏ	Ö	Ö
I. ABDOMEN	Control	0	0	. 0	0	0	0	0	0	0	n	0	0	0	n
	625 ppm	ī	i	ĭ	ĭ	1	1	1	1	1	1	1	1	1	1
	1250 ppm	i	i	i	i	i	i	i	i	i	1	i	i	i	1
	2500 ppm	Ö	Ö	Ö	Ö	Ò	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ó	Ó
A. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	625 ppm	ñ	Ö	Ŏ	Ö	Û	0	0	0	0	0	0	Ö	0	0
	1250 ppm	ñ	Ö	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	ő	0	0	Ö	0	0	0	0	0	. 0	0	Ö	0
. GENITALIA	Control	0	0	0	0	0	0	1	1	1	1		1	1	1
	625 ppm	Ô	0	0	0	0	0	Ó	Ó	0	Ů	'n	0	0	0
	1250 ppm	Ô	0	0	0	0	0	0	0		0	0	0	-	-
	2500 ppm	1	1	1	1	1	1	1	1	0 1	υ 1	1	1	0 1	0 1
NEMIA	Control	0	0	0	0	0	0	0	0	0	n	0	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	U N	U N	0	1	l N
	1250 ppm	0	0	0	0	0	0	0	-	0	U 1	U	U 1	0	U 1
	2500 ppm	1	1	1	1	U 1	1	U 1	0 1	U 1	1		1	!	!
		'	1	1	1	ı	ı	1	ı	I	ı	I	ı	ı	ı
LCER	Control 625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	025 ppm 1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

									•						TAGE . O
Clinical sign	Group Name	Admini	istration W	leek-day _											
	· · · · · · · · · · · · · · · · · · ·	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
M. PERI EAR	Control	٥	0	0	0	0	0	0	•	•	٥	0			
W. FERT EAR	625 ppm	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0
	2500 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NECK	Control	n	O	0	0	0	0	0	0	0	0	0	. 0	0	0
# IVEOR	625 ppm	Ů	n	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	ő	Õ	Ô	Ö	0	0	0	0	0	0	0	0	0	0
	2500 ppm	. 0	Ö	0	Ö	Ö	Ö	Ö	0	0	0	0	Ö	Ö	0
M. FOREL IMB	Control		0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	ō	ŏ	Ö	Õ	Ö	. 0	Õ	ŏ	ő	Õ	Õ	Ö	ñ
	1250 ppm	1	1	i	1	ĭ	1	1	ĭ	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	Ō	Ô	Ò	Ô	Ô	0	Ò	Ö
M. BREAST	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	1	1	. 1	1	1	1	1	1	1	Ō	1	1
	1250 ppm	0	0	0	. 0	0	0	0	Ó	Ö	Ò	Ô	Ō	Ô	Ô
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	Q	Ō	Ō
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	. 0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	1
ANEM I A	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	0	0	0	Ō	Ō
	2500 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	625 ppm	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0
	1250 ppm	. 0	0	0	0	0	. 0	0	1	1	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

SEX : FEMALE															PAGE :
Clinical sign	Group Name		stration W												
		71-7	72-7	73-7	74-7	75-7	76-7 	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. PERIEAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ñ	n	Ö	Ö	Ö	0	0	0	0	0	0	Û	0	0
	1250 ppm	ñ	ň	Ö	Ö	0	Ö	0	0	0	0	n	Û	0	0
	2500 ppm	Ö	Ö	ő	ŏ	0	Ö	0	0	0	0	0	0	0	0
A. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
A. BREAST	Control	0	0	0	0	1	1	2	2	2	2	2	2	3	3
	625 ppm	1	2	3	2	2	2	2	2	2	2	2	2	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
A. ABDOMEN	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	2	2	2
I. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	1	1	1	1	1	0	0	0	0	0	0	2	2	2
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	ī	1
NEMIA	Control	1	1	1	1	1	0	0	0	0	1	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
LCER	Control	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō	0
	1250 ppm	0	0	0	0	0	0	Ö	Ō	Ō	Ö	Ö	ō	Ŏ	Ō
	2500 ppm	0	0	0	0	0	0	0	0	Ô	Ō	Ō	1	1	ī

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	ek-day		*****									
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
W DEDI SAD						_	_								
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. NECK	Control	0	0	0	0	0		0	0	0	0	0	0	0	0
	625 ppm	0	1	1	1	1	1	1	1	1	i	í	i	i	Ō
	1250 ppm	0	0	Ó	0	Ò	Ò	Ö	ò	Ò	Ö	Ö	Ö	Ö	Ö
	2500 ppm	0	0	Ō	Ö	Ö	ŏ	Ö	Ö	ŏ	Ŏ	ŏ	ŏ	Õ	Õ
M. FORELIMB	Control	0	0	0	0	0	0	0	0	•	•	0	٥	0	
W. TOKELIMB	625 ppm	0	0	0	_	-	_	•	•	0	0	-	0	0	U
	1250 ppm	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ů		1	1	1	1	ı	1	1	ı	!	1	ı
	2000 hbm	U	U	0	0	0	0	0	0	0	0	0	0	0	Ü
M. BREAST	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	625 ppm	. 2	2	2	2	2	2	2	2	2	2	3	3	3	3
	1250 ppm	0	0	0	0	1	2	2	2	2	2	2	2	2	2
	2500 ppm	1	· 1	1	1	1	1	1	1	1	1	Ī	1	1	1
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0		0	0	0
n. Neb onian	625 ppm	2	2	2	1	1	0	0	0	1	2	0 2	0 2	0 2	0 2
	1250 ppm	ō	0	0	ò		-	-	•						2
	2500 ppm	2	2	2	2	0	0	0	0	0	0	0	0	0	1
	2000 ppiii	2	2	2	2	2	2	2	2	3	2	3	3	3	3
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	1	1	1	1	1	1	1	1	1	1	1	1	ī	ī
	1250 ppm	0	0	0	0	0	0	0	0	0	Ó	Ô	0	Ó	Ó
	2500 ppm	0	0	0	0	0	0	Ō	Ō	Ö	ō	Ö	Ö	Ŏ	Ö
M. GENITALIA	Control	2	2	2	2	2	2	0	•	•					
iii deit/file//	625 ppm	0	0	0	2			2	2	3	4	4	4	4	4
	1250 ppm	0	0	0	0	2	2	2	2	1	2	2	4	4	4
	2500 ppm	1	1	1	1	0 1	0 1	0 0	0 0	0	0	1 0	2 0	2 0	. 0
	_			•	•	·	·	ū	ŭ	v	ŭ	·	Ü	Ū	. •
ANEM I A	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	625 ppm	0	0	1	1	2	1	1	1	1	0	0	0	1	1
	1250 ppm	1	0	0	0	0	0	0	0	1	1	0	0	3	2
	2500 ppm	1	1	1	1	1	1	0	1	1	0	0	0	0	0
JLCER	Control	0	0	0	0	0	0	0	n	0	0	n	0	0	1
	625 ppm	n	Ô	0	0	0	0	0	0	0	1	U 1	U	U	1
	1250 ppm	n	0	0	0	0	0	-	0	-	1	ı	1		2
	2500 ppm	1	1	1	1	1	1	0	0	0	0 0	0	1 0	0	2
	LOGO PPIII	'	ı	ı	1	ı	ı	U	U	U	U	U	U	U	0

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

Clinical sign	Group Name	Admin	istration	Week-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
M. PERI EAR	Control	0	0	0	0	0	0		
m- I EKI EKK	625 ppm	0	0	. 0	0	0	0		
	1250 ppm	0	0	0	1	1	ນ 1		
	2500 ppm	0	0	0	Ó	Ó	Ó		
	2000 ppm	ŭ	•	·	Ū	v	v		
M. NECK	Control	0	0	0	0	0	0		
	625 ppm	0	0	1	1	1	ī		
	1250 ppm	0	Ō	Ô	Ó	Ö	Ó		
	2500 ppm	Ō	Ō	Ō	Ö	Õ	Ö		
				-	-	-	_		
M. FORELIMB	Control	0	0	0	0	0	1		
	625 ppm	0	0	0	0	0	0		
	1250 ppm	1	1	1	1	1	1		
	2500 ppm	0	0	0	0	0	0		
M. BREAST	01	•			_		_	•	
M- DKEA9 I	Control	3	3	3	3	3	3		
	625 ppm	4	4	4	3	4	4		
	1250 ppm	3	3	4	4	4	4		
	2500 ppm	1	1	1	1	1	1		
M. ABDOMEN	Control	0	0	1	2	2	2		
	625 ppm	2	. 2	ż	2	2	2		
	1250 ppm	1	1	1	2	2	2		
	2500 ppm	3	3	2	3	3	4		
		·	·	-	·	v	7		
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0		
	625 ppm	1	1	1	1	1	1		
	1250 ppm	0	0	0	0	1	1		
	2500 ppm	0	0	0	0	Ô	Ö		
M. GENITALIA	01						_		
W. GENTTALIA	Control	4	4	4	4	4	4		
	625 ppm	4	4	4	4	4	4		
	1250 ppm	2	2	1	1	1	1		
	2500 ppm	0	0	0	0	0	0		
ANEMIA	Control	0	0	2	1	1	1		
	625 ppm	1	Ŏ	0	Ó	Ö	0		
	1250 ppm	2	2	2	2	2	2		
	2500 ppm	0	0	0	0	0	0		
	-000 PP	J	v	U	v	U	U		
JLCER	Control	1	1	1	1	1	1		
	625 ppm	2	2	2	i	1	Ö		
	1250 ppm	2	2	2	2	2	1		
	2500 ppm	ō	ō	-	ō	Õ	Ó		

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX: FEMALE

Group Name	Admini 1-7	stration W	eek-day											
	1-7													
		2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
Control	a	n	0	0	n	n	n	n	n	n		0	n	0
	ő													0
	Õ	_	_				-	-		-	•	•		0
2500 ppm	Ö	Õ	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ŏ	Ö	Ö	Ö
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0		0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	-	0	0	0	0	0	0	0	0	0	0	0	0
	0		0	0	0	0	0	0	0	0	0 .	0	0	0
2500 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	Ö	Ō	Ō	Ö	Ö	Ō
1250 ppm	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ö	Ō	Ō
2500 ppm	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ö	Ō	Ö	Ŏ
Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
625 ppm	50	50	50	50										50
1250 ppm	50	50	50	50	50									50
2500 ppm	0	0	0	0	0	0	Ō	0	0	Ö	Ö	0	Ö	Ö
	Control 625 ppm 1250 ppm 2500 ppm 2500 ppm 1250 ppm 1250 ppm 1250 ppm 2500 ppm 2500 ppm Control 625 ppm 1250 ppm Control 625 ppm 1250 ppm Control 625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	625 ppm	Sez ppm	Sels ppm	625 ppm	625 ppm	625 ppm	SES DOM

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

OEX : I EMILE															FAGE . U
Clinical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
SWELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	n	0
	625 ppm	Ō	Õ	ō	ō	Ö	ŏ	Ö	Ö	Ö	Õ	ő	ň	Õ	ő
	1250 ppm	Ō	Ö	Õ	Ö	Ŏ	Ŏ	Ö	Ŏ	Õ	0	Ŏ	ň	Ô	Ö
	2500 ppm	Ö	Ö	Õ	ŏ	Õ	Ö	Õ	0	Õ	Ö	Ö	Ö	Ö	Ö
IRREGULAR BREATHING	Control	n	O	0	0	0	0	0	0	0	0	n	0	0	0
	625 ppm	Õ	Õ	Ö	Ö	Õ	0	0	0	Ô	0	0	0	0	0
	1250 ppm	ŏ	ñ	0	0	Ö	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Õ	0	0	0	0	0	0	Ö	0	0	0	Ü	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	625 ppm	ñ	Ô	0	. 0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	. 0	Ö	0	. 0	0	0	0	0	0	0	0	0	0	n n
	2500 ppm	Ö	Ö	Ö	0	0	0	Ö	Ö	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	•				•	•				•
BROWN OKTHE	625 ppm	0		-	0	0	0	0	0	0	0	0	0	0	0
	025 ррш 1250 ррт	•	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	n	n
	625 ppm	0	0	ō	Ö	Ö	ŏ	Ö	Õ	ŏ	Õ	Ö	Ô	ก	Ô
	1250 ppm	0	Ō	Õ	Ö	Ö	ŏ	Ŏ	Õ	ő	Õ	0	Ô	Ô	0
	2500 ppm	Ō	Ō	Ö	Ö	ő	Ö	Ö	0	Ö	Ö	0	0	0	0
NON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	625 ppm	50	50	50 50	50	50 50	50 50	50 50	50 50	50 50	49	48	48	48	50 48
	1250 ppm	50	50	50	50 50	50 50	50 50	50 50		50 50			48 50		
	2500 ppm	0	0	0	0	0	0	0	50 0	ອບ 0	50 0	. 50 0	50 0	50 0	50 0
	FOOD PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	Ü

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
WELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	Ó	Ō	Õ	ō	Ō	ō	Ö	Õ	Ö	ō	Ö
	1250 ppm	0	0	0	0	0	0	0	Ō	Ö	Ö	Õ	ñ	Ō	Ō
	2500 ppm	0	0	Ō	ō	Ö	ŏ	Ö	Ö	Ö	ŏ	ŏ	ŏ	Ö	Ö
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	625 ppm	Õ	Ö	Ö	Ö	Ŏ	ŏ	Ö	Ö	Ö	Ö	Ö	ñ	0	Ö
	1250 ppm	ň	Ö	Ö	ŏ	Ö	Ö	Ŏ	0	0	0	Ô	n	0	0
	2500 ppm	Ö	ŏ	Ö	Ö	0	Ö	Ö	0	0	Ö	Ö	0	0	0
ELLOW URINE	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ň	Ö	Ö	0	0	Ö	0	. 0	0	0	0	0	0	0
	1250 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	-
	2500 ppm	0	n	0	0	0	0	0	-	_		-	-	-	0
	2000 ppiii	v	U	U	U	U	U	U	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0
	625 ppm	0	0	0	0	0	0	Ō	0	Ō	Ō	Ō	0	Ö	Ö
	1250 ppm	0	0	0	0	Ó	0	Ō	Ō	Ō	Ö	Ö	Ō	Ö	Ŏ
	2500 ppm	50	50	50	49	49	49	49	49	49	49	49	49	49	49
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Ō	Ö	Ö	Ö	ŏ	Ö	Ô	Ö	Ö	Ö	Ŏ	Ö	Ö	0
	1250 ppm	Ö	ŏ	Ö	Ö	Ö	Ö	Ô	0	Ö	Ö	0	Ö	0	0
	2500 ppm	ō	Ö	Ö	Ö	Õ	0	0	0	0	Ö	0	0	Ö	. 0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	٥
	625 ppm	ő	Õ	. 0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0		0	•	_	0	-
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
N. Bellinius		·	Ū	-	•	U		U	U	U	U	U	U	U	U
N REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	625 ppm	48	48	48	48	48	48	48	48	48	48	48	48	47	47
	1250 ppm	50	50	50	50	50	50	50	50	49	49	49	49	47	47
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

Group Name Control 625 ppm 1250 ppm 2500 ppm	Admini 43-7 0 0	stration W 44-7 0	eek-day 45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
625 ppm 1250 ppm 2500 ppm		0		46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54–7	55-7	56-7
625 ppm 1250 ppm 2500 ppm	0 0 0	-	0											
625 ppm 1250 ppm 2500 ppm	0 0 0	-		•	0			•			0		•	
1250 ppm 2500 ppm	0		-	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	11	0	0	0	0	0	0	0	0	0	0	0	0	0
	Õ	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0
Control	٥	n	0	0	0	0		^	0	0	0	•	0	0
625 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	U N
1250 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	U 1
2500 ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	1
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
625 ppm	n	0	0	0	0	0	0	Ð	0	0	0	0	0	0
1250 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	n'
2500 ppm	Õ	Ô	0	0	0	0	0	Ö	Ö	0	0	0	0	0
Control	0	n	n	ß	0	n	0	n	0	n	0	0	n	n
	Õ	ň	-	-			-	_		_	-	•	Ū	0
	ñ	-								•	•		u	0
2500 ppm	ō	Ö	Ö	ŏ	ő	Ö	Õ	Ŏ	ő	Ö	Ö	0	Ö	0
Control	0	0	n	0	0	0	n	n	O	n	n	0	O	n
	ŏ	-	_					-	_		-	•	-	0
	Õ		-			-						-		ů.
2500 ppm	Ō	Ö	Ö	ŏ	Ö	ő	Ö	Ö	Ö	Ö	Ö	Ö	0	0
Control	0	0	. 0	0	n	n	n	n	0	n	n	0	Λ	0
625 ppm	0							-		_	_	_	-	Ö
1250 ppm	Õ							-	-	-	-		-	Ö
2500 ppm	49	49	49	49	49	49	49	49	48	48	48	48	48	48
Control	0	0	0	0	0	0	a	n	n	n	0	n	Λ	0
625 ppm	0								-	-		_	•	0
1250 ppm	Ō							-			-	-	•	Ö
2500 ppm	Ō	Ō	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	Ö	0	0
Control	0	0		0	0	0	0	0	n	Ð	0	1	2	2
625 ppm	Õ	Ö	Ŏ	Ö	-	ő	-	ñ	-	ñ	-	'n		ñ
1250 ppm	Ō	Ō	Ö	_		_	_	•	-	•	-	_	-	Ö
2500 ppm	0	0	Ō	Ö	Ö	Ö	Ö	Ô	Ö	Ö	Ö	Ö	Õ	Ö
Control	50	50	50	50	50	49	47	46	46	46	46	46	46	46
625 ppm	47	47	47	47										46
1250 ppm	47	47	47											45
2500 ppm	0					-	Ô	ő						
	2500 ppm Control 625 ppm 1250 ppm 2500 ppm	2500 ppm 0 Control 0 625 ppm 0 1250 ppm 0 2500 ppm 0 Control 0 625 ppm 0 2500 ppm 0 Control 0 625 ppm 0 625 ppm 0 625 ppm 0 6250 ppm 0	2500 ppm 0 0 Control 0 0 625 ppm 0 0 1250 ppm 0 0 2500 ppm 0 0 Control 0 0 625 ppm 0 0 Control 0 0 2500 ppm 0 0 Control 0 0 625 ppm 0 0 Control 0 0 Control 0 0 Control 0 0 625 ppm 0 0 Control 50 50 Control 47 47	2500 ppm 0 0 0 0 Control 0 0 0 0 625 ppm 0 0 0 0 1250 ppm 0 0 0 0 2500 ppm 0 0 0 0 Control 0 0 0 0 625 ppm 0 0 0 0 Control 0 0 0 0 2500 ppm 0 0 0 0 Control 50 50 50 50 Control 50 50 50	2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control O O O O O O O O O	2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control	Control	2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control	2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
WELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2500 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0.	0	0	0	0	0	Ô	Ō	Ō	Ō	Ō	Ō	Ō	0
	1250 ppm	0	0	0	Ō	Ō	Ō	Õ	Õ	ō	Ö	Ō	Ö	Ö	Ö
	2500 ppm	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Ö	Ö	ō	ŏ	Ö
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	O	0	0	0
	625 ppm	0	0	0	Ō	Õ	Ō	Ō	Ō	Ō	Õ	Ō	ō	ō	Ö
	1250 ppm	ñ	Ö	Ö	Ö	Õ	Ö	Õ	Ö	Ö	0	ñ	Ö	Ö	Ö
	2500 ppm	Ö	Õ	Ŏ	Ö	ŏ	Õ	ŏ	ŏ	Ö	Ö	Ö	Ö	Ö	Ö
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	Õ	Õ	Õ	Õ	Õ	Ö	ő	Ö	Ô	Ö	Õ	Õ	Ö	ñ
	1250 ppm	Ô	Ŏ	Õ	Õ	ŏ	Ö	Õ	0	0	0	Ö	Ö	0	Ö
	2500 ppm	Ö	ŏ	Ö	ő	Ö	Ö	ő	0	0	0	Ö	Ö	Ö	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	ŏ	Ô	Ö	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	ŏ	Ö	ő	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	48	48	48	48	47	47	47	46	46	46	46	46	46	46
MALL STOOL	Control	0	0	0	0	0	0		۸	•		0	0	۸	•
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	-	0	0	0	_	0	0	0	0
	2500 ppm	0	0	0	0	0	0 0								
LIGO-STOOL	Control	1	0	0	0	1	1	0	٥	0	0	0	0	0	0
2.40 5100E	625 ppm	0	0	-	-			0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	2000 թթո	U	0	0	0	0	1	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	46	46	46	46	46	46	46	47	47	47	46	46	45	46
	625 ppm	46	46	46	46	45	46	46	46	46	46	46	46	44	44
	1250 ppm	45	46	46	45	44	44	44	44	44	44	44	44	43	43
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

															171GE - 7
Clinical sign	Group Name	Admini	istration W	leek-dav	•										
-		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
SWELLING	Control	٥	٥	0	0			•	0	•	0				
SHELLING	625 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0 0	0	0 0	0 0	0	0	0	0	0
UENODOU A OF			·	Ū	·	_			-	-	U	- -	ŭ	J	ū
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	Ō	0	Ö	Ō	Ō	Ō	Ô	ō
	2500 ppm	0	0	0	0	Ō	Ö	Ö	Õ	Ö	Ŏ	ō	ŏ	Ö	Ö
YELLOW URINE	Control	Ω	0	0	0	0	0	0	0	1	1	0	n	0	Λ
	625 ppm	ñ	Ö	0	0	Ö	0	0	0	Ó	Ö	Ö	0	0	0
	1250 ppm	ñ	Ö	0	0	0	0	0	0	0	0	Ö	1	1	1
	2500 ppm	ŏ	Ö	Ö	Ö	Ö	Ö	0	0	0	0	0	Ó	Ó	Ö
BROWN URINE	Control	0		•	•									_	_
DROWN DRINE	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0	0	0	0	Ō
	1250 ppm 2500 ppm	0 46	0 45	0	0	0	0	0	0	0	0	0	0	0	0
	2500 կիլո	40	45	45	45	45	43	43	43	42	42	39	39	39	39
SMALL STOOL	Control	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
OLIGO-STOOL	Control	0	0	0	1	1	0	0	0	0	1	0	0	0	n
	625 ppm	Ō	Ö	2	i	Ö	Ô	Ö	0	0	Ö	Ô	0	0	ñ
	1250 ppm	Ō	Ö	Ō	ò	Ö	Ö	0	0	0	0	Ŏ	0	0	1
	2500 ppm	0	Ö	Ö	Ö	Ö	1	1	1	0	0	0	0	0	Ö
NON REMARKABLE	Control	46	46	46	45	44	45	44	44	43	42	42	40	40	40
	625 ppm	44	44	42	42	42	42	42	42	43 41	41	42 41	40 41	40 41	41
	1250 ppm	43	43	43	43	43	42	42	42	43	42	41 42	41 42	41 42	41 42
	2500 ppm	0	0	0	0	0	0	43 0	43 0	43 0	42 0	42 0	42 0	42 0	42 0
		•	·	U	v	v	U	U	U	U	U	U	U	U	υ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admin	stration W	eek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7 	96-7	97-7	98-7
ELL ING	Control	0	0	0	0	0	0		0	٥	٥	0		0	0
ELLING	625 ppm	0	0	0	-	-	0	0		0	0	-	0	0	0
		-	-	-	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	1	0	0 -	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	1	0	0	1	1
	2500 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	625 ppm	0	0	0	0	0	Û	0	Ó	;	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	n	0	0	O O	0	0	0 .	0	0	0	0	0	0	1
	2000 ppm	υ	U	U	U	U	υ	Ü .	U	U	U	U	U	U	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	n	0	0	0	0	0	0
	625 ppm	Ō	ī	í	1	ĭ	1	ĭ	ĭ	1	Ö	Ŏ	ŏ	Õ	Ö
	1250 ppm	1	Ó	Ö	Ò	Ö	Ö	Ö	ò	Ö	Ö	Ö	Ŏ	Ô	Ö
	2500 ppm	'n	Õ	Õ	0	0	0	0	0	0	0	0	0	0	0
	Lood ppm	v	Ü	U	U	U	U	U	υ	U	U	U	U	U	U
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	625 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	39	39	39	39	39	39	38	38	38	37	36	36	36	35
ALL STOOL	Control	1	0	0	. 0	0	0	0	. 0	0	0	0	0	0	0
	625 ppm	Ò	Õ	1	1	1	2	1	1	Ô	0	0	0	0	0
	1250 ppm	ī	Ö	ò	Ö	ò	ō	Ö	Ö	0	0	Ö	0	0	0
	2500 ppm	Ö	Ö	Ö	Õ	Ö	1	1	1	1	1	1	1	1	0
IGO-STOOL	Control	1	0	0	0	0	0	0			,	٥	^	0	•
	625 ppm	0.	υ 1	-	_	-	-	-	1	1	ı	0	0	0	0
	1250 ppm	U .	0	2	2	3	3	2	2	1	0	0	0	0	0
		ı	-	0	0	0	0	1	1	1	1	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	40	40	40	40	39	39	38	38	38	36	36	35	35	35
	625 ppm	41	39	37	35	35	35	35	35	35	34	33	32	32	32
	1250 ppm	42	42	41	40	39	38	38	38	37	37	37	36	35	35
	2500 ppm	0	Ō	Ö	0	0	Ő	0	0	O.	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admin	stration	Week-day _							
		99-7	100-7	101-7	102-7	103-7	104-7				
WELLING	Control	0	0	0	0	0	0				
	625 ppm	0	Ð	0	0	0	0				
	1250 ppm	0	0	0	0	0	0				
	2500 ppm	0	0	0	1	1	Ť				
EMORRHAGE	Control	0	0	0	0	0	0				
	625 ppm	0	0	0	0	Ō	Ö				
	1250 ppm	Õ	Ö	Õ	Ö	ŏ	ŏ				
	2500 ppm	Ö	Ŏ	Ö	Ŏ	Ö	Ö				
ORT I COLL IS	Control	1	1	1	1	1	1				
	625 ppm	i	i	i	i	i	i				
	1250 ppm	ì	i	i	i	1	i				
	2500 ppm	i	i	i	1	i	i				
RREGULAR BREATHING	Control	0	0	0	٥	n	٥				
MEGGEAR DREATHING	625 ppm	U 1	-		0	0	0				
		1	1	1	1	0	0				
	1250 ppm	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
LLOW URINE	Control	0	0	0	0	0	0				
	625 ppm	0	0	0	0	0	0				
	1250 ppm	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
OWN URINE	Control	0	0	0	0	0	0		•		
	625 ppm	0	0	0	0	0	Ō				
	1250 ppm	Ō	Ö	Ō	Ö	Ö	ŏ				
	2500 ppm	35	35	35	35	35	35				
IALL STOOL	Control	0	0	0	0	1	1				
	625 ppm	Ö	Ö	1	1	i	i				
	1250 ppm	1	1	ò	Ó	Ó	1				
	2500 ppm	Ó	ò	1	1	1	1				
100.000		-	_	•	·	ı	ļ.				
.IGO-STOOL	Control	0	0	1	0	1	1				
	625 ppm	0	1	1	2	1	1				
	1250 ppm	1	1	0	1	1	0				
	2500 ppm	0	0	0	0	0	Ö				
N REMARKABLE	Control	35	35	33	32	32	31				
	625 ppm	31	31	30	30	30	30				
	1250 ppm	34	34	32	30	29	28				
	2500 ppm	0	0	0	0	0	0				
	-000 PPIII	u	U	U	υ	U	U				

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

	Control		625	mqq		125) ppm		2500	ppm	
Week-Day on Study	Av. Wt.	No. of Surviv. <50>	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.
0-0	124 (50				50/50	124 (50)	100	50/50	124 (50)	100	50/50
1-7	155 (50				50/50	154 (50)	99	50/50	149 (50)	96	50/50
2-7	189 (50				50/50	187 (50)	99	50/50	180 (50)	95	50/50
3-7	217 (50				50/50	213 (50)	98	50/50	204 (50)	94	50/50
4-7 5-7	239 (50				50/50	235 (50)	98	50/50	225 (50)	94	50/50
5-7 C 7	255 (50				50/50	251 (50)	98	50/50	241 (50)	95	50/50
6-7 7	268 (50				50/50	264 (50)	99	50/50	252 (50)	94	50/50
7-7	281 (50				50/50	278 (50)	99	50/50	265 (50)	94	50/50
8-7	294 (50				50/50	291 (50)	99	50/50	277 (50)	94	50/50
9-7	304 (50				50/50	301 (50)	99	50/50	288 (50)	95	50/50
10-7	312 (50				50/50	310 (50)	99	50/50	295 (50)	95	50/50
11-7	320 (50				50/50	318 (50)	99	50/50	302 (50)	94	50/50
12-7	328 (50				50/50	325 (50)	99	50/50	308 (50)	94	50/50
13-7	333 (50				50/50	331 (50)	99	50/50	313 (50)	94	50/50
14-7	339 (50				50/50	337 (50)	99	50/50	318 (50)	94	50/50
18-7	353 (50				50/50	354 (50)	100	50/50	333 (50)	94	50/50
22-7	370 (50				50/50	370 (50)	100	50/50	347 (50)	94	50/50
26-7	380 (50				50/50	382 (50)	101	50/50	355 (50)	93	50/50
30-7	392 (50				50/50	396 (50)	101	50/50	368 (50)	94	50/50
34-7	402 (50				50/50	405 (50)	101	50/50	379 (50)	94	50/50
38-7	406 (50				49/50	409 (50)	101	50/50	382 (50)	94	50/50
42-7	415 (49				49/50	418 (50)	101	50/50	389 (50)	94	50/50
46-7	421 (49				49/50	425 (49)	101	49/50	395 (50)	94	50/50
50-7	426 (49				49/50	431 (48)	101	48/50	398 (50)	93	50/50
54-7	435 (49				49/50	439 (48)	101	48/50	404 (50)	93	50/50
58-7	441 (49				49/50	445 (48)	101	48/50	409 (49)	93	49/50
62-7	446 (49				49/50	448 (48)	100	48/50	413 (48)	93	48/50
66-7	450 (49				49/50	453 (47)	101	47/50	414 (48)	92	48/50
70-7	452 (49				49/50	455 (47)	101	47/50	415 (48)	92	48/50
74-7	455 (49				48/50	456 (47)	100	47/50	416 (48)	91	48/50
78-7	458 (49			100	48/50	459 (46)	100	46/50	415 (47)	91	47/50
82-7	459 (48			101	46/50	457 (46)	100	46/50	412 (47)	90	47/50
86-7	458 (48			101	46/50	450 (46)	98	46/50	406 (47)	89	47/50
90-7	454 (48		454 (45)	100	45/50	441 (44)	97	44/50	397 (45)	87	45/50
94-7	453 (45		444 (44)	98	44/50	435 (39)	96	39/50	393 (40)	87	40/50
98-7	452 (43		438 (43)	97	43/50	425 (36)	94	36/50	385 (39)	85	39/50
102-7	437 (42		425 (40)	97	40/50	418 (34)	96	34/50	377 (36)	86	36/50
104-7	436 (40	40/50	419 (39)	96	39/50	408 (33)	94	33/50	371 (34)	85	34/50

>:No. of effective animals, ():No. of measured animals

Av. Wt. : g

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

REPORT TYPE : AT 104
SEX : FEMALE

	Control	ntrol 625 ppm		1250 ppm					2500	ppm			
	Av. Wt.	No. of	Av. Wt.		% of	No. of	Av. Wt		% of	No. of	Av. Wt.	% of	No. of
Week-Day		Surviv.			cont.	Surviv.			cont.	Surviv.		cont.	Surviv.
on Study		<50>			<50>				<50>			<50>	
0-0	101 (50	50/50	101 ((50)	100	50/50	101	(50)	100	50/50	101 (50)	100	50/50
1-7	118 (50		117 (99	50/50	117		99	50/50	113 (50)	96	50/50
2-7	131 (50		131 (100	50/50	130		99	50/50	126 (50)	96	50/50
3-7 4-7	141 (50 149 (50		141 (100	50/50		(50)	99	50/50	135 (50)	96	50/50
4-7 5-7	156 (50		149 (157 (100 101	50/50 50/50	148 155		99 99	50/50 50/50	142 (50) 147 (50)	95 94	50/50 50/50
6-7	163 (50		162 (99	50/50 50/50	161		99	50/50	153 (50)	94 94	50/50 50/50
7-7	166 (50		167 (101	50/50	167		101	50/50	158 (50)	95	50/50
8-7	171 (50		171 (100	50/50	171		100	50/50	161 (50)	94	50/50
97	175 (50	50/50	175 ((50)	100	50/50	175		100	50/50	165 (50)	94	50/50
10-7	179 (50		178 (99	50/50	178		99	50/50	168 (50)	94	50/50
11-7	183 (50		182 (99	50/50	183		100	50/50	170 (50)	93	50/50
12-7	186 (50		186 (100	50/50	184		99	50/50	172 (50)	92	50/50
13-7 14-7	187 (50) 189 (50)		188 (191 (101 101	50/50 50/50	187 189		100	50/50	174 (50)	93	50/50
18-7	195 (50		197 (101	50/50 50/50	196		100 101	50/50 50/50	176 (50) 181 (50)	93 93	50/50
22-7	203 (50		204 (100	50/50	202		100	50/50	186 (50)	93 92	50/50 50/50
26-7	208 (50		210 (101	50/50	208		100	50/50	189 (50)	91	50/50
30-7	213 (50		215 (101	50/50	212		100	50/50	194 (50)	91	50/50
34-7	217 (50)		220 ((50)	101	50/50	218		100	50/50	198 (49)	91	49/50
38-7	221 (50		223 (101	50/50	221	(50)	100	50/50	199 (49)	90	49/50
42-7	225 (50)		228 (101	50/50	224		100	50/50	200 (49)	89	49/50
46-7 50-7	231 (50)		232 (100	50/50	229		99	50/50	202 (49)	87	49/50
50-7 54-7	234 (50)		238 (102	50/50	232		99	50/50	203 (49)	87	49/50
58-7	241 (50) 246 (49)		245 (252 (102 102	50/50 50/50	238 243		99	50/50 50/50	208 (48)	86	48/50
62-7	252 (49)		258 (102	50/50	250		99 99	50/50 50/50	212 (48) 216 (47)	86 86	48/50 47/50
66-7	259 (49)		265 (102	50/50	256		99	49/50	218 (46)	84	46/50
70-7	265 (49)		268 (101	49/50	260		98	48/50	220 (46)	83	46/50
74-7	270 (49)		272 ((48)	101	48/50	265		98	48/50	225 (45)	83	45/50
78-7	281 (48)		283 (101	47/50	271		96	48/50	231 (43)	82	43/50
82-7	289 (47)		290 (100	47/50	277		96	48/50	237 (39)	82	39/50
86-7	292 (47)		293 (100	47/50	279		96	47/50	239 (39)	82	39/50
90-7	298 (47)		294 (99	46/50	282		95	45/50	240 (39)	81	39/50
94-7 98-7	301 (46) 306 (44)		298 (99	43/50	284		94	45/50	240 (37)	80	37/50
102-7	310 (43)		299 (293 (98 95	42/50 41/50	284		93	45/50	245 (35)	80 70	35/50
104-7	312 (43)		297 (95	41/50	282 283		91 91	44/50 42/50	244 (35) 245 (35)	79 79	35/50 35/50
	(+0)		(,-01	33	70/ 30	200	(44)	31	42/ 30	240 (30)	13	30/00

< >:No. of effective animals, ():No. of measured animals

Av. Wt. : g

TABLE C 3

BODY WEIGHT CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

(SUMMARY)

BODY WEIGHT CHANGES ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 1

Group Name	Admin	istration	ı week-day											
	0-0		1-7		2-7		3-7		4-7		5-7	5-7		
Control	124±	4	155±	6	189±	8	217±	9	239±	10	255±	11	268±	12
625 ppm	124±	4	154±	6	187±	8	213±	9	236±	10	251±	11	264±	12
1250 ppm	124±	4	154±	6	187±	8	213±	8	235±	8	251±	9	264±	10
2500 ppm	124±	4	149±	6**	180±	7**	204±	9**	225±	10**	241 ±	11**	252±	12**

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 2

Group Name	Administration week-day													
	7–7	8-7	9–7	10-7	11-7	12-7	13–7							
ontrol	281± 12	294± 12	304± 13	312± 14	320± 14	328± 14	333± 13							
25 ppm	277± 13	290± 14	301 ± 14	310± 15	317± 15	324± 16	330± 15							
250 ppm	278± 11	29 1± 11	301± 13	310± 14	318± 14	325± 14	331 ± 15							
mag 003	265± 13**	277± 14**	288± 15**	295± 16**	302± 16**	308± 16**	313± 16**							

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104
SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 3

Group Name	Admin	istration	week-day											
	14-7		18–7		22-7		26-7		30-7		34-7	34-7		
Control	339±	14	353±	14	370±	15	380±	17	392±	17	402±	17	406±	18
625 ppm	$336\pm$	16	353±	17	370 ±	18	381±	19	394±	21	404±	22	407 ±	23
1250 ppm	$337\pm$	16	354±	17	370±	18	382±	19	396±	20	405±	20	409±	21
2500 ppm	318±	16**	$3\dot{3}3\pm$	19**	347 ±	20**	355±	21**	368±	21**	379±	20**	$\textbf{382}\pm$	23**
Significant differ	ence ; * : P ≦	0. 05 *	** : P ≦ 0. ()1			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : MALE														PAGE: 4
Group Name	Administration w 42-7		week-day 46-7		50-7	50-7		54-7		58–7		62-7		
Control	415±	20	421±	21	426±		435 ±	23	441 ±	23	446±	24	450 ±	26
625 ppm	418±	23	423 ±	24	429±	24	438±	26	445 ±	26	451±	25	456±	26
1250 ppm	418±	22	425±	25	431 ±	25	439±	26	445 ±	25	448±	29	453 ±	25
2500 ppm	389±	24**	395±	26**	398±	27**	404±	26**	409±	26**	413±	26**	414±	27**

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration						
	70-7	74-7	78-7	82-7 	86-7	90-7	94-7
ontrol	452± 27	455± 26	458± 30	459± 28	458± 26	454± 29	453 ± 30
25 ppm	457± 28	459± 31	459 ± 44	464± 28	461 ± 29	454± 33	444± 43
1250 ppm	455± 25	456± 26	459 ± 25	457± 27	450± 30	441± 43	435± 43
2500 ppm	415± 27**	416± 27**	415± 26**	412± 25**	406± 27**	397± 37**	393± 36**
Significant difference	e; *:P≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

SEX : MALE										PAGE: 6
Group Name			n week-day						 	
	98-7		102-7		104-7					·
Control	452±	32	437±	44	436±	45				
625 ppm	438±	47	425±	49	419±	57				
1250 ppm	425 ±	51**	418±	42*	408±	46*				
2500 ppm	385±	34**	377±	30**	371 ±	38**				
Significant differenc	e; *:P≦(0. 05	** : P ≤ 0.	01			Test of Dun	nett	*	
(HAN260)									 	BAIS 4

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] UNIT : g REPORT TYPE : A1 104

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : FEMALE

PAGE: 7

Group Name	Adminis	tration	week-day											
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
ontrol	101 ±	3	118±	4	131 ±	5	141±	6	149±	7	156±	8	163±	9
25 ppm	101 ±	3	117±	4	131±	4	141±	5	149±	6	157±	6	162±	7
250 ppm		3	117±	4	130±	5	139±	5	148±	6	155±	6	161 ±	7
2500 ppm	101±	3	113±	4**	126±	5**	135±	5**	142±	6**	147±	6**	153±	6**
Significant differ	ence ; * : P ≤ 0.	05	** : P ≤ 0.0	1			Test of Du	ınnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : FEMALE

PAGE: 8

7–7		8-7		9-7		10-7							
						10-7		11-7		12-7		13-7	
166±	10	171±	10	175±	11	179±	11	183±	11	186±	12	187±	11
167±	8	171±	8	175±	8	178±	9	182±	9	186±	9	188±	9
167±	8	171±	8	175±	9	178±	10	183±	10	184±	10	187±	9
158±	7**	161±	8**	165±	8**	168±	9**	170±	9**	172±	9**	174±	9**
	167±	166 ± 10 167 ± 8 167 ± 8 158 ± 7**	167± 8 171± 167± 8 171±	167± 8 171± 8 167± 8 171± 8	$167\pm$ 8 $171\pm$ 8 $175\pm$ $167\pm$ 8 $171\pm$ 8 $175\pm$	167± 8 171± 8 175± 8 167± 8 171± 8 175± 9	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$	$167 \pm$ 8 $171 \pm$ 8 $175 \pm$ 8 $178 \pm$ 9 $167 \pm$ 8 $171 \pm$ 8 $175 \pm$ 9 $178 \pm$ 10	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ 9 $182\pm$ $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$ 10 $183\pm$	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ 9 $182\pm$ 9 $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$ 10 $183\pm$ 10	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ 9 $182\pm$ 9 $186\pm$ $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$ 10 $183\pm$ 10 $184\pm$	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ 9 $182\pm$ 9 $186\pm$ 9 $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$ 10 $183\pm$ 10 $184\pm$ 10	$167\pm$ 8 $171\pm$ 8 $175\pm$ 8 $178\pm$ 9 $182\pm$ 9 $186\pm$ 9 $188\pm$ $167\pm$ 8 $171\pm$ 8 $175\pm$ 9 $178\pm$ 10 $183\pm$ 10 $184\pm$ 10 $187\pm$

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

						PAGE: 9
Administration 14-7	week-day 18-7	22-7	26-7	30-7	34-7	38-7
189± 11	195± 12	203 ± 13	208± 13	213± 14	217± 15	221± 14
191± 8	197± 8	204± 9	210± 9	215± 10	220± 10	223± 10
189± 9	196± 10	202± 10	208± 10	212± 11	218± 11	221 ± 11
176± 9**	181± 9**	186± 10**	189± 10**	194± 11**	198± 11**	199± 12**
	14-7 189± 11 191± 8 189± 9	189± 11 195± 12 191± 8 197± 8 189± 9 196± 10	$14-7$ $18-7$ $22-7$ $189\pm$ 11 $195\pm$ 12 $203\pm$ 13 $191\pm$ 8 $197\pm$ 8 $204\pm$ 9 $189\pm$ 9 $196\pm$ 10 $202\pm$ 10	$14-7$ $18-7$ $22-7$ $26-7$ $189 \pm$ 11 $195 \pm$ 12 $203 \pm$ 13 $208 \pm$ 13 $191 \pm$ 8 $197 \pm$ 8 $204 \pm$ 9 $210 \pm$ 9 $189 \pm$ 9 $196 \pm$ 10 $202 \pm$ 10 $208 \pm$ 10	$14-7$ $18-7$ $22-7$ $26-7$ $30-7$ $189 \pm$ 11 $195 \pm$ 12 $203 \pm$ 13 $208 \pm$ 13 $213 \pm$ 14 $191 \pm$ 8 $197 \pm$ 8 $204 \pm$ 9 $210 \pm$ 9 $215 \pm$ 10 $189 \pm$ 9 $196 \pm$ 10 $202 \pm$ 10 $208 \pm$ 10 $212 \pm$ 11	Administration week-day

Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Admin	istration	week-day											
	42-7		46-7		50-7		54-7		58-7		62-7		66-7	
Control	225±	16	231±	16	234±	17	241±	19	246±	19	252±	20	259±	23
625 ppm	228±	11	232±	12	238±	14	245±	16	252±	18	258±	19	265±	21
1250 ppm	224±	12	229±	13	232±	14	238±	15	243±	17	250±	19	256±	19
2500 ppm	200±	12**	202±	14**	203±	16**	208±	15**	212±	17**	216±	18**	218±	21**

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Admin	istration	week-day											
	70-7		74-7		78-7		82-7		86-7		90-7		94-7	
Control	265±	24	270±	26	281 ±	22	289±	22	292±	22	298±	21	301 ±	23
625 ppm	268±	20	272±	22	283 ±	21	290±	23	293±	29	294±	32	298±	33
1250 ррт	260±	19	265±	21	271 ±	22	277±	23*	279±	22*	282±	20**	284±	20**
2500 ppm	220±	23**	225±	26**	231 ±	25**	237±	22**	$\textbf{239}\pm$	23**	240±	25**	240±	27**

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration v	veek-day		
	98-7	102-7	104-7	
Control	306± 26	310± 32	312± 38	
625 ppm	299± 41	293± 27*	297± 26	
1250 ppm	284± 22**	282± 22**	283± 22**	
2500 ppm	245± 26**	244± 30**	245± 34**	
Significant differe	nce; * : P ≦ 0.05 **	: P ≦ 0.01	Test of Dunnett	

(HAN260)

BAIS4

TABLE D 1

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104 SEX

: MALE

	Control		625 p	pm		1250	ppm		2500	ppm		
Week-Day on Study	Av. FC.	No. of Surviv. <50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	
1-7	13. 6 (50		13. 7 (50)	101	50/50	13. 9 (50)	102	50/50	13. 0 (50)	96	50/50	•
2-7	15. 4 (50		15. 4 (50)	100	50/50	15. 2 (50)	99	50/50	14. 5 (50)	94	50/50	
3-7	16.3 (50		16.0 (50)	98	50/50	16.0 (50)	98	50/50	15. 0 (50)	92	50/50	
4-7	16.4 (50		16 2 (50)	99	50/50	16. 1 (50)	98	50/50	15. 3 (50)	93	50/50	
5-7	16.3 (50		16. 2 (50)	99	50/50	15. 9 (50)	98	50/50	15. 3 (50)	94	50/50	
6-7	15.8 (50		15.6 (50)	99	50/50	15. 7 (50)	99	50/50	15. 2 (50)	96	50/50	
7–7	15. 5 (50		15. 4 (50)	99	50/50	15. 4 (50)	99	50/50	14. 9 (50)	96	50/50	
8-7	15.9 (50		15. 8 (50)	99	50/50	15.8 (50)	99	50/50	15. 2 (50)	96	50/50	
9-7	15.8 (50		15. 9 (50)	101	50/50	16.0 (50)	101	50/50	15. 5 (50)	98	50/50	
10-7	15.7 (50		15. 7 (50)	100	50/50	16.0 (50)	102	50/50	15. 2 (50)	97	50/50	
11-7	15. 3 (50)		15. 4 (50)	101	50/50	15. 4 (50)	101	50/50	14. 8 (50)	97	50/50	
12-7	15.6 (50		15. 4 (50)	99	50/50	15. 5 (50)	99	50/50	15. 2 (50)	97	50/50	
13-7	15.6 (50)		15. 4 (50)	99	50/50	15. 4 (50)	99	50/50	14. 6 (50)	94	50/50	
14-7	15. 4 (50)		15. 4 (50)	100	50/50	15. 4 (50)	100	50/50	14. 8 (50)	96	50/50	
18-7	15. 0 (50)		15. 0 (50)	100	50/50	15. 1 (50)	101	50/50	14. 4 (50)	96	50/50	
22-7	15. 7 (50)		15. 8 (50)	101	50/50	15. 9 (50)	101	50/50	14. 9 (50)	95	50/50	
26-7	16. 0 (50)		15. 9 (50)	99	50/50	16.0 (50)	100	50/50	15. 0 (50)	94	50/50	
30-7	15. 7 (50)		16. 1 (50)	103	50/50	16. 3 (50)	104	50/50	14. 9 (50)	95	50/50	
34-7	15. 7 (50)		15. 8 (50)	101	50/50	16. 1 (50)	103	50/50	15. 4 (50)	98	50/50	
38-7	15. 8 (50)		15.8 (49)	100	49/50	16. 1 (50)	102	50/50	15. 5 (50)	98	50/50	
42-7	16. 1 (49)		16. 3 (49)	101	49/50	16. 2 (50)	101	50/50	15. 5 (50)	96	50/50	
46-7	16. 1 (49)		16. 2 (49)	101	49/50	16. 2 (49)	101	49/50	15. 6 (50)	97	50/50	
50-7	16. 1 (49)		16.3 (49)	101	49/50	16. 5 (48)	102	48/50	15. 8 (50)	98	50/50	
54-7	16.8 (49)		17. 2 (49)	102	49/50	17. 0 (48)	101	48/50	16. 2 (50)	96	50/50	
58-7	16. 8 (49)		17. 1 (49)	102	49/50	17. 1 (48)	102	48/50	16. 2 (49)	96	49/50	
62-7	16. 7 (49)		17. 0 (49)	102	49/50	16. 7 (48)	100	48/50	16. 1 (48)	96	48/50	
66-7	16. 4 (49)		16.8 (49)	102	49/50	16.8 (47)	102	47/50	15. 9 (48)	97	48/50	
70-7	16. 2 (49)		16.6 (49)	102	49/50	16. 6 (47)	102	47/50	15. 5 (48)	96	48/50	
74-7	16.6 (49)		16.6 (48)	100	48/50	16. 6 (47)	100	47/50	15. 5 (48)	93	48/50	
78-7	16. 1 (49)		16. 2 (48)	101	48/50	16. 1 (46)	100	46/50	15. 0 (47)	93	47/50	
82-7	16. 1 (48)		16. 4 (46)	102	46/50	16. 0 (46)	99	46/50	14. 9 (47)	93	47/50	
86-7	16. 3 (48)		16. 1 (46)	99	46/50	15.7 (46)	96	46/50	15. 0 (47)	92	47/50	
90-7	16.0 (48)		16. 0 (45)	100	45/50	15. 7 (44)	98	44/50	14. 8 (44)	93	45/50	
94-7	16. 2 (45)		15. 9 (44)	98	44/50	15.3 (39)	94	39/50	14. 7 (40)	91	40/50	
98-7	16. 7 (43)		16. 1 (43)	96	43/50	15. 5 (36)	93	36/50	14. 3 (39)	86	39/50	
102-7	15. 9 (41)		15. 2 (40)	96	40/50	15. 6 (34)	. 98	34/50	14. 4 (36)	91	36/50	
104-7	15.8 (40)	40/50	15. 5 (39)	98	39/50	15.6 (33)	99	33/50	14. 3 (34)	91	34/50	

 >:No. of effective animals, ():No. of measured animals

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

	Control		625 r	mq		1250	ppm		2500	ppm		
Week-Day on Study	Av. FC.	No. of Surviv. <50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	
1-7	11. 0 (50		10. 9 (50)	99	50/50	10. 9 (50)	99	50/50	10. 0 (50)	91	50/50	
2-7	11. 1 (50		11. 2 (50)	101	50/50	10. 9 (50)	98	50/50	10. 4 (50)	94	50/50	
3-7	11.0 (50		11. 1 (50)	101	50/50	10.9 (50)	99	50/50	10. 2 (50)	93	50/50	
4–7	11.0 (50		11. 2 (50)	102	50/50	11.0 (50)	100	50/50	10.2 (50)	93	50/50	
5-7	10.9 (50	O) 50/50	11.0 (50)	101	50/50	10.9 (50)	100	50/50	10.0 (50)	92	50/50	
67	10.8 (50		10.7 (50)	99	50/50	10.7 (50)	99	50/50	9. 8 (50)	91	50/50	
7–7	10.4 (50	0) 50/50	10.5 (50)	101	50/50	10. 5 (50)	101	50/50	9. 7 (50)	93	50/50	
8-7	10.6 (50	0) 50/50	10.5 (50)	99	50/50	10.4 (50)	98	50/50	9. 7 (50)	92	50/50	
9-7	10.7 (50		10.6 (50)	99	50/50	10.4 (50)	97	50/50	9. 6 (50)	90	50/50	
107	10.6 (50	0) 50/50	10.7 (50)	101	50/50	10.5 (50)	99	50/50	9. 7 (50)	92	50/50	
11-7	10.7 (50	0) 50/50	10.7 (50)	100	50/50	10.6 (50)	99	50/50	9. 4 (50)	88	50/50	
12-7	10.6 (50		10.9 (50)	103	50/50	10.4 (50)	98	50/50	9. 7 (50)	92	50/50	
13-7	10.5 (50	0) 50/50	10.7 (50)	102	50/50	10. 4 (50)	99	50/50	9. 5 (50)	90	50/50	
14-7	10.7 (50		11.0 (50)	103	50/50	10.6 (50)	99	50/50	9. 8 (50)	92	50/50	
18-7	10.7 (50		10. 9 (50)	102	50/50	10. 4 (50)	97	50/50	9. 5 (50)	89	50/50	
22-7	10.7 (50		11.0 (50)	103	50/50	10. 5 (50)	98	50/50	9. 5 (50)	89	50/50	
26-7	11. 0 (50		11. 1 (50)	101	50/50	10. 9 (50)	99	50/50	9. 8 (50)	89	50/50	
30-7	10.7 (50		11. 1 (50)	104	50/50	10. 7 (50)	100	50/50	9. 6 (50)	90	50/50	
34-7	10.8 (50		11. 0 (50)	102	50/50	10. 9 (50)	101	50/50	9. 8 (49)	91	49/50	
38-7	10.8 (50		11.1 (50)	103	50/50	10. 8 (50)	100	50/50	9. 7 (49)	90	49/50	
42-7	11. 0 (50		11.4 (50)	104	50/50	11. 0 (50)	100	50/50	10. 0 (49)	91	49/50	
46-7	11. 4 (50		11. 4 (50)	100	50/50	11. 3 (50)	99	50/50	10. 1 (49)	89	49/50	
50-7	11. 1 (50		11. 7 (50)	105	50/50	11. 1 (50)	100	50/50	10. 1 (49)		49/50	
54-7	11.6 (50		12. 0 (50)	103	50/50	11. 6 (50)	100	50/50	10. 1 (49)	91		
58-7	11. 7 (49		12. 0 (50)	103	50/50	11. 6 (50)	99	50/50 50/50		91	48/50	
62-7	12. 0 (49		12. 2 (50)	102	50/50	12. 0 (50)		50/50 50/50	10.6 (48)	91	48/50	
66-7	12.0 (49		12. 1 (50)	101	50/50		100		10. 6 (47)	88	47/50	
70-7	11.7 (49		11. 8 (49)	101	49/50	11. 6 (49) 11. 7 (48)	97	49/50	10. 5 (46)	88	46/50	
74-7	12.1 (49		12. 1 (48)	100	48/50		100	48/50	10. 6 (46)	91	46/50	
78-7	12. 3 (48		12. 1 (46)			12. 1 (48)	100	48/50	10. 7 (45)	88	45/50	
82-7	12. 5 (47		12. 3 (47)	102	47/50	11. 9 (48)	97	48/50	10. 8 (43)	88	43/50	
86-7	12. 3 (47			98	47/50	11. 9 (48)	95	48/50	10. 9 (39)	87	39/50	
90-7	12. 4 (47		12.2 (47)	100	47/50	11. 8 (47)	97	47/50	10. 9 (39)	89	39/50	
90-7 94-7			12. 1 (46)	98	46/50	11. 9 (45)	96	45/50	10. 9 (39)	88	39/50	
	12.6 (46		12. 6 (43)	100	43/50	12. 3 (45)	98	45/50	11. 1 (37)	88	37/50	
98-7 102-7	13.0 (44		12. 5 (41)	96	42/50	12. 1 (45)	93	45/50	11. 3 (35)	87	35/50	
104-7	13. 2 (42		12. 8 (41)	97	41/50	12. 0 (44)	91	44/50	11. 4 (35)	86	35/50	
104-7	12.8 (42	43/50	12. 7 (40)	99	40/50	11.8 (42)	92	42/50	11. 4 (35)	89	35/50	

 >:No. of effective animals, ():No. of measured animals

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	week-day(effective)_					
	1-7 (7)	2-7 (7)	3–7 (7)	4–7 (7)	5–7 (7)	6-7 (7)	7–7 (7)
Control	13.6± 0.7	15. 4± 0. 8	16. 3 ± 0. 8	16. 4± 0. 8	16.3± 0.8	15.8± 0.9	15.5± 0.9
625 ppm	13.7± 0.7	15.4± 0.9	16.0± 0.9	16. 2± 0. 8	16.2± 0.8	15.6± 0.9	15.4± 0.9
1250 ppm	13.9± 0.7	15. 2± 0. 8	16. 0 ± 0. 7	16. 1± 0. 6	15.9± 0.7*	15. 7± 0. 8	15. 4± 0. 8
2500 ppm	13. 0± 0. 8**	14.5± 0.8**	15.0± 0.9**	15. 3± 0. 8**	15.3± 0.8**	15. 2± 0. 7**	14.9± 0.8**

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration 8-7(7)	week-day (effective) 9-7 (7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14-7 (7)
Control	15.9± 0.9	15.8± 0.9	15.7± 0.8	15. 3± 0. 8	15.6± 0.8	15.6± 0.7	15.4± 0.7
625 ppm	15.8± 1.0	15. 9± 0. 9	15.7± 0.9	15. 4± 0. 9	15.4± 0.8	15. 4± 0. 7	15.4± 0.7
1250 ppm	15.8± 0.8	16. 0± 0. 8	16.0± 0.8	15. 4± 0. 8	15.5± 0.8	15. 4± 0. 7	15.4± 0.9
2500 ppm	15. 2± 0. 9**	15.5± 0.9	15.2± 0.9**	14.8± 0.9**	15. 2 ± 0. 8	14.6± 0.7**	14.8± 0.8**

Significant difference; $*: P \leq 0.05$

** : P ≦ 0.01

Test of Dunnett

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCr[Cr[j [F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3 Group Name Administration week-day(effective) 18-7 (7) 22-7 (7) 26-7 (7) 30-7 (7) 34-7 (7) 38-7 (7) 42-7 (7) Control 15.0± 0.7 15. 7 ± 0.8 16.0 ± 0.9 15.7± 0.9 15.7± 0.7 15.8± 0.9 16.1± 0.9 625 ppm 15.0 \pm 0.7 15.8± 0.9 15.9 ± 0.9 16.1± 0.9 15.8± 0.9 15.8± 0.8 16.3 \pm 0.8 15.1± 0.9 1250 ppm 15.9± 0.8 16.0± 0.9 16.3± 0.8** 16.1± 1.0 16.1± 0.9 16. 2 ± 1.1 2500 ppm 14.4± 0.8** 14.9± 0.8** 15.0± 0.9** 14.9± 0.9** 15.4± 0.8 15.5± 1.0 15.5± 1.0**

Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration 46-7(7)	week-day(effective) 50-7(7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70-7 (7)
Control	16.1± 0.9	16.1± 1.0	16.8± 0.9	16.8± 1.0	16.7± 0.9	16.4± 1.0	16. 2± 1. 1
625 ppm	16. 2 ± 1. 0	16. 3± 0. 9	17. 2± 0. 9	17.1± 1.0	17.0± 0.8	16.8± 0.9	16.6± 1.0
1250 ppm	16. 2± 1. 0	16.5± 1.0	17. 0 ± 0. 9	17.1± 1.0	16.7± 2.0	16.8± 1.0	16.6± 1.1
2500 ppm	15.6± 1.0	15.8± 0.9	16. 2± 0. 9**	16. 2± 1. 0**	16.1± 1.0*	15. 9± 1. 0*	15.5± 1.1*
Significant differ	rence ; * : P ≤ 0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

BAIS4

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration 74-7(7)	week-day (effective) 78-7 (7)	82-7 (7)	86-7 (7)	90-7 (7)	94-7 (7)	98-7 (7)
Control	16.64 1.0	16.1 0.1	10.1 1.4	10.21.11	10.01 1.5	10.0 1.0	10.7 / 1.0
CONTROL	16.6± 1.0	16. 1± 2. 1	16.·1± 1. 4	16.3± 1.1	16.0± 1.5	16.2± 1.6	16.7± 1.2
625 ppm	16.6± 1.5	16.2± 1.9	16. 4± 1. 2	16.1± 1.4	16.0± 2.5	15.9± 1.7	16.1± 2.6
1250 ppm	16.6± 1.0	16.1± 1.0	16.0± 1.2	15. 7± 1. 9	15.7± 1.9	15. 3± 2. 3*	15.5± 2.4**
2500 ррт	15.5± 1.2**	15. 0± 0. 9**	14.9± 1.0**	15.0± 1.3**	14.8± 1.7**	14.7生 1.2**	14.3± 3.1**
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104 SEX : MALE

Administration 102-7(7)	week-day(effective) 104-7(7)	
·		
15.9± 2.0	15. 8± 2. 5	
15. 2 ± 2. 5	15. 5± 2. 2	
15.6± 1.5	15.6± 1.4	
14.4± 1.4**	14. 3± 2. 2**	
ence ; * : P ≤ 0.05 ;	* : P ≤ 0.01	Test of Dunnett
	102-7 (7) 15. 9 ± 2. 0 15. 2 ± 2. 5 15. 6 ± 1. 5 14. 4 ± 1. 4**	15. $9 \pm$ 2. 0 15. $8 \pm$ 2. 5 15. $2 \pm$ 2. 5 15. $5 \pm$ 2. 2 15. $6 \pm$ 1. 5 15. $6 \pm$ 1. 4 14. $4 \pm$ 1. $4 * *$ 14. $3 \pm$ 2. $2 * *$

(HAN260)

BAIS4

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 7

Group Name	Administration week-day(effective)										
	. 1–7 (7)	2-7 (7)	3–7 (7)	4–7 (7)	5-7 (7)	6-7 (7)	7–7 (7)				
Control	11. 0± 0. 5	11. 1± 0. 6	11.0± 0.8	11. 0± 0. 7	10.9± 0.8	10.8± 0.8	10.4± 0.9				
625 ppm	10.9± 0.7	11. 2± 0. 6	11.1± 0.7	11. 2± 0. 6	11. 0± 0. 6	10.7± 0.6	10.5± 0.7				
1250 ppm	10.9± 0.5	10.9± 0.6	10.9± 0.6	11. 0± 0. 7	10.9± 0.7	10.7± 0.6	10.5± 0.7				
2500 ppm	10.0± 0.5**	10.4± 0.6**	10.2± 0.6**	10. 2± 0. 6**	10.0± 0.6**	9.8± 0.6**	9.7± 0.6**				

Significant difference; * : P ≤ 0.05

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 8

Group Name	Administration	week-day (effective)	111111111111111111111111111111111111111				
	8-7 (7)	9–7 (7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14–7 (7)
Control	10.6± 0.9	10.7± 0.8	10.6± 0.8	10. 7± 0. 7	10.6± 0.8	10.5± 0.7	10.7± 0.8
625 ppm	10.5± 0.7	10.6± 0.6	10.7± 0.6	10.7± 0.7	10.9± 0.6	10.7± 0.6	11. 0± 0. 6*
1250 ppm	10.4± 0.7	10. 4± 0. 7	10.5± 0.7	10.6± 0.8	10.4± 0.6	10.4± 0.6	10.6± 0.6
2500 ppm	9.7± 0.6**	9.6± 0.8**	9.7± 0.7**	9.4± 0.6**	9.7± 0.7**	9.5± 0.6**	9.8± 0.6**

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration week-day(effective)										
	18-7 (7)	22-7 (7)	26-7 (7)	30-7 (7)	34–7 (7)	38-7 (7)	42-7 (7)				
Control	10.7± 0.8	10. 7± 0. 8	11.0± 0.8	10.7± 0.8	10.8± 0.7	10.8± 0.7	11.0± 0.8				
625 ppm	10.9± 0.6	11. 0± 0. 7	11.1± 0.6	11.1± 0.6*	11.0± 0.5	11. 1± 0. 6	11. 4± 0. 6*				
250 ppm	10.4± 0.6*	10.5± 0.6	10.9± 0.6	10. 7± 0. 6	10.9± 0.6	10.8± 0.6	11.0± 0.7				
2500 ppm	9.5± 0.6**	9.5± 0.7**	9.8± 0.6**	9.6± 0.6**	9.8± 0.6**	9.7± 0.7**	10.0± 0.6**				

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 10

Group Name	Administration	week-day(effective)_		·				
	46-7 (7)	50-7 (7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70-7 (7)	
Control	11. 4± 0. 7	11.1± 0.9	11.6± 1.1	11. 7± 0. 8	12.0± 1.0	12.0± 1.0	11.7± 0.9	
625 ppm	11. 4± 0. 8	11. 7± 0. 8**	12.0± 0.9	12. 0± 0. 9	12.2± 1.0	12. 1± 1. 0	11.8± 1.1	
250 ppm	11.3± 0.8	11. 1± 0. 6	11.6± 0.7	11.6± 0.8	12.0± 0.9	11.6± 0.7	11.7± 1.2	
2500 ppm	10.1± 0.6**	10. 1± 0. 8**	10.5± 0.7**	10.6± 0.9**	10.6± 0.9**	10.5± 1.0**	10.6± 1.1**	

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration week-day(effective)								
	74–7 (7)	78-7 (7)	82-7 (7)	86-7 (7)	90-7 (7)	94-7 (7)	98-7 (7)		
-									
Control	12.1± 1.0	12. 3± 1. 0	12.5± 1.0	12. 2± 1. 0	12.4± 1.0	12.6± 1.2	13.0± 1.3		
625 ppm	12.1± 1.3	12.5± 1.0	12.3± 1.0	12. 2± 1. 4	12.1± 2.5	12.6± 1.6	12.5± 1.0		
			,12.0 — 1.0		12.1 = 2.0	12. 0	72.0		
1250 ppm	12.1± 1.0	11.9± 0.9*	11.9± 0.9*	11.8± 0.9	11.9± 1.1	12. 3± 0. 9	12.1± 1.8*		
2500 ppm	10.7± 1.2**	10.8± 0.8**	10.9± 0.7**	10.9± 0.8**	10.9± 1.0**	11. 1± 0. 9**	11. 3± 1. 0**		

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS4

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration 102-7(7)	week-day (effective) 104-7 (7)	
Control	13. 2± 1. 3	12.8± 1.6	
625 ppm	12.8± 1.3	12.7± 1.1	
1250 ppm	12.0± 1.7**	11. 8± 1. 6*	
2500 ррт	11. 4± 1. 2**	11. 4± 1. 3**	
Significant differe	ence; *: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett

(HAN260)

BAIS4

TABLE E 1

WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g

REPORT TYPE : A1 104 SEX : MALE

	Control		625 ppm 1250 ppm				2500	ppm			
	Av. WC.	No. of	Av. WC.	% of	No. of	Av. WC.	% of	No. of	Av. WC.	% of	No. of
Week-Day on Study		Surviv. <50>		cont. <50≻	Surviv.		cont. <50>	Surviv.		cont. <50>	Surviv.
1-7	17. 5 (50) 50/50	17. 0 (50)	97	50/50	16. 3 (50)	93	50/50	13. 8 (49)	79	50/50
2-7	19.4 (50		18. 6 (50)	96	50/50	17. 7 (50)	91	50/50	14. 6 (50)	75	50/50
3-7	20. 4 (48		19. 3 (49)	95	50/50	18. 6 (50)	91	50/50	14. 8 (50)	73	50/50
4-7	20.0 (50		18. 8 (50)	94	50/50	18. 0 (50)	90	50/50	14. 7 (50)	74	50/50
5-7	20. 0 (49		19. 0 (50)	95	50/50	18. 2 (49)	91	50/50 50/50	15. 3 (50)	77	50/50
6-7	19.6 (49		18. 3 (49)	93	50/50	18. 1 (50)	92	50/50	15. 2 (50)	78	50/50
7-7	19.0 (49		18.3 (50)	96	50/50	17. 6 (50)	93	50/50	14. 6 (50)	77	50/50 50/50
8-7	18. 5 (49		17. 9 (50)	97	50/50	17. 3 (50)	94	50/50	14. 3 (50)		50/50
9-7	18. 5 (49		18. 0 (50)	97	50/50	17. 3 (50)				77 70	
10-7	19. 0 (50						93	50/50	14. 5 (50)	78 75	50/50
11-7			17. 8 (50)	94	50/50	17. 1 (50)	90	50/50	14. 2 (50)	75 76	50/50
	18.3 (50		17. 2 (50)	94	50/50	16. 5 (50)	90	50/50	13. 9 (50)	76	50/50
12-7	18.0 (50		17 0 (50)	94	50/50	16. 1 (50)	89	50/50	13. 6 (50)	76	50/50
13-7	18. 2 (50		16. 9 (50)	93	50/50	16. 2 (50)	89	50/50	13. 6 (50)	75	50/50
14-7	17. 6 (49		16. 9 (50)	96	50/50	16. 0 (50)	91	50/50	13. 4 (50)	76	50/50
18-7	17. 2 (50		16.7 (50)	97	50/50	16. 1 (50)	94	50/50	13. 6 (50)	79	50/50
22-7	17. 4 (50		16. 7 (50)	96	50/50	15.9 (50)	91	50/50	13. 5 (50)	78	50/50
26-7	17.0 (50		16. 3 (50)	96	50/50	15. 5 (50)	91	50/50	13. 2 (50)	78	50/50
30-7	16.9 (50		16.7 (50)	99	50/50	15. 8 (50)	93	50/50	13. 8 (50)	82	50/50
34-7	16.9 (50) 50/50	16.4 (50)	97	50/50	15. 6 (50)	92	50/50	13. 8 (50)	82	50/50
38-7	16.7 (50) 50/50	16.3 (49)	98	49/50	15. 6 (50)	93	50/50	13. 9 (50)	83	50/50
42-7	16.6 (49) 49/50	16. 4 (49)	99	49/50	15. 5 (49)	93	50/50	13. 6 (50)	82	50/50
46-7	16.9 (49) 49/50	16.6 (49)	98	49/50	15. 9 (49)	94	49/50	14. 0 (50)	83	50/50
50-7	17. 2 (49		16.7 (49)	97	49/50	16. 0 (48)	93	48/50	14. 0 (50)	81	50/50
54-7	17. 4 (49		17. 0 (49)	98	49/50	16. 2 (48)	93	48/50	14. 2 (50)	82	50/50
58-7	17. 1 (49		16. 5 (49)	96	49/50	15. 8 (48)	92	48/50	13. 6 (49)		49/50
62-7	16. 8 (49		16. 7 (48)	99	49/50	15. 6 (48)		48/50	13. 6 (48)	80	
66-7	17. 1 (49		17. 4 (49)	102	49/50	16. 4 (47)	93			81 85	48/50
70-7	17. 0 (49		17. 1 (49)				96	47/50	14. 5 (48)	85	48/50
74-7				101	49/50	16. 5 (46)	97	47/50	14. 4 (48)	85	48/50
	18. 2 (49		17. 5 (48)	96	48/50	16. 8 (46)	92	47/50	14. 8 (48)	81	48/50
78-7	17. 8 (49		17. 7 (48)	99	48/50	16. 9 (46)	95	46/50	15. 3 (47)	86	47/50
82-7	18.7 (48		18. 9 (46)	101	46/50	17. 8 (46)	95	46/50	15. 4 (45)	82	47/50
867	19. 4 (48		19. 7 (46)	102	46/50	18. 2 (46)	94	46/50	16. 9 (47)	87	47/50
90-7	19.3 (47		18.5 (41)	96	45/50	17. 7 (42)	92	44/50	15. 6 (45)	81	45/50
94-7	19.9 (44		19.8 (40)	99	44/50	19. 3 (38)	97	39/50	16. 0 (38)	80	40/50
987	19.9 (43		22. 0 (42)	111	43/50	20. 4 (36)	103	36/50	16. 4 (39)	82	39/50
102-7	19.1 (39		19.8 (30)	104	40/50	19.4 (30)	102	34/50	17. 3 (36)	91	36/50
104-7	18.9 (36	40/50	20.6 (33)	109	39/50	18. 7 (28)	99	33/50	17. 4 (34)	92	34/50

Av. WC. : g

(B10040)

TABLE E 2

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104 SEX

: FEMALE

	Control				625 pı	pm		125	o ppm		2500	ppm		
eek-Day n Study	Av. WC.		o. of viv.	Av. WC.	,	% of cont. <50>	No. of Surviv.	Av. WC.	% of cont. <50>	No. of Surviv.	Av. WC.	% of cont <50>	No. of Surviv.	
1-7	15. 5 (49	9) 5	0/50	15. 1	(49)	97	50/50	14. 2 (49	92	50/50	11. 2 (50)	72	50/50	
2-7	17. 2 (46	S) 5	0/50	16. 1	(47)	94	50/50	14.6 (47	') 85	50/50	10. 9 (50)	63	50/50	
3-7	18.6 (49	9) 5	0/50	18. 3	(49)	98	50/50	15. 9 (49) 85	50/50	10. 9 (50)	59	50/50	
4-7	16.9 (47	7) 5	0/50	16. 7	(46)	99	50/50	14. 9 (48		50/50	10.3 (50)	61	50/50	
5-7	17. 2 (46	S) 5	0/50	17. 6	(47)	102	50/50	14.0 (48	81	50/50	10. 5 (50)	61	50/50	
6-7	17. 8 (44	1) 5	0/50	16.8	(44)	94	50/50	14. 2 (48		50/50	10. 5 (50)	59	50/50	
7-7	18.4 (45	5) 5	0/50	16. 9	(42)	92	50/50	14.0 (48		50/50	10.1 (50)	55	50/50	
8-7	17.8 (42	2) 5	0/50	16.6	(44)	93	50/50	14.0 (50		50/50	10.0 (50)	56	50/50	
9-7	18.0 (45	5) 5	0/50	17. 0		94	50/50	14. 2 (50		50/50	9. 5 (50)	53	50/50	
10-7	18. 7 (47		0/50	16. 4		88	50/50	13. 4 (49		50/50	9. 5 (50)	51	50/50	
11-7	18.9 (45	5) 5	0/50	16.8	(45)	89	50/50	13.7 (48		50/50	9. 5 (50)	50	50/50	
12-7	17. 7 (44		0/50	16.8		95	50/50	13. 8 (49		50/50	9. 7 (50)	55	50/50	
13-7	17.6 (45		0/50	15. 9		90	50/50	13.6 (50		50/50	9. 4 (50)	53	50/50	
14-7	18.9 (42		0/50	17. 3		92	50/50	140 (49		50/50	9 7 (50)	51	50/50	
18-7	19. 7 (41		0/50	18. 1	(39)	92	50/50	14. 0 (48		50/50	9. 8 (50)	50	50/50	
22-7	19.9 (44		0/50	17. 7		89	50/50	14. 4 (47		50/50	9. 9 (50)	50	50/50	
26-7	19. 3 (45		0/50	18. 2		94	50/50	14. 8 (46		50/50	10. 0 (50)	52	50/50	
30-7	18. 1 (48		0/50	17. 0		94	50/50	14. 4 (48		50/50	9. 7 (50)	54	50/50	
34-7	17. 7 (48		0/50	17. 0		96	50/50	14. 3 (48		50/50	10. 1 (49)	57	49/50	
38-7	17. 3 (47		0/50	16. 1		93	50/50	13. 3 (48		50/50	10. 1 (49)	58	49/50	
42-7	16.8 (47		0/50	16. 4		98	50/50	14. 5 (49		50/50	10. 4 (49)	62	49/50	
46-7	17. 1 (48		0/50	17. 2		101	50/50	14.7 (48		50/50	10. 7 (49)	63	49/50	
50-7	15. 5 (48) 5	0/50	16. 1		104	50/50	14. 1 (48		50/50	10. 9 (49)	70	49/50	
54-7	15. 1 (50		0/50	15. 5		103	50/50	13. 7 (50		50/50	10. 8 (48)	72	48/50	
58-7	15. 3 (47		9/50	15. 7		103	50/50	13. 4 (49		50/50	11. 5 (48)	75	48/50	
62-7	15. 6 (48		9/50	16. 4		105	50/50	13. 7 (50) 88	50/50	10. 9 (47)	70	46/50	
66-7	15. 4 (49		9/50	15. 6		101	50/50 50/50	13. 2 (48) 86	49/50	11. 4 (46)			
70-7	14.9 (49		19/50	14. 5		97	49/50	12. 9 (48		49/50 48/50	11. 4 (46)	74 70	46/50 46/50	
74-7	15. 7 (49		9/50	14. 6	(48)	93	48/50	13. 4 (48		48/50 48/50	11. 6 (46)	78 76	46/50 45/50	
78-7	15. 6 (48		8/50	15. 9		102	46/50	13. 4 (46			11. 9 (40)			
82-7	16. 4 (47		7/50	16. 7		102	47/50	13. 0 (48		48/50	12. 1 (43)	78 70	43/50	
86-7	17. 5 (46		7/50	16. 2						48/50	12. 9 (39)	79	39/50	
90-7	16. 5 (47		7/50	15. 5		93	47/50 46/50	15. 0 (47		47/50	13. 5 (39)	77 70	39/50	
94-7	16. 4 (45		6/50	16. 3		94		14. 3 (45		45/50	13. 1 (39)	79	39/50	
98-7	17. 4 (43		4/50	17. 0		99	43/50	15. 2 (44		45/50	13. 1 (37)	80	37/50	
102-7			3/50			98	42/50	15. 5 (44		45/50	13. 2 (35)	76	35/50	
104-7	17.9 (41	, 4 11 4	3/50 3/50	17. 5		98	41/50	15. 5 (43		44/50	13. 6 (35)	76	35/50	•
104-1	17. 1 (40	, 4	JJ 30	17. 4	(40)	102	40/50	15.6 (41	91	42/50	13. 7 (35)	80	35/50	

< >:No. of effective animals, ():No. of measured animals

Av. WC. : g

TABLE E 3

WATER CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

iroup Name	Administration	week-day(effective)_					
	1-7 (3)	2-7 (3)	3-7 (3)	4-7 (3)	5-7 (3)	6-7 (3)	7–7 (3)
Control	17. 5± 1. 2	19. 4± 1. 9	20.4± 1.5	20.0± 1.8	20.0± 1.5	19. 6± 2. 0	19.0± 1.6
625 ppm	17.0± 1.1	18.6± 1.4	19.3± 1.8**	18.8± 1.4**	19.0± 1.4**	18. 3± 1. 2**	18.3± 1.7**
1250 ppm	16.3± 1.3**	17.7± 1.3**	18.6± 1.7**	18. 0± 1. 2**	18.2± 1.2**	18. 1± 2. 1**	17.6± 1.4**
2500 ppm	13.8± 1.0**	14.6± 1.4**	14.8± 1.0**	14.7± 0.9**	15.3± 0.9**	15. 2± 1. 0**	14.6± 1.1**
				•		~	
Significant differe	ence ; * : P ≦ 0.05 ;	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

BAIS4

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration week-day(effective)									
	8-7 (3)	9-7 (3)	10-7 (3)	11-7 (3)	12-7 (3)	13-7 (3)	14-7 (3)			
Control	18.5± 1.4	18.5± 1.5	19.0± 1.8	18. 3± 1. 7	18.0± 1.9	18. 2± 1. 4	17.6± 1.7			
025 ppm	17.9± 1.3	18.0± 1.5	17.8± 1.1**	17. 2± 1. 2**	17.0± 1.1**	16.9± 1.1**	16.9± 1.0			
1250 ppm	17. 3± 1. 6**	17. 2± 1. 4**	17.1± 1.2**	16. 5± 1. 1**	16.1± 1.1**	16. 2± 1. 0**	16.0± 1.1**			
2500 ppm	14.3± 1.0**	14. 5± 0. 7**	14.2± 0.9**	13.9± 0.9**	13.6± 0.8**	13.6± 0.8**	13.4± 0.9**			

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name		week-day(effective)					
	18-7 (3)	22-7 (3)	26-7 (3)	30-7 (3)	34–7 (3)	38-7 (3)	42-7 (3)
ontrol	17. 2± 1. 4	17. 4± 1. 7	17.0± 2.1	16.9生 1.6	16.9± 1.2	16.7± 1.0	16.6± 1.1
25 ppm	16.7± 1.1	16.7± 1.2	16.3± 0.9	16.7± 1.3	16. 4± 1. 1∗	16. 3± 1. 4*	16.4± 1.2
		10.12	10.0 = 0.0	10.12 1.0	10. 42 1. 14	10.0 = 1.4	10. 42 1. 2
250 ppm	16.1生 1.0**	15.9± 1.0**	15.5± 1.0**	15.8± 0.9**	15.6± 0.9**	15.6± 1.0**	15.5± 1.0**
2500 ppm	13.6± 0.9**	13.5± 0.8**	13.2± 0.9**	13.8± 1.0**	13.8± 0.8**	13.9± 0.9**	13.6± 0.9**
ooc ppiii	10.0 = 0.0	10. 0 = 0. 0**	13. 2 1 0. 3**	15. 6 1. 0**	13.0 1 0.0**	10. 3 1 0. 3**	13.0 4 0.3**
Significant difference	; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name		week-day(effective)_					
	46-7 (3)	50-7 (3)	54-7 (3)	58-7 (3)	62-7 (3)	66-7 (3)	70-7 (3)
Control	16. 9± 1. 2	17. 2± 1. 3	17. 4± 1. 2	17.1± 1.3	16.8± 1.3	17. 1± 1. 4	17. 0± 1. 5
	10.0= 1.2	77. E	11. Take 11. E	17.12 1.0	10.02.1.0	11.12 1.4	11.0 = 1.0
625 ppm	16.6± 1.1	16.7± 1.2	17.0± 1.4	16.5± 1.6	16.7± 1.6	17. 4± 1. 6	17. 1 ± 1. 8
1250 ppm	15.9± 1.1**	16.0± 1.0**	16.2± 1.5**	15.8± 1.4**	15.6± 2.2**	16. 4± 1. 3	16.5± 1.7
2500 ppm	14.0± 1.1**	14.0± 1.0**	14.2± 1.1**	13.6± 1.2**	13.6± 1.1**	14.5± 1.5**	14.4± 1.8**
Significant differ	rence ; * : P ≤ 0.05	** : P ≦ 0.01		Test of Dunnett			
(HAN260)							

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCr!Crlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name		week-day(effective)					
	74-7 (3)	78-7 (3)	82-7 (3)	86-7 (3)	90-7 (3)	94-7 (3)	98–7 (3)
Control	18.2± 1.7	17. 8± 2. 5	18.7± 2.7	19. 4± 2. 6	19.3± 3.3	19.9± 3.8	19.9± 4.5
325 ppm	17.5± 2.6	17.7± 2.8	18.9± 3.3	19.7± 4.3	18.5± 4.0	19.8± 4.2	22. 0± 7. 8
250 ppm	16.8± 1.3**	16.9± 1.8*	17.8± 2.3	18. 2± 2. 9	17.7± 3.0	19. 3± 4. 0	20.4± 6.2
2500 ppm	14.8± 2.4**	15. 3± 2. 5**	15. 4± 2. 0**	16. 9± 4. 7**	15.6± 3.8**	16. 0± 2. 3**	16.4± 5.9**
Significant difference ;	* : P ≦ 0.05 *	* : P ≤ 0.01		Test of Dunnett			
(HAN260)		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administrat 102-7(3)	ion week-day(effective) 104-7(3)		
Control	19.1± 4.9	18.9± 4.1		
625 ppm	19.8± 4.3	20.6± 4.5		
1250 ppm	19.4± 4.0	18.7± 3.2		
2500 ppm	17.3± 3.9	17. 4± 4. 8		
				·
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HAN260)			****	BAIS 4

TABLE E 4

WATER CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 7

Group Name	Administration	week-day(effective)					
	1–7 (3)	2-7 (3)	3-7 (3)	4-7 (3)	5-7 (3)	6-7 (3)	7–7 (3)
Control	15.5± 1.6	17. 2± 3. 0	18.6± 5.9	16. 9± 3. 0	17. 2 ± 3. 1	17.8± 4.0	18.4± 4.7
625 ppm	15.1± 1.3	16.1± 2.2	18.3± 6.1	16.7± 4.2	17.6± 4.1	16.8± 3.8	16.9± 4.1
1250 ppm	14.2± 1.2**	14.6± 2.2**	15.9± 5.2**	14. 9± 3. 8**	14.0± 1.8**	14. 2± 2. 2**	14.0± 2.5**
2500 ppm	11.2± 1.0**	10.9± 0.7**	10.9± 0.8**	10. 3± 0. 9**	10.5± 1.1**	10.5± 1.0**	10.1± 1.5**

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 8

Group Name	Administration	week-day(effective)_					
	8-7 (3)	9-7 (3)	10-7 (3)	11-7 (3)	12-7 (3)	13-7 (3)	14-7 (3)
Control	17.8± 3.8	18.0± 4.1	18.7± 4.0	18. 9± 4. 6	17.7± 3.7	17. 6± 3. 5	18.9± 4.2
25 ppm	16.6± 3.7	17. 0± 4. 6	16. 4± 3. 3**	16.8± 3.7	16.8± 3.9	15. 9± 3. 5*	17. 3 ± 3. 9
250 ppm	14. 0± 3. 2**	14. 2± 4. 3**	13.4± 2.0**	13.7± 2.9**	13.8± 3.3**	13.6± 3.4**	14. 0± 3. 3**
2500 ppm	10.0± 2.4**	9.5± 1.3**	9.5± 1.9**	9. 5± 1. 4**	9.7± 1.3**	9. 4± 0. 9**	9.7± 1.3**
Significant differ	rence; *: P ≦ 0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 9

Group Name	Administration 18-7(3)	week-day (effective) 22-7 (3)	26-7 (3)	30-7 (3)	34-7 (3)	38-7 (3)	42-7 (3)
Control	19.7± 4.6	19.9± 4.6	19.3± 4.1	18. 1± 4. 4	17.7± 4.4	17. 3± 4. 5	16.8± 3.3
625 ppm	18.1± 4.9	17. 7± 4. 4*	18. 2 ± 5. 3	17. 0± 4. 6	17.0± 4.5	16. 1± 4. 3	16.4± 3.9
250 ppm	14.0± 3.0**	14. 4± 3. 8**	14.8± 3.7**	14. 4± 3. 7**	14.3± 3.7**	13. 3± 2. 4**	14.5± 3.6**
2500 ppm	9.8± 1.1**	9.9± 1.0**	10.0± 1.2**	9.7± 1.0**	10.1± 0.9**	10.1± 1.0**	10.4± 1.2**
Significant differ	rence; * : P ≤ 0.05 *	* : P ≦ 0.01		Test of Dunnett			

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 10

Group Name	Administration 46-7(3)	week-day (effective) 50-7 (3)	54-7 (3)	58-7 (3)	62-7 (3)	66-7 (3)	70-7 (3)
Control	17.1± 3.4	15.5± 3.6	15.1± 2.8	15. 3± 3. 1	15.6± 3.2	15. 4± 2. 8	14.9± 2.5
625 ppm	17. 2± 4. 5	16. 1± 4. 2	15.5± 3.5	15.7± 3.8	16.4± 4.3	15.6± 4.4	14.5± 3.3
1250 ppm	14.7± 3.9**	14. 1± 3. 5**	13.7± 3.1**	13. 4± 2. 4**	13.7± 3.2**	13. 2± 1. 9**	12.9± 1.5**
2500 ррт	10.7± 1.1**	10.9± 1.9**	10.8± 1.6**	11.5± 1.9**	10.9± 1.2**	11. 4± 1. 4**	11.6± 1.9**
Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	week-day(effective)_					
	74-7 (3)	78-7 (3)	82-7 (3)	86-7 (3)	90-7 (3)	94-7 (3)	98-7 (3)
Control	15.7± 2.5	15.6± 2.8	16. 4± 2. 7	17. 5± · 3. 8	16.5± 3.0	16. 4± 2. 8	17. 4± 3. 6
625 ppm	14 6± 3.1*	15. 9± 3. 6	16.7± 3.8	16. 2± 3. 7	15.5± 3.5	16. 3± 3. 2	17.0± 3.9
1250 ppm	13. 4± 1. 6**	13.6± 1.9**	14.8± 2.7**	15. 0± 2. 4**	14.3± 2.4**	15. 2± 3. 4*	15.5± 3.3*
2500 ppm	11.9± 1.7**	12.1± 1.4**	12.9± 1.6**	13.5± 1.6**	13.1± 2.5**	13. 1± 2. 1**	13. 2± 2. 1**
Significant differen	nce; *:P≦ 0.05 ×	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administratio 102-7(3)	on week-day(effective) 104-7(3)		
Control	17. 9± 3. 9	17. 1± 3. 2		
625 ppm	17.5± 4.3	17. 4± 3. 8		
1250 ppm	15.5± 3.0**	15.6± 3.1		
2500 ppm	13.6± 2.9**	13. 7± 3. 0**		
			-	
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HAN260)				BAIS 4

TABLE F 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

Group Name	Adminis	tration	(weeks)			,						-			
	1		2		3		4		5		6		7		
Control	0±	0	0±	0	0±	0	0 ±	0	0 ±	0	0±	0	0±	0	
625 ppm	69 ±	4	62±	4	57±	5	50±	3	47±	3	43 ±	3	41±	3	
1250 ppm	133±	9	118±	7	109±	9	96±	6	91±	6	86±	11	79±	6	
2500 ppm	230±	14	202±	19	181±	10 .	163±	7	159±	7	150±	7	138±	8	

(HAN300)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr[Crlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Administration (weeks)

Group Name	 Administ	ration (weeks)											
	8		9		10		11		12		13		14	
Control	0±	0	0 ±	0	0±	0	0±	0	0±	0 .	0 ±	0	0±	0
625 ppm	39±	2	37±	3	36±	2	34 ±	2	33±	2	32±	2	32±	2
1250 ppm	74±	6	72±	6	69±	5	65±	4	62±	4	61 ±	3	59±	3
2500 ppm	129±	7	126±	6	121±	7	115±	7	111±	6	109±	6	105±	6

(HAN300)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

Group Name	Administ	tration (weeks)											
	18		22		26		30		34		38		42	
Control	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	0±	0
625 ppm	30±	2	28±	2	27±	1	27 ±	2	25±	2	25±	2	25±	2
1250 ppm	57±	4	54±	3	51±	3	50±	3	48±	2	48±	2	46±	3
2500 ppm	102±	6	98±	5	93±	5	94±	6	91±	5	91 ±	4	87±	5

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

Group Name	Adminis	tration (w	eeks)								•			
	46		50		54		58		62		66		70	
Control	· 0±	0	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0
625 ppm	24 ±	2	24±	2	24±	2	23±	2	23±	2	24±	2	23±	2
1250 ppm	47±	3	46 ±	3	46±	4	44±	4	44±	6	45 ±	3	45±	5
2500 ppm	89±	5	88±	6	88±	6	83±	5	82±	5	88±	7	87±	10

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

PAGE: 5

Group Name	Adminis	tration ((weeks)											
	74		78		82		86		90		94		98	
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0
	V-	v	V	v	0=	Ů	0-	U	0_	U	0±	v	V.±.	U
625 ppm	24±	3	24±	3	25±	4	27 ±	5	26±	5	28±	7	31±	11
1250 ppm	46±	. 4	46 ±	4	49±	6	51 ±	8	50±	8	56±	15	62±	27
2500 ppm	89±	13	92±	15	94±	13	105±	35	98±	28	101±	16	106±	40

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administ	tration	(weeks)	
	102		104	
Control	0±	. 0	0 ±	0
625 ppm	29±	9	31 ±	11
1250 ppm	59±	19	59±	19
2500 ppm	116±	30	118±	35

(HAN300)

BAIS 5

TABLE F 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

Group Name	Admi	nistration	(weeks)											
	1		2		3		4		5		6		7	
Control	0 :	: 0	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0
625 ppm	80=	= 6	76±	9	81±	26	70±	17	70±	17	65±	15	63±	15
1250 ppm	152:	= 11	141±	19	143±	47	126±	33	113±	12	110±	18	105±	17
2500 ppm	248 :	19	217±	11	203±	13	182±	13	177±	17	172±	15	160±	20

(HAN300)

BAIS 5

ANIMAL : RAT F344/DuCriCrij [F344/DuCri]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

Group Name	Adminis	tration	(weeks)											
	8		9		10		11		12		13		14	
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0
625 ppm	61±	14	61 ±	16	58±	12	58±	12	57±	13	$53 \pm$	11	56±	13
1250 ppm	103±	25	102±	30	94±	14	93±	18	94±	23	91 ±	22	92±	21
2500 ppm	154±	35	143±	16	141±	26	139±	19	141±	18	135±	11	137±	17

(HAN300)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 9

Group Name	Adminis	tration	(weeks)											
	18		22		26		30		34		38		42	
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0	0±	0
625 ppm	57±	16	55±	14	54±	16	50±	15	49±	14	45±	13	45±	11
1250 ppm	90±	18	89±	24	90±	23	85±	21	82±	21	75±	13	81±	20
2500 ppm	135±	14	133±	11	133±	13	126±	10	128±	9	128±	11	130±	12

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 10

Group Name	Admini	stration	(weeks)		•									
	46		50		54		58		62		66		70	
Control	0 ±	0	0 ±	0	0±	0	0 ±	0	0 ±	0	0±	0	0±	0
25 ppm	46±	13	42 ±	11	39±	9	39±	10	40±	10	37 ±	11	34±	8
250 ppm	80±	21	76±	18	72±	17	69±	14	69±	19	64±	10	63±	9
2500 ppm	133±	11	136±	32	130±	24	136±	27	127±	15	132±	19	133±	29

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 11

Group Name	Adminis	tration	(weeks)											
	74		78		82		86		90		94		98	
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0
625 ppm	34 ±	6	35±	9	36±	8	35±	8	33±	8	34±	7	36±	9
1250 ppm	63±	9	63 ±	10	67±	13	6 8 ±	12	64±	12	67±	17	68±	17
2500 ppm	134±	24	132±	22	137±	21	142±	23	138±	30	138±	28	136±	27

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Administration (weeks)_ 102 10 Group Name

						 ·		
Control	0±	0	0±	0				
625 ppm	38±	11	37±	9				
1250 ppm	69±	15	69 ±	16				
2500 ррм	140±	30	142±	34				

(HAN300)

BAIS 5

TABLE G 1

HEMATOLOGY: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE: 1 NO. of RED BLOOD CELL Group Name **HEMOGLOBIN** HEMATOCRIT MCV MCH MCHC PLATELET $1.0^{6}/\mu l$ Animals g/dl % f **£** g/dl $1 \, O^3 / \mu \ell$ рg Control 39 7. 71 ± 1. 78 12.8± 2.9 38.5 \pm 7. 2 51.6± 10.5 16.9± 2.6 32. 9 ± 2. 1 $944\pm$ 355 625 ppm 37 7. 88± 1. 35 13. 1 ± 2. 3 39. 2± 5. 8 50.0 \pm 3. 0 16.6 \pm 1. 1 33. 2 ± 1. 3 $958 \pm$ 331 1250 ppm 32 8. 25 ± 1. 07 13.7± 1.9 40. 7± 5. 1 49.3± 2. 3 $959 \pm$ 16.6 \pm 1. 1 33.6 \pm 1. 1 257 2500 ppm 34 8. 17± 1. 79 13.6± 2.9 40.5± 7.7 50.0± 3.5 16.7± 1.1 33.4± 1.2 970 ± 420 Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HCL 070)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

REPORT TYPE : A1

SEX : MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RETICULOCYTE %	METHEMOGLOBIN %	
Control	39	7. 0± 10. 4	0.8± 0.5	
625 ppm	37	4. 7± 3. 6	0.8± 0.5	
1250 ppm	32	3.5± 1.7	0. 7± 0. 3	
2500 ppm	34	4. 4± 3. 0	0.8± 0.2	

(HCL070)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	WBC 1 O³∕µℓ	Di Neutro	fferentia	I WBC (9 LYMPHO	6)	MONO		EOSINO		BAS0		OTHER		
Control	39	10. 23± 13. 79	47 ±	13	46±	13	5±	1	1±	1 .	0±	1 .	2±	1	
25 ppm	37	6. 25 ± 1. 83	50±	10	42 ±	9	5±	1	2±	1	0±	0	2±	1	
250 ppm	32	5. 98 ± 1. 93	50±	6	42 ±	6	5±	1	1±	1	0±	0	2±	1	
500 ppm	34	6. 66 ± 1. 77	49±	9	43 ±	9	5±	2	2±	1	0±	0	2±	1	

(HCL070)

TABLE G 2

HEMATOLOGY: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ /µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f &	MCH pg	MCHC g∕dl	PLATELET 1 O³/µl
Control	43	8. 20± 0. 87	14. 8± 1. 5	42. 4± 3. 6	51. 9± 2. 8	18.0± 1.0	34.8± 1.2	698± 138
625 ppm	40	8. 21 ± 0. 91	14. 7± 1. 5	42. 4± 3. 8	51. 9± 2. 9	18.0± 0.8	34.7± 0.9	711± 179
250 ppm	42	7. 97 ± 1. 17	14. 4± 2. 2	41. 5± 5. 2	52. 3± 3. 1	18.0± 1.2	34.5± 1.9	687± 152
2500 ppm	35	8. 31 ± 0. 56	14.8± 0.9	42. 6± 2. 5	51. 3± 1. 1	17.9± 0.5	34.8± 0.5	724± 92

(HCL070)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME : 1 SEX : FEMALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

SEX : FEMALE		TYPE : A1			PAGE: 5
Group Name	NO. of Animals	RETICULOCYTE %	METHEMOGLOBIN %		
Control	43	3. 0± 2. 0	0.6± 0.2		
625 ppm	40	3.6± 4.0	0.7± 0.3		
1250 ppm	42	4. 3± 6. 0	0.7± 0.3		
2500 ppm	35	2.8± 1.0	0. 7± 0. 2		
Significant	difference ;	* : P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HCL070)					BAIS 4

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	WBC 1 O³∕ı		Di NEUTRO	fferentia	I WBC (9 LYMPHO	6)	MONO		EOSINO		BAS0		OTHER	
Control	43	3. 87 ±	2. 68	43 ±	10	50±	11	5±	1	2 ±	1	0 ±	0	1±	1
625 ppm	40	3. 17±	1. 06	42±	9	51 ±	9	4±	1	2±	1	0±	0	1±	1
1250 ppm	42	4. 33 ±	6. 39	44 ±	11	49 ±	10	4 ±	1**	2±	1	0±	0	2±	3**
2500 ppm	35	3. 25 \pm	1. 69	42±	8	48±	10	6±	3**	2±	1	0±	0	2±	3*

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HCL 070)

BAIS 4

TABLE H 1

BIOCHEMISTRY: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of Animals	TOTAL P g∕dl	PROTEIN	ALBUMIN g∕dl		A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg/dl		T-CHOLES mg∕dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	39	6.8±	0. 5	2. 9±	0. 3	0.7±	0. 2	1. 15±	5. 72	138±	25	182±	51	131±	83
625 ppm	37	6.7±	0. 3	2. 8±	0. 2	0.7±	0. 1	0.15±	0. 06	140±	27	190±	69	140±	130
250 ppm	32	6.9±	0. 3	2.8±	0. 3	0.7±	0. 1	0.14±	0. 04	141 ±	24	204±	67	155±	102
2500 ppm	34	6.7±	0. 4	2.8±	0. 3	0.7±	0. 1	0. 15±	0. 04	142±	16	199±	65	132±	81

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

SEX : MALE

REPORT TYPE : A1

PAGE: 2

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST U/L		ALT U/L		LDH U/L		ALP U/L		G-GTP U∕L		CK U/L	
Control	39	265±	62	122±	179	40±	20	159±	219	384±	214	8±	6	111±	100
25 ppm	37	277±	95	85±	47	38±	13	103±	30	311±	84	7±	4	95±	21
250 ppm	32	289±	95	104±	190	49±	86	112±	40	301 ±	95	9 ±	6	103±	43
2500 ppm	34	280±	88	78±	25	36±	10	100±	28	338±	81	13±	7**	94±	21

(HCL074)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of Animals	UREA N∣ mg⁄dl	ITROGEN	CREATIN mg∕dl	IINE	SODIUM mEq/l		POTASS mEq/		CHLORIDE mEq/l		CALCIUN mg∕dl	1	INORGAN mg∕dl	IIC PHOSPHORUS
Control	39	19. 5±	4. 5	0.6±	0. 1	142±	2	3.8±	0. 3	106±	2	10.7±	0. 3	4. 0±	0. 7
625 ppm	37	23. 6±	12. 0	0.8±	0. 4	142±	1	3. 7±	0. 3	106±	2	10.8±	0. 7	4. 3±	1. 2
1250 ppm	32	24. 0±	7. 7**	0.7±	0. 3	142±	1	3.7±	0.4	106±	1	10.9生	0. 5	4. 1 ±	0. 8
2500 ppm	34	24.6±	6. 4**	0.7±	0. 1	142±	2	3.7±	0. 3	106±	2	10.6±	0. 5	4.0±	0. 5

(HCL074)

TABLE H 2

BIOCHEMISTRY: FEMALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

Group Name	Animals g/dl		TOTAL PROTEIN ALBUMIN g/dl g/dl		A/G RATIO		T-BILIRUBIN mg∕dl		GLUCOSE mg∕dl		T-CHOLESTEROL mg/dl		TRIGLYCERIDE mg∕dℓ		
	43	7. 1±	0. 5	3.6±	0. 4	1.0±	0. 1	0.12±	0. 02	142±	17	151 ±	51	125±	126
625 ppm	40	7. 2 ±	0. 4	3.7±	0. 3	1. 0±	0. 1	0.13±	0. 05	141 ±	14	151 ±	36	95±	46
250 ppm	42	7.1±	0. 4	3. 6±	0. 3	1. 0±	0. 1	0.13±	0. 07	140±	15	142±	46	93±	54
2500 ppm	35	7.1±	0. 4	3.6±	0. 3	1. 0±	0. 1	0.13±	0. 01**	142±	12	147 ±	35	77 ±	55**

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

Group Name	NO. of Animals	PHOSPHOL mg/dl	_IPID	AST U/L		ALT U/L		LDH U/L		ALP U/L		G-GTP U∕L		CK U/L	
Control	43	269±	82	112±	58	46±	21	134±	56	200±	150	2±	1	80 ±	23
625 ppm	40	$268\pm$	51	143±	89	56±	30	158±	73	194±	111	2 ±	2	80±	16
250 ppm	42	255±	69	131±	87	49±	22	152±	78	244±	421	3 ±	3	83±	21
2500 ppm	35	258±	52	104±	38	44±	12	122±	50	204±	79	3±	3	82±	14

Significant difference ; * : P ≤ 0.05

** : P ≤ 0.01

Test of Dunnett

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

MEASURE. TIME : 1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

Group Name Control	NO. of UREA NIT Animals mg∕dl				CREATININE SODIUM mg/dl mEq/l			POTASSIUM mEq∕ ℓ		CHLORIDE mEq∕£		CALCIUM mg∕dl		INORGANIC PHOSPHORU mg∕dl	
	43	17.5±	2. 9	0.6±	0. 1	141±	2	3.5±	0. 3	104±	2	10.8±	0. 3	3.8±	0. 8
625 ppm	40	17. 1±	1. 9	0.6±	0. 1	141±	2	3. 4±	0. 4	104±	2	10.8±	0. 4	3. $5\pm$	0. 7
1250 ppm	42	16.8±	1. 9	0.6±	0. 1	141±	2	3. 5±	0. 4	104±	2	10.7±	0. 4	3.6±	0. 7
2500 ppm	35	18.9±	3. 0**	0.5±	0. 1	141±	2	3. 4±	0. 4	104±	2	10.7±	0. 4	3.8±	0. 5

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HCL074)

TABLE I 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of	pH_								Protein	Glucose	Ketone body	Bilirubin
1 - 11 100	Animals	5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- + 2+ 3+ CHI
								_					
Control	41	0	2	4	10	12	10	3		0 0 0 1 11 29	41 0 0 0 0 0	33 8 0 0 0 0	39 0 0 2
625 ppm	39	0	1	4	8	12	10	4		0 0 1 0 11 27	39 0 0 0 0 0	35 3 1 0 0 0	39 0 0 0
1250 ppm	34	0	0	5	5	7	13	4		0 0 0 0 6 28	34 0 0 0 0 0	28 6 0 0 0 0	34 0 0 0
2500 ppm	34	0	0	3	11	8	12	0		0 0 0 0 4 30	34 0 0 0 0 0	27 7 0 0 0 0	34 0 0 0

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of CHI SQUARE

(HCL101)

BAIS 5

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE	REPORT	TYPE : A1			PAGE: 2
Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	41	37 1 1 2 0	40 0 1 0 0		
625 ppm	. 39	38 0 0 0 1	39 0 0 0 0		•
1250 ppm	34	34 0 0 0 0	34 0 0 0 0		
2500 ppm	34	34 0 0 0 0	34 0 0 0 0		
Significar	nt difference	; *: P ≤ 0.05 **	: : P ≤ 0.01	Test of CHI SQUARE	
(HCL 101)					RAISS

BAIS 5

TABLE I 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of	pH_								Prote	in_			G	lucos	e			Ketoi	ie bo	dу			Bili	irub	in	
	Animals	5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	CHI	- ±	+	2+ 3+	4+ C	HI -	· ±	+ 2	+ 3+	4+ CHI	- ±	: +	2+ 3-	+ 4+	CHI		+ 2	+ 3+	CHI
Control	43	0	0	0	10	13	15	5		0 0	0	9 28	6	4	3 0	0	0 0	0	25 18	3 0	0 (0 0		43	0	0 0	
625 ppm	40	0	0	1	3	9	17	10		0 0	0	12 25	3	4	0	0	0 0	0	21 1	9 0	0 1	0 (40	0	0 0	
1250 ppm	43	0	2	1	6	9	14	11		0 0	1	10 28	4	4	3 0	0	0 0	0	21 2	0	0	0		43	0	0 0	
2500 ppm	35	0	1	0	6	12	12	4		0 0	0	2 30	3	3	5 0	0	0 0	0	18 10	5 1	0 (0 0		35	0	0 0	

(HCL101)

BAIS 5

URINALYSIS

STUDY NO. : 0711
ANIMAL : RAT F344/DuCriCrlj [F344/DuCrj]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1

PAGE: 4

42 1 0 0 0			
	43 0 0 0 0		
40 0 0 0 0	40 0 0 0 0		
41 1 1 0 0	43 0 0 0 0		
30 0 0 0 5 *	35 0 0 0 0		
	41 1 1 0 0 30 0 0 5 *	41 1 1 0 0 43 0 0 0 0 30 0 0 0 5 * 35 0 0 0 0	41 1 1 0 0 43 0 0 0 0 30 0 0 0 5 * 35 0 0 0 0

(HCL 101)

BAIS 5

TABLE J 1

GROSS FINDINGS: MALE: ALL ANIMALS

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr!Cr!j[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

gan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
cin/app	nodu l e	1 (2)	3 (6)	5 (10)	2 (4)
ıbcutis	jaundice	2 (4)	1 (2)	1 (2)	0 (0)
	mass	12 (24)	15 (30)	7 (14)	6 (12)
isal cavit	nodu l e	0 (0)	1 (2)	1 (2)	0 (0)
ng	red	0 (0)	0 (0)	1 (2)	0 (0)
	white zone	0 (0)	0 (0)	2 (4)	1 (2)
	nodu l e	1 (2)	2 (4)	1 (2)	2 (4)
	adhesion	0 (0)	0 (0)	1 (2)	0 (0)
mph node	enlarged	1 (2)	2 (4)	1 (2)	0 (0)
leen	enlarged	5 (10)	5 (10)	4 (8)	1 (2)
	white zone	0 (0)	2 (4)	1 (2)	0 (0)
	black zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodu l e	0 (0)	1 (2)	2 (4)	0 (0)
	deformed	0 (0)	0 (0)	1 (2)	0 (0)
art	adhesion	0 (0)	0 (0)	0 (0)	1 (2)
ngue	nodu l e	0 (0)	1 (2)	0 (0)	1 (2)
omach	forestomach:ulcer	1 (2)	. 0 (0)	0 (0)	2 (4)
	forestomach:erosion	0 (0)	1 (2)	1 (2)	0 (0)
	forestomach:nodule	0 (0)	0 (0)	0 (0)	1 (2)
	forestomach: thick	0 (0)	0 (0)	1 (2)	0 (0)
	glandular stomach:ulcer	0 (0)	0 (0)	1 (2)	0 (0)
	glandular stomach:erosion	0 (0)	0 (0)	1 (2)	.0 (0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
tomach	glandular stomach:nodule	1 (2)	0 (0)	0 (0)	0 (0)
	glandular stomach:thick	0 (0)	1 (2)	0 (0)	0 (0)
mall intes	red zone	0 (0)	1 (2)	0 (0)	0 (0)
	nodu l e	0 (0)	1 (2)	0 (0)	0 (0)
	gas	0 (0)	1 (2)	0 (0)	1 (2)
ectum	nodu l e	0 (0)	0 (0)	0 (0)	1 (2)
arge intes	gas	0 (0)	1 (2)	0 (0)	1 (2)
ver	enlarged	1 (2)	1 (2)	1 (2)	1 (2)
	white zone	1 (2)	0 (0)	1 (2)	1 (2)
	nodu l e	2 (4)	1 (2)	1 (2)	2 (4)
	rough	1 (2)	1 (2)	1 (2)	0 (0)
	herniation	5 (10)	3 (6)	5 (10)	7 (14)
ncreas	nodu l e	0 (0)	1 (2)	1 (2)	0 (0)
dney	enlarged	1 (2)	0 (0)	1 (2)	0 (0)
	white zone	1 (2)	1 (2)	0 (0)	0 (0)
	nodule	0 (0)	0 (0)	1 (2)	0 (0)
	granular	4 (8)	10 (20)	8 (16)	6 (12)
in bladd	red	0 (0)	0 (0)	1 (2)	0 (0)
	nodu le	0 (0)	1 (2)	0 (0)	0 (0)
	urine:marked retention	1 (2)	2 (4)	1 (2)	0 (0)
	urine:red .	0 (0)	0 (0)	1 (2)	1 (2)
tuitary	enlarged	6 (12)	9 (18)	7 (14)	7 (14)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX	:	MAL

rgan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
ituitary	atrophic	0 (0)	1 (2)	0 (0)	0 (0)
	red zone	6 (12)	7 (14)	8 (16)	2 (4)
	nodu l e	5 (10)	2 (4)	3 (6)	0 (0)
	cyst	1 (2)	0 (0)	0 (0)	1 (2)
hyroid	enlarged	4 (8)	3 (6)	5 (10)	6 (12)
	red zone	0 (0)	2 (4)	0 (0)	0 (0)
	nodu l e	2 (4)	0 (0)	1 (2)	3 (6)
drenal	enlarged	1 (2)	3 (6)	3 (6)	0 (0)
estis	nodule	25 (50)	27 (54)	31 (62)	29 (58)
rostate	enlarged	0 (0)	0 (0)	1 (2)	0 (0)
rain	enlarged	0 (0)	0 (0)	0 (0)	1 (2)
	red zone	1 (2)	0 (0)	1 (2)	1 (2)
	nodu l e	1 (2)	0 (0)	0 (0)	1 (2)
pinal cord	red zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodu l e	0 (0)	1 (2)	0 (0)	0 (0)
ye	turbid	1 (2)	2 (4)	0 (0)	1 (2)
	white	5 (10)	5 (10)	8 (16)	3 (6)
	red	0 (0)	1 (2)	0 (0)	1 (2)
arder gl	nodu le	1 (2)	0 (0)	0 (0)	0 (0)
ymbal gl	nodu le	1 (2)	0 (0)	0 (0)	2 (4)
one	fracture	0 (0)	1 (2)	0 (0)	0 (0)
ediastinum	mass	0 (0)	0 (0)	0 (0)	1 (2)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

rgan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
eritoneum	nodu l e	1 (2)	2 (4)	1 (2)	4 (8)
bdominal c	hemorrhage	0 (0)	0 (0)	0 (0)	1 (2)
	ascites	2 (4)	2 (4)	1 (2)	2 (4)
horacic ca	hemorrhage	0 (0)	0 (0)	0 (0)	1 (2)
	mass	0 (0)	0 (0)	1 (2)	0 (0)
	pleural fluid	1 (2)	2 (4)	2 (4)	0 (0)
ther	tail:nodule	1 (2)	0 (0)	1 (2)	0 (0)
	eye lid:nodule	0 (0)	0 (0)	0 (0)	1 (2)
	ear:nodule	1 (2)	0. (0)	1 (2)	0 (0)
	hindlimb: nodule	0 (0)	0 (0)	1 (2)	0 (0)
	upper jaw:nodułe	0 (0)	0 (0)	2 (4)	0 (0)
	nose: nodu l e	0 (0)	1 (2)	0 (0)	1 (2)
hole body	anemic	2 (4)	0 (0)	1 (2)	0 (0)

(HPT080)

BAIS 5

TABLE J 2 GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr[Crlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

)rgan	Findings	Group Name Control NO. of Animals 10 (%)	625 ppm 11 (%)	1250 ppm 17 (%)	2500 ppm 16 (%)
skin/app	nodu l e	0 (0)	0 (0)	1 (6)	0 (0)
subcutis	j aund i ce	1 (10)	1 (9)	1 (6)	0 (0)
	mass	2 (20)	2 (18)	4 (24)	2 (13)
asal cavit	nodu l e	0 (0)	1 (9)	0 (0)	0 (0)
ung	red	0 (0)	0 (0)	1 (6)	0 (0)
	white zone	0 (0)	0 (0)	1 (6)	0 (0)
	nodu l e	1 (10)	0 (0)	1 (6)	0 (0)
	adhesion	0 (0)	0 (0)	1 (6)	0 (0)
ymph node	enlarged	1 (10)	2 (18)	1 (6)	0 (0)
pleen	enlarged	3 (30)	4 (36)	4 (24)	1 (6)
	white zone	0 (0)	0 (0)	1 (6)	0 (0)
	nodu l e	0 (0)	1 (9)	0 (0)	0 (0)
	deformed	0 (0)	0 (0)	1 (6)	0 (0)
ongue	nodule	0 (0)	0 (0)	0 (0)	1 (6)
tomach	forestomach:ulcer	1 (10)	0 (0)	0 (0)	2 (13)
	forestomach: erosion	0 (0)	0 (0)	1 (6)	0 (0)
	forestomach:thick	0 (0)	0 (0)	1 (6)	0 (0)
	glandular stomach:ulcer	0 (0)	0 (0)	1 (6)	0 (0)
	glandular stomach:erosion	0 (0)	0 (0)	1 (6)	0 (0)
mall intes	red zone	0 (0)	1 (9)	0 (0)	0 (0)
	gas	0 (0)	1 (9)	0 (0)	1 (6)
arge intes	gas	0 (0)	1 (9)	0 (0)	1 (6)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

rgan	Findings	Group Name Control NO. of Animals 10 (%)	625 ppm 11 (%)	1250 ppm 17 (%)	2500 ppm 16 (%)
iver	enlarged	0 (0)	1 (9)	1 (6)	1 (6)
	white zone	1 (10)	0 (0)	1 (6)	0 (0)
	nodu l e	0 (0)	0 (0)	1 (6)	0 (0)
	rough	0 (0)	1 (9)	1 (6)	0 (0)
	herniation	1 (10)	1 (9)	2 (12)	3 (19)
ıncreas	nodu l e	0 (0)	0 (0)	1 (6)	0 (0)
idney	enlarged	1 (10)	0 (0)	1 (6)	0 (0)
	white zone	0 (0)	1 (9)	0 (0)	0 (0)
	nodu l e	0 (0)	0 (0)	1 (6)	0 (0)
	granular	0 (0)	2 (18)	2 (12)	2 (13)
in bladd	red	0 (0)	0 (0)	1 (6)	0 (0)
	nodu l e	0 (0)	1 (9)	0 (0)	0 (0)
	urine:marked retention	1 (10)	2 (18)	1 (6)	0 (0)
	urine:red	0 (0)	0 (0)	1 (6)	1 (6)
tuitary	enlarged	4 (40)	2 (18)	3 (18)	4 (25)
	red zone	0 (0)	2 (18)	2 (12)	0 (0)
	nodu l e	0 (0)	1 (9)	0 (0)	0 (0)
yroid	enlarged	1 (10)	0 (0)	2 (12)	2 (13)
	red zone	0 (0)	1 (9)	0 (0)	0 (0)
	nodule	0 (0)	0 (0)	0 (0)	1 (6)
renal	enlarged	0 (0)	0 (0)	2 (12)	0 (0)
stis	nodu l e	3 (30)	3 (27)	5 (29)	5 (31)

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

)rgan	Findings	Group Name Control NO. of Animals 10 (%)	625 ppm 11 (%)	1250 ppm 17 (%)	2500 ppm 16 (%)
prostate	enlarged	0 (0)	0 (0)	1 (6)	0 (0)
orain	enlarged	0 (0)	0 (0)	0 (0)	1 (6)
	red zone	1 (10)	0 (0)	1 (6)	1 (6)
	nodu l e	1 (10)	0 (0)	0 (0)	0 (0)
pinal cord	red zone	0 (0)	0 (0)	1 (6)	0 (0)
	nodu l e	0 (0)	1 (9)	0 (0)	0 (0)
уe	turbid	0 (0)	1 (9)	0 (0)	0 (0)
	white	1 (10)	1 (9)	1 (6)	1 (6)
	red	0 (0)	1 (9)	0 (0)	1 (6)
arder gl	nodu le	1 (10)	0 (0)	0 (0)	0 (0)
ymbal gl	nodu le	0 (0)	0 (0)	0 (0)	2 (13)
one	fracture	0 (0)	1 (9)	0 (0)	0 (0)
ediastinum	mass	0 (0)	0 (0)	0 (0)	1 (6)
eritoneum	nodu le	0 (0)	0 (0)	1 (6)	1 (6)
bdominal c	hemorrhage	0 (0)	0 (0)	0 (0)	1 (6)
	ascites	2 (20)	0 (0)	1 (6)	1 (6)
horacic ca	hemorrhage	0 (0)	0 (0)	0 (0)	1 (6)
	mass	0 (0)	0 (0)	1 (6)	0 (0)
	pleural fluid	1 (10)	1 (9)	2 (12)	0 (0)
her	eye lid:nodule	0 (0)	0 (0)	0 (0)	1 (6)
	h ind limb: nodu le	0 (0)	0 (0)	1 (6)	0 (0)
ole body	anemic	2 (20)	0 (0)	1 (6)	0 (0)

TABLE J 3

GROSS FINDINGS: MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

gan	Findings	Group Name Control NO. of Animals 40 (%)	625 ppm 39 (%)	1250 ppm 33 (%)	2500 ppm 34 (%)
n/app	nodu l e	1 (3)	3 (8)	4 (12)	2 (6)
cutis	j aund i ce	1 (3)	0 (0)	0 (0)	0 (0)
	mass	10 (25)	13 (33)	3 (9)	4 (12)
al cavit	nodu l e	0 (0)	0 (0)	1 (3)	0 (0)
g	white zone	0 (0)	0 (0)	1 (3)	1 (3)
	nodule	0 (0)	2 (5)	0 (0)	2 (6)
een	enlarged	2 (5)	1 (3)	0 (0)	0 (0)
	white zone	0 (0)	2 (5)	0 (0)	0 (0)
	black zone	0 (0)	0 (0)	1 (3)	0 (0)
	nodu l e	0 (0)	0 (0)	2 (6)	0 (0)
rt	adhesion	0 (0)	0 (0)	0 (0)	1 (3)
gue	nodu l e	0 (0)	1 (3)	0 (0)	0 (0)
mach	forestomach:erosion	0 (0)	1 (3)	0 (0)	0 (0)
	forestomach:nodule	0 (0)	0 (0)	0 (0)	1 (3)
	glandular stomach:nodule	1 (3)	0 (0)	0 (0)	0 (0)
	glandular stomach:thick	0 (0)	1 (3)	0 (0)	0 (0)
II intes	nodu l e	0 (0)	1 (3)	0 (0)	0 (0)
tum	nodu l e	0 (0)	0 (0)	0 (0)	1 (3)
er	enlarged	1 (3)	0 (0)	0 (0)	0 (0)
	white zone	0 (0)	0 (0)	0 (0)	1 . (3)
	nodu l e	2 (5)	1 (3)	0 (0)	2 (6)
	rough	1 (3)	0 (0)	0 (0)	0 (0)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) Sacrificed animals (105W)

gan	Findings	Group Name Control NO. of Animals 40 (%)	625 ppm 39 (%)	1250 ppm 33 (%)	2500 ppm 34 (%)
ver	herniation	4 (10)	2 (5)	3 (9)	4 (12)
ncreas	nodu l e	0 (0)	1 (3)	0 (0)	0 (0)
dney	white zone	1 (3)	0 (0)	0 (0)	0 (0)
	granular	4 (10)	8 (21)	6 (18)	4 (12)
tuitary	enlarged	2 (5)	7 (18)	4 (12)	3 (9)
	atrophic	0 (0)	1 (3)	0 (0)	0 (0)
	red zone	6 (15)	5 (13)	6 (18)	2 (6)
	nodu l e	5 (13)	1 (3)	3 (9)	0 (0)
	cyst	1 (3)	0 (0)	0 (0)	1 (3)
roid	enlarged	3 (8)	3 (8)	3 (9)	4 (12)
	red zone	0 (0)	1 (3)	0 (0)	0 (0)
	nodu l e	. 2 (5)	0 (0)	1 (3)	2 (6)
enal	enlarged	1 (3)	3 (8)	1 (3)	0 (0)
tis	nodu l e	22 (55)	24 (62)	26 (79)	24 (71)
in	nodu l e	0 (0)	0 (0)	0 (0)	1 (3)
:	turbid	1 (3)	1 (3)	0 (0)	1 (3)
	white	4 (10)	4 (10)	7 (21)	2 (6)
bal gl	nodu l e	1 (3)	0 (0)	0 (0)	0 (0)
itoneum	nodule	1 (3)	2 (5)	0 (0)	3 (9)
ominal c	ascites	0 (0)	2 (5)	0 (0)	1 (3)
racic ca	pleural fluid	0 (0)	1 (3)	0 (0)	0 (0)
er	tail:nodule	1 (3)	0 (0)	1 (3)	0 (0)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 3

Organ	Findings	Group Name NO. of Animals	Control 40 (%)	625 ppm 39 (%)	1250 ppm 33 (%)	2500 ppm 34 (%)
ther	ear:nodule		1 (3)	0 (0)	1 (3)	0 (0)
	upper jaw:nodule		0 (0)	0 (0)	2 (6)	0 (0)
	nose:nodule		0 (0)	1 (3)	0 (0)	1 (3)

(HPT 080)

BAIS 5

TABLE J 4

GROSS FINDINGS: FEMALE: ALL ANIMALS

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
in/app	nodu l e	1 (2)	1 (2)	2 (4)	0 (0)
bcutis	jaundice	0 (0)	1 (2)	1 (2)	0 (0)
	mass	12 (24)	15 (30)	11 (22)	10 (20)
ng	white zone	0 (0)	0 (0)	1 (2)	0 (0)
	red zone	0 (0)	0 (0)	0 (0)	1 (2)
	nodu l e	2 (4)	0 (0)	1 (2)	0 (0)
mph node	enlarged	0 (0)	1 (2)	0 (0)	0 (0)
leen	enlarged	4 (8)	2 (4)	5 (10)	2 (4)
	nodu l e	0 (0)	0 (0)	1 (2)	0 (0)
rt	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
l cavity	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
ngue	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
omach	forestomach:ulcer	0 (0)	2 (4)	2 (4)	0 (0)
	glandular stomach:ulcer	0 (0)	1 (2)	2 (4)	0 (0)
	glandular stomach:nodule	0 (0)	0 (0)	2 (4)	0 (0)
ctum	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
ge intes	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
	dilated	0 (0)	1 (2)	0 (0)	0 (0)
er	white zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodu l e	0 (0)	0 (0)	0 (0)	1 (2)
	rough	0 (0)	2 (4)	0 (0)	1 (2)
	herniation	6 (12)	8 (16)	7 (14)	3 (6)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

gan	Findings	Group Name Control NO. of Animals 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
ıncreas	nodule	1 (2)	0 (0)	0 (0)	0 (0)
dney	deformed	0 (0)	0 (0)	0 (0)	2 (4)
	granular	1 (2)	1 (2)	0 (0)	0 (0)
	hydronephrosis	0 (0)	0 (0)	1 (2)	0 (0)
in bladd	urine:marked retention	0 (0)	2 (4)	0 (0)	1 (2)
tuitary	enlarged	7 (14)	8 (16)	9 (18)	3 (6)
	red zone	15 (30)	15 (30)	13 (26)	11 (22)
	nodu l e	2 (4)	5 (10)	2 (4)	2 (4)
	cyst	1 (2)	0 (0)	1 (2)	0 (0)
yroid	enlarged	2 (4)	1 (2)	0 (0)	0 (0)
	поdule	1 (2)	0 (0)	0 (0)	2 (4)
ary	enlarged	2 (4)	2 (4)	0 (0)	0 (0)
	cyst	2 (4)	1 (2)	3 (6)	1 (2)
erus	nodu i e	7 (14)	6 (12)	7 (14)	3 (6)
	cyst	1 (2)	0 (0)	0 (0)	0 (0)
	deformed	1 (2)	0 (0)	0 (0)	0 (0)
	dilated lumen	1 (2)	0 (0)	0 (0)	0 (0)
gina	nodu l e	0 (0)	1 (2)	0 (0)	1 (2)
	dilated	1 (2)	0 (0)	0 (0)	0 (0)
	fluid: red	1 (2)	0 (0)	0 (0)	0 (0)
ain	enlarged	0 (0)	0 (0)	0 (0)	1 (2)
	yellow	0 (0)	0 (0)	0 (0)	1 (2)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

)rgan	Findings	Group Name (NO. of Animals	Control 50 (%)	625 ppm 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)
orain	red zone		0 (0)	0 (0)	0 (0)	1 (2)
	cyst		1 (2)	0 (0)	0 (0)	0 (0)
	deformed		1 (2)	0 (0)	1 (2)	0 (0)
ye	turbid		1 (2)	1 (2)	1 (2)	0 (0)
	white		3 (6)	3 (6)	3 (6)	4 (8)
arder gl	enlarged		0 (0)	0 (0)	1 (2)	0 (0)
eritoneum	nodu l e		1 (2)	0 (0)	0 (0)	0 (0)
bdominal c	hemorrhage		1 (2)	0 (0)	0 (0)	0 (0)
	ascites		1 (2)	0 (0)	0 (0)	0 (0)
horacic ca	pleural fluid		3 (6)	0 (0)	0 (0)	0 (0)
ther	forelimb:nodule		0 (0)	0 (0)	1 (2)	0 (0)
	forelimb:swollen		0 (0)	0 (0)	0 (0)	1 (2)
	hindlimb: swollen		0 (0)	0 (0)	0 (0)	1 (2)
	nose: nodu l e		1 (2)	0 (0)	0 (0)	0 (0)
nole body	anemic		1 (2)	0 (0)	1 (2)	1 (2)

TABLE J 5
GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

01001 110.	. 0111	GROSS TRUTTIGS SUBMICK
ANIMAL	: RAT F344/DuCrlCrlj[F344/DuCrj]	DEAD AND MORIBUND ANIMALS (0-105W)
REPORT TYPE	: A1	
SEX	: FEMALE	

rgan	Findings	Group Name Control NO. of Animals 7 (%)	625 ppm 10 (%)	1250 ppm 8 (%)	2500 ppm 15 (%)
kin/app	nodu l e	. 0 (0)	0 (0)	1 (13)	0 (0)
ubcutis	jaundice	0 (0)	1 (10)	1 (13)	0 (0)
	mass	2 (29)	5 (50)	1 (13)	3 (20)
ung	red zone	0 (0)	0 (0)	0 (0)	1 (7)
ymph node	enlarged	0 (0)	1 (10)	0 (0)	0 (0)
pleen	enlarged	3 (43)	2 (20)	3 (38)	2 (13)
eart	nodu l e	1 (14)	0 (0)	0 (0)	0 (0)
tomach	forestomach:ulcer	0 (0)	2 (20)	2 (25)	0 (0)
	glandular stomach:ulcer	0 (0)	1 (10)	2 (25)	0 (0)
arge intes	dilated	0 (0)	1 (10)	0 (0)	0 (0)
iver	rough	0 (0)	1 (10)	0 (0)	1 (7)
	herniation	1 (14)	1 (10)	2 (25)	. 2 (13)
idney	hydronephrosis	0 (0)	0 (0)	1 (13)	0 (0)
in bladd	urine:marked retention	0 (0)	2 (20)	0 (0)	1 (7)
tuitary	enlarged	2 (29)	4 (40)	3 (38)	1 (7)
	red zone	2 (29)	1 (10)	1 (13)	0 (0)
	nodu l e	1 (14)	0 (0)	0 (0)	0 (0)
yroid	nodu l e	0 (0)	0 (0)	0 (0)	1 (7)
ary	enlarged	1 (14)	0 (0)	0 (0)	0 (0)
erus	nodu l e	0 (0)	3 (30)	2 (25)	0 (0)
	dilated lumen	1 (14)	0 (0)	0 (0)	0 (0)
agina	nodu l e	0 (0)	1 (10)	0 (0)	0 (0)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1

SEX : FEMALE GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name Control NO. of Animals 7 (%)	625 ppm 10 (%)	1250 ppm 8 (%)	2500 ppm 15 (%)
vagina	fluid:red	1 (14)	0 (0)	0 (0)	0 (0)
orain	enlarged	0 (0)	0 (0)	0 (0)	1 (7)
	yellow	0 (0)	0 (0)	0 (0)	1 (7)
	red zone	0 (0)	0 (0)	0 (0)	1 (7)
ye	white	1 (14)	2 (20)	1 (13)	1 (7)
ırder gl	enlarged	0 (0)	0 (0)	1 (13)	0 (0)
dominal c	hemorrhage	1 (14)	0 (0)	0 (0)	0 (0)
	ascites	1 (14)	0 (0)	0 (0)	0 (0)
oracic ca	pleural fluid	3 (43)	0 (0)	0 (0)	0 (0)
hole body	anemic	1 (14)	0 (0)	1 (13)	1 (7)

BAIS 5

TABLE J 6

GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

gan	Findings	Group Name Control NO. of Animals 43 (%)	625 ppm 40 (%)	1250 ppm 42 (%)	2500 ppm 35 (%)
cin/app	nodu l e	1 (2)	1 (3)	1 (2)	0 (0)
ıbcutis	mass	10 (23)	10 (25)	10 (24)	7 (20)
ing	white zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodu l e	2 (5)	0 (0)	1 (2)	0 (0)
leen	enlarged	1 (2)	0 (0)	2 (5)	0 (0)
	nodu l e	0 (0)	0 (0)	1 (2)	0 (0)
al cavity	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
ongue	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
omach	glandular stomach:nodule	0 (0)	0 (0)	2 (5)	0 (0)
ectum	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
arge intes	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
ver	white zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodu l e	0 (0)	0 (0)	0 (0)	1 (3)
	rough	0 (0)	1 (3)	0 (0)	0 (0)
	herniation	5 (12)	7 (18)	5 (12)	1 (3)
ncreas	nodu l e	. 1 (2)	0 (0)	0 (0)	0 (0)
dney	deformed	0 (0)	0 (0)	0 (0)	2 (6)
	granular	1 (2)	1 (3)	0 (0)	0 (0)
tuitary	enlarged	5 (12)	4 (10)	6 (14)	2 (6)
	red zone	13 (30)	14 (35)	12 (29)	11 (31)
	nodu l e	1 (2)	5 (13)	2 (5)	2 (6)
	cyst	1 (2)	0 (0)	1 (2)	0 (0)

SEX

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

: FEMALE

gan	Findings	Group Name Control NO. of Animals 43 (%)	625 ppm 40 (%)	1250 ppm 42 (%)	2500 ppm 35 (%)
yroid	enlarged	2 (5)	1 (3)	0 (0)	0 (0)
	nodu l e	1 (2)	0 (0)	0 (0)	1 (3)
ary	enlarged	1 (2)	2 (5)	0 (0)	0 (0)
	cyst	2 (5)	1 (3)	3 (7)	1 (3)
rus	nodu l e	7 (16)	3 (8)	5 (12)	3 (9)
	cyst	1 (2)	0 (0)	0 (0)	0 (0)
	deformed	1 (2)	0 (0)	0 (0)	0 (0)
ina	nodu l e	0 (0)	0 (0)	0 (0)	1 (3)
	dilated	1 (2)	0 (0)	0 (0)	0 (0)
n	cyst	1 (2)	0 (0)	0 (0)	0 (0)
	deformed	1 (2)	0 (0)	1 (2)	0 (0)
	turbid	1 (2)	1 (3)	1 (2)	0 (0)
	white	2 (5)	1 (3)	2 (5)	3 (9)
itoneum	nodu l e	1 (2)	0 (0)	0 (0)	0 (0)
er	forelimb:nodule	0 (0)	0 (0)	1 (2)	0 (0)
	forelimb:swollen	0 (0)	0 (0)	0 (0)	1 (3)
	hindlimb:swollen	0 (0)	0 (0)	0 (0)	1 (3)
	nose: nodu l e	1 (2)	0 (0)	0 (0)	0 (0)

TABLE K 1

ORGAN WEIGHT, ABSOLUTE: MALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO of Animals	Body	Weight	ADRE	NALS	TEST	ES	HEAR	Т	LUNG	S	KIDN	EY\$
Control	39	413±	36	0.080±	0. 022	2. 755±	1. 170	1. 280±	0. 099	1. 492±	0. 284	2. 807±	0. 250
625 ppm	37	400±	49	0. 103±	0. 133	2. 607±	1. 149	1. 255±	0. 113	1. 427±	0. 119	2. 902±	0. 502
250 ppm	32	384±	45*	0.073±	0. 015	3. 252±	1. 448	1. 217±	0. 117	1. 402±	0. 092	2. 906±	0. 329
2500 ppm	34	348±	38**	0.068±	0. 015**	2. 967±	1. 262	1. 138±	0. 132**	1. 326±	0. 077**	2. 747 ±	0. 229

(HCL 040)

BAIS 5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

Significant difference ; * : P ≤ 0.05

** : P ≤ 0.01

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN		
Control	39	2. 763± 7. 157	12. 103± 2. 716	2. 127± 0. 041	•	
625 ppm	37	1. 226 ± 0. 993	11. 866± 1. 773	2. 113± 0. 048		
1250 ppm	32	1. 115± 0. 438	11.557± 1.608	2. 111± 0. 047		
2500 ppm	34	0. 969± 0. 172	10.717± 1.039*	2.109± 0.050		

Test of Dunnett

(HCL 040)

BAIS 5

TABLE K 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	Body	Weight	ADRE	NALS	OVAR	IES	HEAR	Г	LUNG	S	KIDN	EYS
Control	43	293±	38	0. 074±	0. 013	0.193±	0. 223	0. 942±	0. 115	1. 036±	0. 118	1. 922 ±	0. 266
25 ppm	40	278±	25	0. 071±	0. 010	0. 171±	0. 100	0. 916±	0. 066	1. 000±	0. 070	1. 923±	0. 180
250 ppm	42	266±	22**	0. 071±	0. 009	0.159±	0. 063	0.888±	0. 081*	1. 005±	0. 127	1. 927±	0. 152
2500 ppm	35	233±	34**	0.065±	0. 012**	0.165±	0. 165	0.829±	0. 051**	0. 943±	0. 062**	1. 974±	0. 127

BAIS 5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPL	EEN	LIV	ER	BRA	IN
Control	43	0.729±	0. 470	7. 536±	1. 487	1. 938±	0. 065
i25 ppm	40	0.659±	0. 282	7. 116±	1. 125	1. 921±	0. 041
250 ppm	42	1. 1 32 ±	2. 114	6. 997±	0. 848	1. 920±	0. 046
2500 ppm	35	0. 519±	0. 078**	6. 593 ±	1. 309**	1. 910±	0. 041

(HCL 040)

BAIS 5

TABLE L 1

ORGAN WEIGHT, RELATIVE: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

ORGAN WEIGHT: RELATIVE (SUMMARY)

REPORT TYPE : A1

SEX : MALE UNIT: %

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	Body Wei (g	_	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	39	413± 3	36	0. 019± 0. 005	0. 677± 0. 299	0. 312± 0. 034	0. 365± 0. 088	0. 686± 0. 088
625 ppm	37	400± 4	19	0. 027± 0. 038	0. 655± 0. 294	0. 317± 0. 036	0. 362± 0. 047	0. 743± 0. 200
250 ppm	32	384± 4	15*	0.020± 0.006	0.842± 0.347	0. 321± 0. 043	0. 372± 0. 062	0. 774± 0. 174**
2500 ppm	34	348± 3	8**	0. 020± 0. 005	0.842± 0.342	0. 330± 0. 049	0. 384± 0. 041**	0. 796± 0. 097**

(HCL042)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

UNIT: %					PAGE : 2
Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	39	0.692± 1.828	2. 940± 0. 665	0. 520± 0. 050	
625 ppm	37	0. 303± 0. 217	2. 993± 0. 475	0. 537± 0. 065	
1250 ppm	32	0.290± 0.107	3. 024± 0. 339*	0. 560± 0. 087**	
2500 ppm	34	0. 280± 0. 050	3. 098± 0. 357**	0. 614± 0. 083**	
Significa	nt difference ;	* : P ≤ 0.05 ** :	P ≤ 0.01	Test of Dunnett	
(HCL 042)					BAIS 5

BAIS 5

TABLE L 2

ORGAN WEIGHT, RELATIVE: FEMALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

SEX : FEMALE UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals		Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS	
Control	43	293±	38	0. 025± 0. 004	0. 066± 0. 073	0. 325± 0. 045	0. 358± 0. 054	0. 663± 0. 098	
625 ppm	40	278±	25	0. 026± 0. 005	0.062± 0.038	0. 331 ± 0. 030	0. 362± 0. 038	0. 698± 0. 116	
250 ppm	42	266±	22**	0. 027± 0. 004	0.060± 0.025	0. 337± 0. 051	0. 380± 0. 062	0. 729± 0. 078**	
2500 ppm	35	233±	34**	0.028± 0.007*	0. 073± 0. 078	0. 363± 0. 054**	0.412± 0.056**	0. 861 ± 0. 109**	

(HCL042)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
ontrol	43	0.252± 0.163	2. 585± 0. 463	0. 671 ± 0. 077	
25 ppm	40	0. 236± 0. 095	2.561± 0.350	0.696± 0.073	
250 ppm	42	0. 441 ± 0. 853	2. 644± 0. 361	0.726± 0.063**	
2500 ppm	35	0. 226± 0. 040	2.835± 0.309*	0.836± 0.109**	

(HCL042)

BAIS 5

TABLE M 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX

: MALE

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
gan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
ntegumentar	y system/appandagel				
in/app	epidermal cyst	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	sebaceous hyperplasia	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
bcutis	inflammation	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
	fibrosis	(0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	epidermal cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
espiratory	system}				
sal cavit	thrombus	<50> 2 0 0 0 (4) (0) (0) (0)	<pre></pre>	<50> 4 0 0 0 (8) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)
a > b c)	1+: Slight 2+: Moderate a: Number of animals examined a b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **	n			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 50 50 50 50 2+ 2+ 2+ 2+ 1+ 3+ 3+ 4+ 3+ 4+ 3+ (%) (%) (%) (%) Organ__ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) {Respiratory system} nasal cavit <50> **<50>** mineralization 0 0 0 0 0 0 0 0 (70) (0) (0) (0) (84) (0) (0) (0) (70) (0) ((86) (0) (0) (0) eosinophilic change:olfactory epithelium (82) (10) (2) (0) (76) (8) (0) (0) (72) (6) (0) (0) (80) (14) (0) (0) eosinophilic change:respiratory epithelium 0 (6) (0) (0) (0) (2) (0) (0) (0) (6) (0) (0) (0) (4) (0) (0) (0) inflammation:foreign body 16 2 15 (32) (4) (0) (0) (44) (6) (0) (0) (22) (12) (0) (0) (30) (6) (0) (0) inflammation:respiratory epithelium 0 10 0 6 (18) (2) (0) (0) (20) (0) (0) (0) (24) (0) (0) (0) (12) (0) (0) (0) respiratory metaplasia:olfactory epithelium (10) (0) (0) (0) (6) (0) (0) (0) (6) (0) (0) (0) (2) (0) (0) (0) respiratory metaplasia:gland 38 (82) (0) (0) (0) (76) (0) (0) (0) (80) (0) (0) (0) (76) (0) (0) (0) squamous cell metaplasia:transitional epithelium (0)(0)(0)(0) (2) (0) (0) (0) (2) (0) (0) (0) (0)(0)(0)(0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a: Number of animals examined at the site

b b: Number of animals with lesion (c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

PAGE: 3

		Group Name No. of Animals on Stud		ontrol 5	n			62	5 ppm	0				12	50 r	р т 50				2	2500	ррm 50		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ %)	2+ (%)	3- (%)		4+ (%)		1+ (%)	2+ (%)	÷	3+ (%)	4+ (%)		1+ (%)	(%	+	3+ (%)	4· (%)
{Respiratory	system)																							
larynx	ulcer	(0 0)	(50 (0)	0	0 (0)	(1 2)	<5 0 (0)	0> 0 (0)) (0 0)	(0 0)	0 (0)	(50> (0 0) (0 ()	(0 0)	0 (<50> } (0 0)	0 (0)
	cyst	(1 2)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	(0)) (0 0)	(0 0)	0 (0)	(0 0) (0 0)	(0 0)	(0) (0 0)	(0)
	inflammation	(0)	0 (0)	0 (0)	0 (0)	(0 0) +	0 (0)	(0)) (0 0)	(1 2)	0 (0)	(0 0) (· 0 (0)	(1 2)	(0) (0 0)	0 (0)
	hyperplasia:epithelium	(0	0 (0)	0 (0)	0 (0)		0 0)	0 (0)	(0)) (0 0)	(1 2)	0 (0)	(0 0) (0 (0)	(0 0}	(0)) (0 0)	(0)
	inflammation:foreign body	{	1 2)	0 (0)	0 (0)	0 (0)	, (0 0) (0 ()	(0)	(0 0)	(0 0) (0 (0)	. (0 0) (0 0)	(3 6)	(0)) (0 0)	(0)
rachea	inflammation:foreign body		0	<51 0 (0)	0	0 (0)	(0 0) (<5 0 0 0)	0> 0 (0)	(0 0)	(0 0) (0 (0)	(50>	0 0} (0 0)	(1 2)	0 (0)	<50>) (0 0)	0 (0)
ung	congestion	(3 6) (<5(0 (0)	0	0 (0)	(2 4) (<5 0 0	0> 0 (0)	(0 0)	(2 4) (0 (0 (10)	(50>	0 0) (0 0)	(1 2)	0	<50>) (0	0 (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SEX : MALE

ALL ANIMALS (0-105W)

		Group Name No. of Animals on Stud		ntrol 50)			625	ppm 50				12	50 p	om 50			2	2500 p	ррм 50		
rgan	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)		2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3÷ (%)	(%)		1+ (%)	2+ (%)		3+ (%) ———	(%)
Respiratory :	system)																					
ung	hemorrhage	(3 6)	<50 1 (2)	0	0 (0)	4 (8)	(<50) 0 0) (0	0 (0)	(3 6)	2 (4)	50> 0 (0)	0 (0)	(4 8)	1 (2)	<50> (0 0) ((0
	inflammatory infiltration	(3 6)	0 (0)	0 (0)	0 (0)	2 (4)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	. (0 0) ((0
	ossification	ę	0 0) (0 (0)	0 (0)	0 (0)	(0)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	(0)	0 (0)	(0 0)	1 (2)	. (0 0) (((
	accumulation of foamy cells	ţ	2 4)	0 (0)	0 (0)	0 (0)	1 (2)	(0 0} (0 0)	0 (0)	(0 0) (0	(0)	0 (0)	(4 8)	(0)	(0 0) (((
	bronchiolar-alveolar cell hyperplasia	ţ:	5 10) (0 (0)	1 (2)	(0)	5 (10)	(1 2) (0 0)	0 (0)	(1	5 10) (0 (0)	(0)	0 (0)	(3 6)	0 (0)	(0 0) (((
	uremic pneumonitis	(0 0) (0 (0)	0 (0)	0 (0)	0 (0)	(1 2) (0 0)	0 (0)	(0 0) (0 ()	(0)	0 (0)	. (1 2}	0 (0)	(0 0) (((
Hematopoletic	; system!																					
one marrow	congestion	(1 2) (<50 0 0 (0	0 (0)	0 (0)	(<50) 0 0) () 0 0)	0 (0)	(O O) (0	50> 0 (0)	0 (0)	ſ	2 4)	(0)	<50> (0 0) (((

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

PAGE: 5

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Hematopoieti	c evetami				
one marrow	hemorrhage	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)
	inflammatory infiltration	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	granulation	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
	increased hematopolesis	7 7 3 0 (14) (14) (6) (0)	9 5 1 0 (18) (10) (2) (0)	14 4 0 0 (28) (8) (0) (0)	8 5 2 0 (16) (10) (4) (0)
mph node	hemorrhage	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	deposit of hemosiderin	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
oleen	congestion	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c : b / a * 100 Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 6 Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 50 50 50 50 2+ 1+ 2+ 3+ 2+ 2+ 3+ 3+ 1+ 3+ Findings_ (%) Organ__ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) {Hematopoietic system} spleen ⟨50⟩ deposit of hemosiderin 0 0 0 0 (24) (0) (0) (0) (10) (0) (0) (0) (26) (2) (0) (0) (24) (4) (0) (0) inflammatory infiltration 0 0 (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) fibrosis:focal 0 (0)(0)(0)(0) (2) (4) (0) (0) (2) (2) (2) (0) (0)(0)(0)(0) extramedullary hematopoiesis 21 0 15 16 1 (42) (6) (2) (0) (42) (2) (0) (0) (30) (8) (2) (0) (32) (2) (0) (0) (Circulatory system) heart ⟨50⟩ thrombus 0 (0)(0)(0)(0) (2) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) mineralization (0)(0)(0)(0) (2) (2) (0) (0) (0)(0)(0)(0) (0)(0)(2)(0) myocardial fibrosis (34) (2) (0) (0) (42) (4) (0) (0) (48) (4) (0) (0) (42) (2) (0) (0)

^{1+ :} Slight Grade 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 7

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Circulatory :	system)				
eart	myocarditis	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
rtery/aort	mineralization	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Digestive sy:	stem)				
ral cavity	squamous cell hyperplasia	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
ongue	mineralization	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	lymphocytic infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade < a >

2+ : Moderate

3+ : Marked

4+ : Severe

1+ : Slight a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 8

		Group Name No. of Animals on Study	Contro	I 50		6	25 ppm 5			12	50 ppm 50			2	500 ppm 50		
)rgan	Findings	Grade 11	+ 2+			1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
Digestive sy	stem)																
salivary gl	inflammation	0 (0)	0 (0)	50> 0 (0)	0 (0)	1 (2)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0) (<50) 0 (0) () 0 0) (0 (0)	1 (2)	<50 0 (0))> 0 (0)	0 (0)
tomach	ulcer:forestomach	3 (6)		50> 0 (0)	0 (0)	0 (0)	<5 1 (2)	0> 1 (2)	0 (0)	1 (2) (<50) 1 2) (> 2 4) (0 (0)	3 (6)	<50 2 (4))> 2 (4)	0 (0)
	hyperplasia:forestomach	0 (0)	(0)	0 (0)	0 (0)	4 (8)	0 (0)	0 (0)	0 (0)	0 (0) (0 (0 0) (0 (0)	3 (6)	2 (4)	0 (0)	0 (0)
	erosion:glandular stomach	5 (10)	(0)	0 (0)	0 (0)	6 (12)	0 (0)	0 (0)	0 (0)	5 (10) (0 (0 0) (0 (0)	5 (10)	0 (0)	0 (0)	0 (0)
	ulcer:glandular stomach	2 (4)	. 0	0 (0)	0 (0)	3 (6)	0 (0)	0 (0)	0 (0)	1 (2) (0 (0 0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	mineralization:glandular stomach	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0) (0 (0 0) (0 (0)	0 (0)	1 (2)	0 (0)	0 (0)
mall intes	ulcer	0 (0)	0	50> 0 (0)	0 (0)	0 (0)	<5 0 (0)	1	0 (0)	0 (0) (<50) 0 0 (> 0 0) (0	0 (0)	<50 0 (0) (0 (0)	0 (0)

Grade < a >

1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion (c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 9

		Group Name No. of Animals on Study	Contro	ol 50				625	ppm 50				125	0 ppr 5(2!	9 00 p	pm 50		
rgan	Findings	Grade 1+ (%)	2+		}+ 6}	4+ (%)	1 (%	+ }	2+ (%)	3+ (%)	4+ (%)	1 (%	† 	2+ (%)	3+ (%)	4 (%	+)	(1+ (%)	2+ (%)		3+ (%)	4+ (%)
Digestive sys	steml																						
mall intes	erosion	0 (0)	0 (0)	(50> 0 (0))) (0	0)) (<50 0 0)	0 ()	0 (0)	1 (2) (<50 0 0))> 0 (0)	0 (0))	(0 0)	(0 (0)	50> (0 0) (0 (0)
arge intes	ulcer .	(0)	0 (0)	(50> 0 (0))) (0 0)	0 (0) (<50 0 0)	> 0 (0)	0 (0)	1 (2) (<50 0 0)) 0 (0)	0 (0))	(0 0)	(0 (0)	50> (0 0) (0 (0)
iver	herniation	5 (10)	0 (0)	(50> 0 (0))} {	0 0)	4 (8) (<50 0 0) (> 0 (0)	0 (0)	4 (8) {	<50 0 0)) 0 (0)	0 (0))	(1	7 4)	(0 (0)	50>	0 0) (0 (0)
	necrosis:central	0 (0)	(0)	(0))) (0 0)	0 (0)) (2 4) (0 (0)	0 (0)	(0	(0 0)	0 (0)	(0))	(0 0)	0 (0)	(0 0) (0 (0)
	necrosis:focal	0 (0)	1 (2)	0 (0))) (0 0)	(0;) (0	0 0)	0 (0)	0	(0 0)	0 (0)	(0))	(2 4)	O (O)	(0 0) (0 (0)
	fatty change:central	0 (0)	0 (0)	(0))) ,(0 0)	(0)) (0 0) (0 0)	0 (0)	0 (0	(3 6)	0 (0)	(0))	{	1 2)	0 (0)	(0 0} (0 (0)
	fatty change:peripheral	0 (0)	1 (2)	(0))} (0 0)	1 (2)) (0 0) (0 0)	0 (0)	(0	(0 0)	0	0 (0))	(0 0}	0 (0)	(0 0) (0 (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with lesion

c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

: MALE

PAGE: 10

		Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+	625 ppm 50 1+ 2+ 3+ 4+	1250 ppm 50 1+ 2+ 3+ 4+	2500 ppm 50 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive s	system)				
liver	mineralization	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>	(0) (0) (0) (0)
	inflammatory infiltration	1 0 0 0 (2) (3) (3)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	granulation	39 1 0 0 (78) (2) (0) (0)	37 1 0 0 (74) (2) (0) (0)	41 0 0 0 (82) (0) (0) (0)	42 1 0 0 (84) (2) (0) (0)
	inflammatory cell nest	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	clear cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	18 1 0 0 (36) (2) (0) (0)	19 0 0 0 (38) (0) (0) (0)	14 1 0 0 (28) (2) (0) (0)	12 0 0 0 (24) (0) (0) (0)
	basophilic cell focus	3 0 0 0 (6)(0)(0)(0)	3 0 0 0 (6) (0) (0) (0)	0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with lesion c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr[Crlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 11

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	system}				
liver	spongiosis hepatis	<50> 7 0 0 0 (14) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)	<pre></pre>	(50) (0) (0) (0) (0) (0)
	bile duct hyperplasia	48 0 0 0 (96) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)	47 0 0 0 (94) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)
	cholangiofibrosis	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)
	biliary cyst	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	focal fatty change	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)
pancreas	atrophy	. \$50> 8 1 0 0 (16) (2) (0) (0)	50> 10 0 0 0 (20) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 4 2 0 0 (8) (4) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (4)
	arteritis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade < a > 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site
b : Number of animals with lesion

b

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

PAGE: 12

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	system)		·		
pancreas	basophilic cell focus	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	islet cell hyperplasia	1 0 0 0 0 (2) (0) (0) (0)	3 1 0 0 (6) (2) (0) (0)	3 1 0 0 (6) (2) (0) (0)	0 0 0 0 0 (0) (0)
{Urinary sys	teml				
kidney	hyaline droplet	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	1 0 0 0 (2) (0) (0) (0)	<pre></pre>
	eosinophilic body	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (6) (6)
	inflammatory infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (2) (0) (0)
	scar	0 1 0 0 (0) (2) (0) (0)	0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (3)
	chronic nephropathy	27 11 10 0 (54) (22) (20) (0)	19 16 9 3 (38) (32) (18) (6)	14 17 14 1 (28) (34) (28) (2)	12 20 12 3 * (24) (40) (24) (6)

Grade < a >

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion (c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

		No. of Animals on Study	Control 5	0		6	25 pp	50	•	1:	250 pp 5	0		25	500 pp 5	0	
Organ	Findings	Grade 1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4 + (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
{Urinary sys	tem)																
kidney	papillary necrosis	0 (0)	0	0> 0 (0)	0 (0)	0 (0)	((0)	50> 0 (0)	0 (0)	5 (10)	<5 0 (0)	0> 0 (0)	0 (0)	19 (38)	<5 0 (0)	0	0 ** (0)
	mineralization:papilla	0 (0)	0 (0)	0 (_ 0)	0 (0)	1 (2)	1 (2)	0 (0)	0 (0)	2 (4)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)
	mineralization:pelvis	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	mineralization:cortex	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)	0 (0)
	urothelial hyperplasia:pelvis .	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)
	dilated pelvis	1 (2)	(0)	0 (0)	0 (0)	(0)	(0)	0 (0)	0 (0)	1 (2)	0 (0)	(0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	deposit of brown pigment	0 (0)	0 (0)	0 (0)	0 (0)	4 (8)	0 (0)	0 (0)	0 (0)	4 (8)	0 (0)	0 (0)	0 (0)	27 (54)	0 (0)	0 (0)	0 ** (0)
urin bladd	dilatation	0 (0)	<5 0 (0)	1	0 (0)	0 (0)	(0)	50> 2 (4)	0 (0)	0 (0)	<5 0 (0)	0> 1 (2)	0 (0)	0 (0)	<5 0 (0)	0	0 (0)

^{1+:} Slight 2+: Moderate 3+: M a: Number of animals examined at the site b: Number of animals with lesion Grade 1+ : Slight 3+ : Marked 4+ : Severe

< a >

b

⁽c) c : b / a * 100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Stud Grade		ntrol 5 2+		٠ .	4+		6: 1+	25 p; 24	50	3+	4+		1 1+		ppm 50 !+	3+	4+		2: 1+	500	ppm 50 !+	3+	4
)rgan	Findings		(%)	(%)	(%)		%) 		(%)	(%)	,	(%)	(%)		(%)	(9	()	(%)	(%)		(%)	(%		(%)	(%
(Urinary syste	em)																								
urin bladd	hemorrhage	(0 (0)		0		0 0)	(0 0)	1 (2)	(50> (0 0)	0 (0)	(0 0)	1 (2	<50>	0 0)	0 (0)	(0 0)	0	<50>)) () 0 0)	((
	inflammation	(0 (0 0)	1 (2)	((0 0)	(0 0)	0 (0)	(0 0)	0 (0)	(0 0)	(())) (0 0)	0 (0)	(0 0)	0 (0) (0 0)	(
	papillary and/or nodular hyperplasia	·	0 (0 0)	(0)	- { (0 0)	(0 0)	0 (0)	(1 2)	0 (0)	(1 2)	(())) (0 0)	0 (0)	(0 0)	(0))) (0 0)	((
Endocrine sys	stem)																								
ituitary	atrophy	ţ	0 (<5 0 0)	0	((0 0)	(1 2)	0 (0)	(50> (0 0)	0 (0)	(0 0)	((<50>) (0 (0)	0 (0)	(0 0)	0	<50>)) (0 0)	(0
	angiectasis	ſ	2 4) (0 0)	(0)	((0 0)	(0 0)	0 (0)	(0 0)	0 (0)	(0 0)	(())) (0 0)	0 (0)	(0 0}	1 (2) (0 0)	((
	cyst	ţ	4 8) (1 2)	(0)	((0 0)	(0 0)	0 (0)	(0 0)	0 (0)	(4 8)	(())) (0 0)	0 (0)	(1 2)	(0		0 0)	(0
	hyperplasia	(9 18) (1 2)	(0)		0 0)		9 8)	5 (10)	(0 0)	0 (0)	(4 8)	(8) (1 2)	0 (0)	(1	7 14)	2	:	0 0)	(0
(a > b	+ : Slight 2+ : Moderate 3+ a : Number of animals examined at the s b : Number of animals with lesion c : b / a * 100	: Marked 4+ : Se ite	vere			•••			-		•														

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

: MALE SEX

PAGE: 15

		Group Name No. of Animals on Study		ntrol 50			6	25 ppm 5				125	0 ppm 50				25	00 ppm 50		
Organ	Findings	Grade	1+ (%)	2+	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1 (%	+)	2+ (%)	3+ (%)	4+ (%)	(9	1+ %)	2+ (%)	3+ (%)	4+ (%)
(Endocrine sy	stem)														<u>.</u>					
oituitary	Rathke pouch	(2 4) (<50> 0 0) (0 0)	0 (0)	1 (2)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0) (<50) 0 0) (> 0 0)	0 (0)	; ()	3 6) (<50 0 (0) (> 0 (0)	0 (0)
	aberrant craniopharyngeal tissue	(0 (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 (0 0)	0 (0)	(0 0) (1 (2) (0 (0)	(0)
hyroid	ultimobranchial body remanet	(1 2) (<50> 0 0) (0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	1 (2) (<50) 0 0) () 0 0)	0 (0)	(0 0) (<50 0 (0) (> 0 (0)	0 (0)
	follicular hyperplasia	. (0 0) (0 0) (0 0)	0 (0)	2 (4)	0 (0)	0 (0)	0 (0)	1 (2) (1 (0 0)	0 (0)	(;	1 2) (0 (0) (0 (0)	0 (0)
	C-cell hyperplasia	(1	9 18) (7 14) (0	0 (0)	9 (18)	3 (6)	1 (2)	0 (0)	11 (22) (4 8) (0 0)	0 (0)	; (1)	5 0) (5 (10) (0 (0)	0 (0)
	cystic thyroid follicle	. (0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2) (0 (0 0)	0 (0)	(2 4) (0 (0) (0 (0)	0 (0)
arathyroid	hyperplasia	(0 0) (<50> 0 0) (0	0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0) (<50) 0 0) (> 0 0}	0 (0)	. (2	1 2) (<50 0 (0) ()> 0 (0)	0 (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with lesion

c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

- BAIS5

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Con	trol 50)			62	mqq 6 5					12	50 p	50					2500) ppm 50			
rgan	Findings			2+ (%)	3+ (%)	4+ (%)		1+ %)	2+ (%)	3+ (%)	† 	4+ (%)		1+ (%)	2+ (%)	ŀ	3+ (%)	4+ (%)		1+ (%)		2+ (%)	3+ (%)		4+ (%)
Endocrine sys	stem)																								
drenal	inflammatory infiltration	0		<50 0 0) (0	0 (0)	(0 0) (<5 0 0)	0> 0 (0)	(0 0)		0	0		0	0 (0)	(1 2)		<50 0 0))> 0 (0)		
	lymphocytic infiltration	0 (0		0 0) (0 (0)	0 (0)	(0 0) (0 0)	(0)	(0 0)	(0 0) (0 (0)	(0 0)	0 (0)	(1 2)	(0 0)	0 (0)		0 0)
	hyperplasia:medulla	1 (2	2) (1 2) (0 (0)	0 (0)	(2 4) (2 4)	(0)	(0 0)	(3 6)	2 (4)	(0 0)	0 (0)	(1 2)	(0 0}	0 (0)	(0 0)
	focal fatty change:cortex	4 (8		0 0) ((0 (0)	0 (0)	(1	5 0) (0 0)	(0)	(0 0)	(2 4) (0 (0)	(0 0)	0 (0)	(1 2)	(0 0)	0 (0)	(0 0)
Reproductive	system)																								
estis	mineralization	0		<50 0 0) (0	0 (0)	(1 2) (<5 0 0)	0> 0 (0)	(0 0)	(1 2) (0	(50> (0	0 (0)	{	1 2)	(<50 0 0))> 0 (0)	(0 0)
	interstitial cell hyperplasia	21 (42		0 0) (0 (0)	0 (0)	2	1 2) (1 2)	0 (0)	(0 0)	1 (2	12 24) (0 (0)	(0 0)	0 (0)	(14 28)	(0 0)	0 (0)	(0 0)
emin ves	inflammation	0 (0		<50 0 0) (0	0 (0)		1 2) (<5 0 0)	0> 0 (0)		0 0)		0 0) (0		0 0)	0 (0)	(0 0)		<50 0 0) ()> 0 (0)		0 0)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Reproductive	system}				
rostate	hemorrhage	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammation	9 2 0 0 (18) (4) (0) (0)	9 2 0 0 (18) (4) (0) (0)	12 1 0 0 (24) (2) (0) (0)	8 1 0 0 (16) (2) (0) (0)
	hyperplasia	9 1 0 0 (18) (2) (0) (0)	7 0 1 0 (14) (0) (2) (0)	11 0 0 0 (22) (0) (0) (0)	8 1 0 0 (16) (2) (0) (0)
ammary gl	galactocele	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)
Nervous syste	em)	•			
rain	hemorrhage	(0) (0) (0)	<pre></pre>	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)
pinal cord	hemorrhage	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)

STUDY NO. : 0711 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

0rgan_

eye

Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 50 50 50 50 2+ 3+ 1+ 2+ 3+ 2+ 3+ 2+ 3+ 4+ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Special sense organs/appendage) inflammatory infiltration 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2) (0) (0) (0) cataract 0 3 3 0 2 2 3 0 1 6 1 2 0 2 0 (0) (6) (6) (0) (4) (4) (6) (0) (2) (12) (2) (0) (4) (0) (4) (0) retinal atrophy 7 6 4 3 2 5 (6) (4) (10) (0) (14) (12) (8) (0) (10) (6) (12) (0) (20) (6) (6) (0) keratitis 3 4 1 0 2 1 (2) (0) (2) (0) (8) (6) (0) (0) (8) (2) (0) (0) (4) (2) (0) (0)

> 0 0 (4) (0) (0) (0)

	iritis	2 0 1 0 (4) (0) (2) (0)	0 2 0 0 (0) (4) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 1 1 0 (0) (2) (2) (0)
Harder gl	lymphocytic infiltration	<50> 1 0 0 0 (2) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	<pre></pre>	<50> 3 0 0 0 (6) (0) (0) (0)
	hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)

(MI	us cu	loske	letal	system)
(MI	us cu	loske	leta	system)

muscle atrophy

0 0 0

(2) (0) (0) (0)

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b: Number of animals with lesion (c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 19 Group Name Control 625 ppm 1250 ppm 2500 ppm

		No. of Animals on St	udv		50		-		50		•		50				50		
Organ	Findings	Grade	1+ (%)	2+ (%)		· 4+ (%)	1+	2+ (%)		4+ (%)	1+ (%)	2+ (%)		4+ (%)	1+ (%)	2 (%		+)	4+ (%)
(Musculoskele	etal system)																		
muscle	mineralization		0 (0)	(0)	50> 0 (0)	0 (0)	1 (2)	0 (0)	(50> 0 (0)	0 (0)	1 (2)	(0 (0)	50> 0 (0)	0 (0)	0 (0)	0)	<50> 0 0 0) (0 0)
bone	fracture	·	0 (0)		50> 0 (0)	0 (0)	0 (0)	(1 (2)	(50> 0 (0)	0 (0)	0 (0)	(0 (0)	50> 0 (0)	0 (0)	0 (0)	0 }	<50> 0 0) (0 0)
	osteosclerosis		0 (0)	(0)	0 (0)	0 (0)	(0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0) (O) (0 0)
(Body cavitie	es}																		
peritoneum	inflammation		1 (2)	(0)	io> 0 (0)	0 (0)	0 (0)	(0 (0)	50> 0 (0)	0 (0)	0 (0)	(0)	50> 0 (0)	0 (0)	0 (0)		<50> 0 0) (0 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a: Number of animals examined at the site
b: Number of animals with lesion
c: b / a * 100 < a >

b

(c)

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

TABLE M 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

	Group Name	Control	625 ppm	1250 ppm	2500 ppm
rgan		mals on Study 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	16 1+ 2+ 3+ 4+ (%) (%) (%) (%)
ntegumenta	ry system/appandage}				
kin/app	sebaceous hyperplasia	<10> 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<17> 0 0 0 0 0 0 0 0 0 0	<pre></pre>
espiratory	system}				
sal cavit	thrombus	<10> 1 0 0 0 (10) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	4 0 0 0 (24) (0) (0) (0)	2 0 0 0 (13) (0) (0) (0)
	mineralization	7 0 0 0 (70) (0) (0) (0)	9 0 0 0 0 (82) (0) (0)	12 0 0 0 (71) (0) (0) (0)	15 0 0 0 (94) (0) (0) (0)
	eosinophilic change:olfactory epithelium	6 1 0 0 (60) (10) (0) (0)	8 0 0 0 (73) (0) (0) (0)	8 0 0 0 (47) (0) (0) (0)	13 0 0 0 (81) (0) (0) (0)
	eosinophilic change:respiratory epithelium	0 0 0 0 0 (0) (0)	1 0 0 0 0 (9) (0) (0)	1 0 0 0 (6) (0) (0) (0)	1 0 0 0 0 (6) (6) (7)
	inflammation:foreign body	3 0 0 0 (30) (0) (0) (0)	2 1 0 0 (18) (9) (0) (0)	1 2 0 0 (6) (12) (0) (0)	5 0 0 0 (31) (0) (0) (0)
	inflammation:respiratory epithelium	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (9) (0) (0)	1 0 0 0 (6) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade < a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 2 Group Name 625 ppm 2500 ppm Control 1250 ppm No. of Animals on Study 10 17 16 11 1+ 2+ 3+ 1+ 2+ 3+ 2+ 3+ 2+ 3+ Organ Findings (%) (%) (%) (%) (%) (%) (%) (%) {Respiratory system} nasal cavit respiratory metaplasia:olfactory epithelium 0 0 0 0 0 (0)(0)(0)(0) (9) (0) (0) (0) (6) (0) (0) (0) (6)(0)(0)(0) respiratory metaplasia:gland 0 0 7 0 0 12 0 (90) (0) (0) (0) (64) (0) (0) (0) (71) (0) (0) (0) (63) (0) (0) (0) squamous cell metaplasia:transitional epithelium 0 (0) (0) (0) (0) (9) (0) (0) (0) (6) (0) (0) (0) (0)(0)(0)(0) larynx <10> <11> ulcer 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (9) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) hyperplasia:epithelium 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) inflammation:foreign body 0 0 0 0 0 0 0 2 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (13) (0) (0) (0) lung <10> <11> <17> <16> congestion 0 0 0 0 1 0 0 0 1 0 0 (20) (0) (0) (0) (9) (0) (0) (0) (6) (0) (0) (0) (6) (0) (0) (0)

4+ : Severe

^{1+ :} Slight Grade 2+ : Moderate 3+ : Marked < a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 17' 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 16 1+ 2+ 3+ 4+ (%) (%) (%) (%)
		V9 V9 V9	ties (ve) (ve)	(10) (10) (10)	(10) (10) (10)
Respiratory s	system}				
ung	hemorrhage	<10> 3 1 0 0 (30) (10) (0) (0)	3 0 0 0 (27) (0) (0) (0)	<17> 3 2 0 0 (18) (12) (0) (0)	3 1 0 0 (19) (6) (0) (0)
	inflammatory infiltration	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	bronchiolar-alveolar cell hyperplasia	1 0 0 0 (10) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)
	uremic pneumonitis	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (9) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)
lematopoietic	c system)				
one marrow	congestion	<10> 1 0 0 0 (10) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	<16> 1 0 0 0 (6) (0) (0) (0)
	hemorrhage	0 0 0 0 0 (0) (0)	2 0 0 0 (18) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (6) (6) (0) (0)
	inflammatory infiltration	1 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
a > b c)	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤				

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 4

		Group Name Control No. of Animals on Study 10	625 ppm 11	1250 ppm 17	2500 ppm 16
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
dematopoletic	c system)				
one marrow	granulation	<10> 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<17> 0 1 0 0 (0) (6) (0) (0)	<16> 0 0 0 0 (0) (0) (0) (0)
	increased hematopoiesis	0 2 1 0 (0) (20) (10) (0)	1 1 0 0 (9) (9) (0)	3 2 0 0 (18) (12) (0) (0)	2 3 1 0 (13) (19) (6) (0)
ymph node	hemorrhage	<10> < 10 < 0	<pre></pre>	<17> 1 0 0 0 (6) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	deposit of hemosiderin	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammatory infiltration	0 1 0 0 (0) (10) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)
spleen	deposit of hemosiderin	<10> 5 0 0 0 (50) (0) (0) (0)	<pre></pre>	<pre></pre>	\$ 2 0 0 (50) (13) (0) (0)
	inflammatory infiltration	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

b

a : Number of animals examined at the site b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

| STUDY NO. | : 0711 | | ANIMAL | : RAT | F344/DuCr|Cr|j [F344/DuCrj] | REPORT | TYPE | : AI | SEX | : MALE | |

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 10						625 p	pm 11			1250) ppm 17			2500 ppm 16				
rgan	Findings	Grade	1+	2+ %)	3+ (%)	4+ (%)	1 (%)	+ 2	+ 3-	+ 4+ (%)	1+(%)		2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)		
ematopoletio	c system)																			
leen	fibrosis:focal	. (0 0) (<10) 0 0) (0 0 0)	0 (0)	0 (0)	0)	<11> 0) (0)	0 (0)	0 (0)	(<17) 1 6) (> 0 0)	0 (0)	(0 0)	<1 0 (0)	6> 0 (0)	(
	extramedullary hematopoiesis	(1 10) (1	1 0) (1 10)	0 (0)	3 (27)	1 (9	0) (0)	0 (0)	3 (18)	(1	3 18) (1 6)	0 (0)	. (1 6)	1 (6)	(0)	(
irculatory s	system}																			
art	mineralization		0 0) (<10) 0 0) () 0 0)	0 (0)	0 (0)	1	<11> 0) (0)	0 (0)	0 (0)	(<17) 0 0) (> 0 0)	0 (0)	(0 0)	<1 0 (0)	6> 1 (6)	(
	myocardial fibrosis	(:	2 20) (1	1 0) (0 0)	0 (0)	3 (27)	1 (9	0) (0)	0 (0)	8 (47)	(1 6) (0 0)	0 (0)	(4	7 14)	1 (6)	0 (0)	(
tery/aort	mineralization	· ·	0 0) (<10) 0 0) (0	0 (0)	0 (0)	1 (9	<11> 0) (0)	0 (0)	0 (0)	{	<17) 0 0) (> 0 0)	0 (0)	(0 0)	<1 0 (0)	6> 0 (0)	
igestive sys	stem)																			
ngue	mineralization	(<10> 0 0) (0	0 (0)	1 (9)	0	<11> 0 (0)	0 (0)	0 (0)	(<17) 0 0) (0	0 (0)		0 0)	<1 0 (0)	6> 0 (0)	(

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

⟨a⟩ a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c: b / a * 100

Significant difference; *: P ≤ 0.05 **: P ≤ 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : MALE SEX

PAGE: 6

		Group Name Control No. of Animals on Study 10	625 ppm 11	1250 ppm	2500 ppm				
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	16 1+ 2+ 3+ 4+ (%) (%) (%) (%)				
(Digestive sy	vstem)								
tongue	arteritis	(10) 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<17> 1 0 0 0 (6) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)				
alivary gl	inflammation	0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0	(16) 1 0 0 0 (6) (0) (0) (0)				
tomach	ulcer:forestomach	<10> 2 2 0 0 (20) (20) (0) (0)	<pre></pre>	<17> 1 1 2 0 (6) (6) (12) (0)	<16> 3 2 1 0 (19) (13) (6) (0)				
	hyperplasia:forestomach	0 0 0 0 0 (0) (0)	2 0 0 0 (18) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 2 0 0 (13) (13) (0) (0)				
	erosion:glandular stomach	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (9) (9) (0) (0)	4 0 0 0 (24) (0) (0) (0)	0 0 0 0 0 (0) (0)				
	ulcer:glandular stomach	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (6) (0) (0) (0)	0 0 0 0 0 (0) (0)				
	mineralization:glandular stomach	0 0 0 0 0 (0) (0)	0 1 0 0	0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (6) (0) (0)				

Grade

1+ : Slight

3+ : Marked 2+ : Moderate

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

> Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study

0rgan	Findings	No. of Animals on Study Grade (1+ %)	2+ (%)	(%)	+ 4	+		1+ (%)	(11 2+ (%)	3· (%)	+) 	4+ (%)		1+ (%)	2 (%	17 +)	3+ (%)	4 (%	+)	1 (%	+ 6)	2+ (%)	16 + 	3+ (%)	4+ (%)	
{Digestive sy	stem)																											
small intes	ulcer	()) (O	<1+ 0 0)	0> 0 (0)	0 (0)		ſ	0 0)	(<11 0 0)) 1 (9)) (0 0)	(0 0)	(0	<17)) () 0 0)	0 (0))	())) (0 (0)	(16>	0 0)	0 (0)	
	erosion	()))) (0 0)	0 (0)	0 (0)		(0 0)	(0 0)	0 (0)) (0 0)	(1 6)	(0) (0 0)	(0))	(())) (0 (0)	(0 0)	0 (0)	
large intes	ulcer	(())) (<11 0 0)	0> 0 (0)	0 (0)		(0 0)	(<11 0 0)) 0 (0)) (0 0)	(1 6)	(0	<17) } () 0 0)	0 (0)))) J) (0 (0)	<16>	0 0)	0 (0)	
liver	herniation	(10	I O) (<10 0 0)	0> 0 (0)	0 (0)		(1 9)	(<11 0 0)) 0 (0)	(0 0)	(2 12)	(0	<17)) () () ()	0 (0))	3 (1§	} }} (0 (0)	(16>	0 0)	0 (0)	
	necrosis: focal	(())) (1 10)	0 (0)	0 (0)		(0 0)	{	0 0)	0 (0)	(0 0)	(0 0)	(0) (0 0)	(0))	2 (13	: 3) (0 (0)	ŗ	0 0)	0 (0)	
	fatty change:central	. (())) (0 0)	0 (0)	(0)		(0 0)	(0 0) (0 (0)	(0 0}	(0 0)	3 (18) (0 0)	(0))	1 (6	j) (0 (0)	(0 0)	0 (0)	
	fatty change:peripheral	(())) (1 10)	0 (0)	(0)		(0 0)	(0 0) (0 (0)	(0 0)	(0 0)	(0) (0 0)	(0))	(C))) (0 ()	(0 0)	0 (0)	

Grade

1+ : Slight

3+ : Marked

4+ : Severe

< a >

2+ : Moderate

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

		Group Name Control No. of Animals on Study 10	625 ppm . 11	1250 ppm 17	2500 ppm 16			
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)			
(Digestive	system)							
liver	mineralization	<10> 0 0 0 0 (0) (0) (0) (0)	(11) 1 0 0 0 (9) (0) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 0 0 0 0 0 0			
	granulation	8 0 0 0 (80) (0) (0) (0)	5 1 0 0 (45) (9) (0) (0)	10 0 0 0 (59) (0) (0) (0)	11 1 0 0 (69) (6) (0) (0)			
	acidophilic cell focus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (6) (6) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)			
	basophilic cell focus	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)			
	spongiosis hepatis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (6) (0) (0) (0)	0 0 0 0 0 (0) (0)			
	bile duct hyperplasia	8 0 0 0 (80) (0) (0) (0)	10 0 0 0 (91) (0) (0) (0)	14 0 0 0 (82) (0) (0) (0)	15 0 0 0 (94) (0) (0) (0)			
	focal fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (6) (6) (7)			
ancreas	atrophy	<10> 1 0 0 0 (10) (0) (0) (0)	<11> 0 0 0 0 0 0 0 0 0 0 0	<17> 2 0 0 0 (12) (0) (0) (0)	<16> 0 0 0 0 0 (0) (0) (0)			

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

⟨ a ⟩ a : Number of animals examined at the site

b b : Number of animals with lesion

⟨ c ⟩ c : b / a * 100

Significant difference ; * : P ≤ 0.05 ** : P ≤ 0.01 Test of Chi Square

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1 SEX : MALE

PAGE: 9 Group Name 625 ppm 1250 ppm 2500 ppm Control No. of Animals on Study 10 - 11 17 16 2+ 1+ 3+ 1+ 2+ 3+ 2+ 3+ 2+ 3+ 4+ Organ . Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Digestive system) pancreas inflammatory infiltration 1 0 (0)(0)(0)(0) (0) (9) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) islet cell hyperplasia 0 0 2 0 (0)(0)(0)(0) (0)(0)(0)(0) (12) (0) (0) (0) (0)(0)(0)(0) {Urinary system} kidney <10> ⟨11⟩ <17> <16> hyaline droplet 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (6) (0) (0) (0) inflammatory infiltration (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (6) (0) (0) (0) scar (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (6) (0) (0) (0) chronic nephropathy (50) (0) (30) (0) (55) (9) (9) (0) (29) (29) (18) (0) (31) (25) (6) (19) papillary necrosis (0)(0)(0)(0) (0) (0) (0) (0) (6) (0) (0) (0) (44) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site b

b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 16 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary syst	em}				
i dney	mineralization:papilla	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (9) (0) (0)	\(\lambda 17 \rangle \) 1	<16> 0 0 0 0 0 0 0 0 0 0
	mineralization:cortex	0 0 0 0 0 (0) (0) (0)	0 0 1 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	1 0 0 0 (9) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	dilated pelvis	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (0) (0)	0 0 0 0 0 (0) (0)
	deposit of brown pigment	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (12) (0) (0) (0)	5 0 0 0 (31) (0) (0) (0)
in bladd	dilatation	0 0 1 0 0 0) (10) (0)	<11> 0 0 2 0 0 0 (0) (18) (0)	<17> 0 0 1 0 0 0) (6) (0)	<16> 0 0 0 0 (0) (0) (0) (0)
	hemorrhage	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 1 0 0 (0) (6) (0) (0)	0 0 0 0 0 (0) (0)
	inflammation	0 0 1 0 (0) (0) (10) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c:b/a * 100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 11

		Group Name No. of Animals on Study		10			•		11				7			25	00 pp 1	6	
gan	Findings		1+ %) (2+ (%) 	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	(%)
rinary syst	tem)																		
in bladd	papillary and/or nodułar hyperplasia	()	0 0) (<10> 0 0) (0 0) (0 (0)	0 (0)	(0)	11> 1 (9)	0 (0)	0 (0)	(0)	7> 0 (0)	0 (0)	(0 0) (<1 0 0)	6> 0 (0)	0 (0)
Endocrine sy	vstem)																		
tuitary	cyst	(10	1 0) (<10> 0 0) (0 0) (0 (0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)	(0)	7> 0 (0)	0 (0)	(0 0) (<1 0 0)	6> 0 (0)	0 (0)
	hyperplasia	()	0 0) (0 0) (0 (0)	0	(9)	(0)	0 (0)	0 (0)	1 (6)	2 (12)	1 (6)	0 (0)	(1 6) (0 0)	0 (0)	(0)
	Rathke pouch	((0 0) (0 0) (0 0) (0 0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)	0 (0)	(0)	0 (0)	(1 6) (0 0)	0 (0)	(0)
hyroid	ultimobranchial body remanet	((0 0) (<10> 0 0) (0 (0)	0	(0)	(0)	0 (0)	0 (0)	1 (6)	<1 0 (0)	7> 0 (0)	0 (0)	ſ	0 0) (<11 0 0)	6> 0 (0)	0 (0)
	follicular hyperplasia	((O) (0 0) (0 (0) (0	0 (0)	0 (0)	0 (0)	0 (0)	1 (6)	1 (6)	0 (0)	0 (0)	(0 (0) (0 0}	0 (0)	0 (0)

b : Number of animals with lesion

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

		Group Name No. of Animals on Study	Contro	I 10		6	25 ppi	1 1		1:	250 ppn 17	1			2500 p	pm 16	
lrgan	Findings	Grade 1+ (%)	2+		4+ (%)	1+	2+ (%)		4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)		. 31	
(Endocrine sy	stem)																
thyroid	C-cell hyperplasia	1 (10)	(10)	10> 0 (0)	0 (0)	2 (18)	(0) (0)	0 (0)	0 (0)	2 (12)	<17 0 (0)	'> 0 (0)	0 (0)	0 (0)	0 (0)	(16> 0 (0)	0 (
parathyroid	hyperplasia	(0)	(0)	10> 0 (0)	0 (0)	0 (0)	(0) (0)	1> 0 (0)	0 (0)	0 (0)	<17 0 (0)	'> 0 (0)	0 (0)	1 (6)	(0)	(16> 0 (0)	0
adrena I	lymphocytic infiltration	0 (0)	(0)	10> 0 (0)	0 (0)	0 (0)	(0) (0)	0 (0)	0 (0)	0 (0)	<17 0 (0)	'> 0 (0)	0 (0)	1 (6)	0 (0)	(16> 0 (0)	0)
	hyperplasia:medulla	0 (0)	1 (10)	0 (0)	0 (0)	(0)	1 (9)	0 (0)	0 (0)	0 (0)	2 (12)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0
	focal fatty change:cortex	0 (0)	0 (0)	0 (0)	0 (0)	1 (9)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0
{Reproductive	system)																
testis	mineralization	0 (0)	(0)	0 (0)	0 (0)	1 (9)	<1 0 (0)	1> 0 (0)	0 (0)	0 (0)	<17 0 (0)	> 0 (0)	0 (0)	0 (0)	(0)	(16> 0 (0)	0 (0

< a >

a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) . c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 13

•	5. ··	Group Name Control No. of Animals on Study 10 Grade 1+ 2+ 3+ 4+	625 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 16 1+ 2+ 3+ 4+
rgan	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
Reproductiv	e system)				
testis :	interstitial cell hyperplasia	<10> 5 0 0 0 (50) (0) (0) (0)	4 0 0 0 (36) (0) (0) (0)	<17> 4 0 0 0 (24) (0) (0) (0)	<16> 5 0 0 0 (31) (0) (0) (0)
semin ves	inflammation	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	<16> 0 0 0 0 (0) (0) (0) (0)
rostate	hemorrhage	0 0 0 0 (0) (0) (0) (0)	(11) 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (6) (0) (0)	<16> 0 0 0 0 (0) (0) (0) (0
	inflammation	2 1 0 0- (20) (10) (0) (0)	2 2 0 0 (18) (18) (0) (0)	4 0 0 0 0 (24) (0) (0) (0)	3 1 0 0 (19) (6) (0) (0
	hyperplasia	1 0 0 0 0 (10) (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
(Nervous syst	tem)				
orain	hemorrhage		<11> 0 0 0 0 0 0 0 0 0 0 0 0 0	<17> 0 0 0 0 0 (0) (0) (0)	<16> 0 1 0 0 (0) (6) (0) (0)

b : Number of animals with lesion

(c) c: b/a * 100 Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 14

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 16 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Nervous syste	em}				
spinal cord	hemorrhage	(10) 1 0 0 0 (10) (0) (0) (0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<16> 0 0 0 0 (0) (0) (0) (0)
{Special sense	e organs/appendage)				
еуе	inflammatory infiltration	<10> 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0	\(\lambda 17 \rangle \) \[1 0 0 (6) (0) (0) (0) \]	(16) 0 0 0 0 (0) (0) (0) (0)
	cataract	0 1 0 0 (0) (10) (0)	1 0 0 0 (9) (0) (0) (0)	0 1 0 0 (0) (0)	1 0 0 0 (6) (6) (7)
	retinal atrophy	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 1 0	2 1 0 0 (13) (6) (0) (0)
	keratitis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	1 0 0 0 (6) (0) (0) (0)	2 1 0 0 (13) (6) (0) (0)
	iritis	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 1 0
Harder gl	lymphocytic infiltration	(10) 0 0 0 0 (0) (0) (0) (0)	<11> 1 0 0 0 (9) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0	<16> 1 0 0 0 (6) (0) (0) (0)

4+ : Severe

^{1+:} Slight 2+: Moderate 3+: Ma a: Number of animals examined at the site b: Number of animals with lesion Grade 3+ : Marked

< a >

b

⁽c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : MALE

Organ	N	roup Name Control o. of Animals on Study 10 rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 16 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Special sens	se organs/appendage)				
Harder gl	hyperplasia	(10) 0 0 0 0 (0) (0) (0) (0)	(11) 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 (0) (0) (0) (0)	<16> 1 0 0 0 (6) (0) (0) (0)
(Musculoskele	etal system)				
muscle	atrophy	<10> 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<17> 1 0 0 0 (6) (0) (0) (0)	<16> 1 0 0 0 (6) (0) (0) (0)
	mineralization	0 0 0 0 0 (0) (0)	1 0 0 0 0 (9) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)
oone	fracture	<10> 0 0 0 0 (0) (0) (0) (0)	<11> 0 1 0 0 (0) (9) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)
	osteosclerosis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Body cavitie	las				
peritoneum	inflammation	<10> 1 0 0 0 (10) (0) (0) (0)	<pre></pre>	<17> 0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)
<a>> b (c)	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤				

TABLE M 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: SACRIFICED ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

SEX : MALE PAGE: 1

		Group Name No. of Animals on Study	Contro	l 40		6:	25 ppm 39	o o		12	250 pg	om 33			250	0 ppm 34		
rgan	Findings	Grade 1	+ 2+	3+	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)		4+ (%)		1+ (%)	2+ (%)	3+ (%)	4 (%
Integumentar	y system/appandage																	
kin/app	epidermal cyst	0 (0)	1 1 (3)	40> 0 (0)	0 (0)	0 (0)	<3! 0 (0)	9> 0 (0)	0 (0)	0 (0)	<3 0 (0)	33> 0 (0)	0 (0)	(0 0) (<342 0 0) () 0 0)	0 (0)
ubcutis	inflammation	0 (0)	(0 (0)	40> 0 (0)	0 (0)	0 (0)	<3! 0 (0)	9> 0 (0)	0 (0)	0 (0)	<3 0 (0)	33> 0 (0)	0 (0)	(0 0) (<34) 1 3) (> 0 0)	0 (0)
	fibrosis	. 0	0 (0)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (Ö)	0	0 (0)	0 (0)	(0 0) (0 (0 0)	0)
	epidermal cyst	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(1 3) (0 (0 0)	0)
tespiratory	system)																	
asal cavit	thrombus	1 (3)	0 (0)	40> 0 (0)	0 (0)	1 (3)	<3! 0 (0)	9> 0 (0)	0 (0)	0 (0)	<3 0 (0)	33> 0 (0)	0 (0)	(1 3) (<342 0 0) () 0 0)	0 (0)
	mineralization	28 (70)	0 (0)	0 (0)	0 (0)	33 (85)	0 (0)	0 (0)	0 (0)	23 (70)	0 (0)	0 (0)	0 (0)	2 (8	8 2) (0 (0 0)	0 (. 0

a : Number of animals examined at the site b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT

: 0/11

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 2 Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 40 39 33 34 2+ 1+ 2+ 3+ 2+ 2+ 3+ Grade 3+ 3+ Organ_ (%) (%) Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (Respiratory system) nasal cavit eosinophilic change:olfactory epithelium 0 0 3 (88) (10) (3) (0) (77) (10) (0) (0) (85) (9) (0) (0) (79) (21) (0) (0) eosinophilic change:respiratory epithelium (8) (0) (0) (0) (0)(0)(0)(0) (6) (0) (0) (0) (3) (0) (0) (0) inflammation:foreign body 0 10 0 (33) (5) (0) (0) (51) (5) (0) (0) (29) (9) (0) (0) (30) (12) (0) (0) inflammation:respiratory epithelium 0 11 6 (20) (3) (0) (0) (23) (0) (0) (0) (33) (0) (0) (0) (18) (0) (0) (0) respiratory metaplasia:olfactory epithelium 0 (13) (0) (0) (0) (5) (0) (0) (0) (6) (0) (0) (0) (0)(0)(0)(0) respiratory metaplasia:gland 28 (80) (0) (0) (0) (79) (0) (0) (0) (85) (0) (0) (0) (82) (0) (0) (0) larynx **<40>** ⟨39⟩ ⟨33⟩ <34> cyst 0 0 0 0 0 0 (3) (0) (0) (0) (0)(0)(0)(0) (0) (0)(0)(0)(0) inflammation (0) (0) (0) (0) (0) (0) (0) (0) (3) (0) (0) (0) (3) (0) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

⁽a) a: Number of animals examined at the site

b b: Number of animals with lesion (c) c: b/a * 100

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

SEX : MALE

PAGE: 3

		Group Name Control No. of Animals on Study 40		625 ppm 39	1250 ppm 33	2500 ppm 34
Organ	Findings	Grade 1+ 2+	3+ 4+ (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	v system)					
larynx	inflammation:foreign body	(40) 1 0 (3) (0) (0 0 0) (0)	<39> 0 0 0 0 (0) (0) (0) (0)	<333> 0 0 0 0 (0) (0) (0) (0)	<34> 1 0 0 0 (3) (0) (0) (0)
trachea	inflammation:foreign body	<40> 0 0 (0) (0) ((0 0 0) (0)	<pre></pre>	<33> 0 0 0 0 (0) (0) (0) (0).	34> 1 0 0 0 (3) (0) (0) (0)
ung	congestion	(40) 1 0 (3) (0) (0 0 0) (0)	39> 1 0 0 0 (3) (0) (0) (0)	33> 1 0 0 0 (3) (0) (0) (0)	<34> 0 0 0 0 0 0 0 0 0 0
	hemorrhage	0 0 (0 0 0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)
	inflammatory infiltration	1 0 (0 0 0) (0)	2 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	ossification	0 0 (0 0 0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
	accumulation of foamy cells	2 0 ((5) (0) (0	0 0 0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0) (0)	4 0 0 0 (12) (0) (0) (0)

Grade < a > b

4+ : Severe

1+ : Slight 2+ : Moderate 3+ : Marked a : Number of animals examined at the site

b : Number of animals with lesion

c : b / a * 100

(c)

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

STUDY NO. : 0711

ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

4+ : Severe

REPORT TYPE : A1

MALE PAGE: 4 Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 40 39 33 34 2+ 1+ 2+ 3+ 2+ 3+ 2+ 3+ 4+ Organ____ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Respiratory system) lung bronchiolar-alveolar cell hyperplasia 5 0 0 0 0 1 0 1 0 0 (10) (0) (3) (0) (13) (3) (0) (0) (15) (0) (0) (0) (Hematopoietic system) bone marrow <40> congestion 0 0 0 0 0 0 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0) granulation 0 0 (3) (0) (0) (0) (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) increased hematopoiesis 7 5 2 0 8 4 1 0 11 2 0 0 (18) (13) (5) (0) (21) (10) (3) (0) (33) (6) (0) (0) (18) (6) (3) (0) spleen <40> ⟨33⟩ congestion 0 0 0 0 0 0 0 0 0 0 0 (3) (0) (0) (0) (3) (0) (0) (0) (3) (0) (0) (0) (6) (0) (0) (0) deposit of hemosiderin 7 0 0 0 1 0 0 0 5 0 0 0 4 0 0 0 (18) (0) (0) (0) (3) (0) (0) (0) (15) (0) (0) (0) (12) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

a : Number of animals examined at the site < a >

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

b

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrICrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

SEX : MALE

PAGE: 5

Organ	Findings	Group Name Control No. of Animals on Study 40 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 34 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoieti	ic system)				
spleen	fibrosis:focal	<40> 0 0 0 0 (0) (0) (0) (0)	39> 1 2 0 0 (3) (5) (0) (0)	<33> 1 0 1 0 (3) (0) (3) (0)	34> 0 0 0 0 (0) (0) (0) (0)
	extramedullary hematopoiesis	20 2 0 0 (50) (5) (0) (0)	18 0 0 0 (46) (0) (0) (0)	12 1 0 0 (36) (3) (0) (0)	15 0 0 0 (44) (0) (0) (0)
(Circulatory	system)				
neart	thrombus	<40> 0 0 0 0 (0) (0) (0) (0)	<39> 1 0 0 0 (3) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)	<34> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	mineralization	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	15 0 0 0 (38) (0) (0) (0)	18 1 0 0 (46) (3) (0) (0)	16 1 0 0 (48) (3) (0) (0)	14 0 0 0 (41) (0) (0) (0)
	myocarditis	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)
(Digestive sy	vstem)				
oral cavity	squamous cell hyperplasia	<pre></pre>	39> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$. Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

		Group Name Control No. of Animals on Study 40	625 ppm 39	1250 ppm 33	2500 ppm 34
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sy	stem)				
tongue	lymphocytic infiltration	<40> 0 0 0 0 (0) (0) (0) (0)	<39> 0 0 0 0 (0) (0) (0) (0)	<33> 1 0 0 0 (3) (0) (0) (0)	34> 0 0 0 0 (0) (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
alivary gl	inflammation	<40> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	34> 0 0 0 0 (0) (0) (0) (0)
tomach	ulcer:forestomach	(40) 1 0 0 0 (3) (0) (0) (0)	39> 0 0 1 0 (0) (0) (3) (0)	33> 0 0 0 0 0 0 0 0	0 0 1 0 (0) (0) (3) (0)
	hyperplasia:forestomach	0 0 0 0 0 (0) (0)	2 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (0) (3) (0) (0)
	erosion:glandular stomach	5 0 0 0 (13) (0) (0) (0)	5 0 0 0 (13) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	5 0 0 0 (15) (0) (0) (0)
a.	ulcer:glandular stomach	0 0 0 0 0 (0) (0)	3 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade

^{1+ :} Slight

^{2+ :} Moderate

^{3+ :} Marked

^{4+ :} Severe

< a >

a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c: b / a * 100 Significant difference; *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 7

		Group Name Control No. of Animals on Study 40	625 ppm 39	1250 ppm 33	2500 ppm 34
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive					
iver	herniation	<40> 4 0 0 0 (10) (0) (0) (0)	3 0 0 0 (8) (0) (0) (0)	<33> 2 0 0 0 (6) (0) (0) (0)	34> 4 0 0 0 (12) (0) (0) (0)
	necrosis:central	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (5) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:peripheral	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration	1 0 0 0 (3) (0) (0) (0)	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	granulation	31 1 0 0 (78) (3) (0) (0)	32 0 0 0 (82) (0) (0) (0)	31 0 0 0 (94) (0) (0) (0)	31 0 0 0 (91) (0) (0) (0)
	inflammatory cell nest	1 0 0 0 (3) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0
	clear cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)

Grade < a >

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 8

		Group Name Control No. of Animals on Study 40 Grade 1+ 2+ 3+ 4+	625 ppm 39	1250 ppm 33 1+ 2+ 3+ 4+	2500 ppm 34
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive :	system)				
liver	acidophilic cell focus	\(\langle 40 \rangle \) 18	(39) 19 0 0 0 (49) (0) (0) (0)	33> 13 1 0 0 (39) (3) (0) (0)	\(\lambda 34 \rangle \) 11
	basophilic cell focus	2 0 0 0 (5) (0) (0) (0)	3 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	spongiosis hepatis	7 0 0 0 (18) (0) (0) (0)	6 0 0 0 (15) (0) (0) (0)	3 0 0 0	0 0 0 0 *
	bile duct hyperplasia	40 0 0 0 (100) (0) (0) (0)	39 0 0 0 (100) (0) (0) (0)	33 0 0 0 (100) (0) (0) (0)	34 0 0 0 (100) (0) (0) (0)
	cholangiofibrosis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	biliary cyst	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	focal fatty change	2 0 0 0 (5) (5) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (3) (0) (0)
pancreas	atrophy	<40> 7 1 0 0 (18) (3) (0) (0)	<39> 10 0 0 0 (26) (0) (0) (0)	<33> 6 0 0 0 (18) (0) (0) (0)	<34> 4 2 0 0 (12) (6) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study		ntrol 4	10					625	ppm 39	9				1	250	ppm 33					250	0 pp 3			
Organ	Findings	Grade	1+ (%)	2+ (%)	.3 (%	(† ()	4+ (%)		1+ (%)		2+ (%)	3- (%)	+	4+ (%)		1+ (%)	(9	+	3+ (%)	4+ (%)		1+ (%)		2+ (%)	(%)		4+ (%)
{Digestive s	system)																										
pancreas	inflammatory infiltration	(0 0) (<4 0 0)	(0) (0 0)	(0 0)	(<3! 0 0)	9> 0 (0)	(0 0)	(0 0)	(<33)) (0	0 (0)	(1 (3)		<3 0 0)	4> 0 (0)		0 0)
	arteritis	(0 0) (0 0)	0)	· ·) (0 0)	(. O)	(1 3)	0 (0)	(0 0)	(0 0)	(() (0 0)	0 (0)	(0 (0)	(0 0)	0 (0)) (0 0)
	basophilic cell focus	(0 0) (0 0)	(0) (0 0)	(0 0)	(0 0)	0 (0)	(0	(0 0)	(() (0 0)	0 (0)	(1 3)	(0 0)	0 (0)	(0 0)
	islet cell hyperplasia	ţ	1 3) (0 0)	(0		0 0)	(3 8)	(1 3)	0 (0)	(0 0)	(1 3)	(3) (0 0)	0 (0)	(0	(0 0)	0 (0)	(0 0)
(Urinary sys	tem)																										
k i dney	eosinophilic body		1 3) (<4 0 0)	(0) (0)) (0 0)	(1 3)	(<39 0 0)	9> 0 (0)	(0 0)	(1 3)	(0	<33>) (0	0 (0)	(2 6)	(<3 0 0)	4> 0 (0)	+ {	0 0)
	scar ·	(0 0) (1 3)	(0) (0 0)	(0 0}	(0 0)	0 (0)	(0 0)	(0 0)	(0) (0 0)	0 (0)	(0 0)	(0 0)	0 (0)	(0 0)
	chronic nephropathy			11 28)	7 (18		0 0)	(13 33)	(;	15 38)	8 (21)	(3 8)	(9 27)	12 (36) (11 33)	1 (3)	((-		11 (32)	(0 * 0)
Grade (a > b (c) Significant	1+: Slight 2+: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:	3+ : Marked 4+ : Sev he site P ≦ 0.01 Test of Chi Sq															-										

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : MALE

		Group Name Control No. of Animals on Study 40	625 ppm	1250 ppm	2500 ppm
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	34 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary sys	tem)				
kidney	papillary necrosis	<40> 0 0 0 0 (0) (0) (0) (0)	39> 0 0 0 0 0 0 0 0	<pre></pre>	34> 12 0 0 0 ** (35) (0) (0) (0)
	mineralization:papilla	0 0 0 0 0 (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0 (3) (3) (6) (6)
	mineralization:pelvis	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0 0 (3) (0) (0)
	deposit of brown pigment	0 0 0 0 0 (0) (0)	4 0 0 0 0 (10) (10) (10)	2 0 0 0 0 (6) (6) (0) (0)	22 0 0 0 *** (65) (0) (0) (0)
urin bladd	papillary and/or nodular hyperplasia	<40> 0 0 0 0 (0) (0) (0) (0)	<39> 0 0 0 0 (0) (0) (0) (0)	<33> 1 0 0 0 (3) (0) (0) (0)	<34> 0 0 0 0 (0) (0) (0) (0)
(Endocrine sy	ystem}				
pituitary	atrophy	<40> 0 0 0 0 (0) (0) (0) (0)	39> 1 0 · 0 0 (3) (0) (0) (0)	33> 0 0 0 0 0 0 0 0	<34> 0 0 0 0 0 0 0 0 0 0 0
Grade <a>> b (c) Significant o	a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100				

STUDY NO. : 0711

ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 40 Grade 1+ 2+ 3+ 4 (%) (%) (%) (%	625 ppm 39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 34 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Endocrine sy	ystem}				
pituitary	angiectasis	<40> 2 0 0 0 (5) (0) (0) (0	0 0 0 0 (0) (0) (0) (0)	33> 0 0 0 0 0 0 0 0	34> 0 1 0 0 (0) (3) (0) (0)
	cyst	3 1 0 0 (8) (3) (0) (0	0 0 0 0 0 (0) (0) (0)	4 0 0 0 (12) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
	hyperplasia	9 1 0 0 (23) (3) (0) (0	8 5 0 0 (21) (13) (0) (0)	3 2 0 0 (9) (6) (0) (0)	6 2 0 0 (18) (6) (0) (0)
	Rathke pouch	2 0 0 0 (5) (0) (0) (0	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
	aberrant craniopharyngeal tissue	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
thyroid	ultimobranchial body remanet	(40) 1 0 0 0 (3) (0) (0) (0	39> 0 0 0 0 (0) (0) (0) (0)	33> 0 0 0 0 0 0 0	<34> 0 0 0 0 0 0 0 0 0 0 0
	follicular hyperplasia	0 0 0 0 0 (0) (0) (0)	2 0 0 0 (5) (6) (6)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
	C-cell hyperplasia	8 6 0 0 { 20} (15) { 0} (0)	7 3 1 0 (18) (8) (3) (0)	9 4 0 0 (27) (12) (0) (0)	5 5 0 0 (15) (15) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site
b : Number of animals with lesion < a > b

⁽c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 40 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 34 1+ 2+ 3+ 4+ (%) (%) (%)
{Endocrine s	ystem)				
thyroid	cystic thyroid follicle	<40> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	34> 2 0 0 0 (6) (0) (0) (0)
drenal	inflammatory infiltration	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0	39> 0 0 0 0 (0) (0) (0) (0)	33> 0 0 0 0 0 0 0 0	34> 1 0 0 0 (3) (0) (0) (0)
	hyperplasia:medulla	1 0 0 0 0 (3) (0) (0) (0)	2 1 0 0. (5) (3) (0) (0)	3 0 0 0 0 (9) (0) (0)	1 0 0 0 (3) (0) (0) (0)
	focal fatty change:cortex	4 0 0 0 (10) (0) (0) (0)	4 0 0 0 0 (10) (10) (10)	2 0 0 0 0 (6) (0) (0)	1 0 0 0 0 (3) (0) (0)
Reproductiv	e system)				
estis	mineralization	<40> 0 0 0 0 (0) (0) (0) (0)	39> 0 0 0 0 0 0 0 0	<pre></pre>	34> 1 0 0 0 (3) (0) (0) (0)
	interstitial cell hyperplasia	16 0 0 0 (40) (0) (0) (0)	17 1 0 0 (44) (3) (0) (0)	8 0 0 0 (24) (0) (0) (0)	9 0 0 0 (26) (0) (0) (0)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : MALE

		Group Name Control No. of Animals on Study 40	625 ppm 39	1250 ppm 33	2500 ppm 34
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
(Reproducti	ve system}				
prostate	· inflammation	<40> 7 1 0 0 (18) (3) (0) (0)	<pre></pre>	<33> 8 1 0 0 (24) (3) (0) (0)	5 0 0 0 (15) (0) (0) (0)
	hyperplasia	8 1 0 0 (20) (3) (0) (0)	7 0 1 0 (18) (0) (3) (0)	11 0 0 0 (33) (0) (0) (0)	8 1 0 0 (24) (3) (0) (0)
mammary gl	galactocele	<40> 0 0 0 0 (0) (0) (0) (0)	<39> 0 0 0 0 (0) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)	\(\lambda 4 \rangle \) 1
Nervous sy	stem				
pinal cord	hemorrhage	\(\langle 40 \rangle \) \(1 0 0 0 \) \((3) (0) (0) (0) (0) (0)	<pre></pre>	<pre></pre>	34> 1 0 0 0 (3) (0) (0) (0)
Special sei	nse organs/appendage}				
ye	cataract	<40> 0 2 3 0 0 0 5 (8) (0)	39> 1 2 3 0 (3) (5) (8) (0)	<pre></pre>	34> 1 0 2 0 (3) (0) (6) (0)
Grade (a > b (c) Significant	1+: Slight 2+: Moderate a: Number of animals examined at b: Number of animals with lesion c: b/a * 100 difference; *: P ≤ 0.05 **				

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : MALE

PAGE: 14

		Group Name No. of Animals on Study	ontrol 40	n		62	25 pi	om 39		1	250	ppm 33			25	00 pr	om 34		
Organ	Findings	Grade 1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2- (%)	+ 3+ (%)	4+ (%)	1+ (%)	2 (%	+ 3·) (%)	† 4† (%)	1 (%)	+ ()	2+ (%)	3; (%)	+) 	4+ (%)
(Special sens	se organs/appendage}																		
eye	retinal atrophy	6 (15)	<40 6 (15)	0> 4 (10)	0 (0)	3 (8)	2 (5)	(39) 5 (13)	0 (0)	4 (12)	3 (9	<33> 5) (15)	0 (0)	8 (24)) (<3 2 6)	34> 3 (9)) (0 0)
	keratitis	1 (3)	0 (0)	1 (3)	0 (0)	4 (10)	2 (5)	0 (0)	0 (0)	3 (9)	1	0 (0)	0 (0)	(())) (0 0)	(0)) (0 0)
	iritis	2 (5)	0 (0)	1 (3)	0 (0)	(0)	1 (3)	(0)	0 (0)	1 (3)	0)	0 (0)	0 (0)	(0))) (0 0)	(0)) (0 0)
Harder gl	lymphocytic infiltration	1 (3)	<40 0 (0)	0 (0)	0 (0)	2 (5)	0 (0)	(39> 0 (0)	0 (0)	2 (6)	(0	<33> 0) (0)	0 (0)	2 (6	: i) (<3 0 0)	34> 0 (0)) (0 0)
(Musculoskele	etal system}																		
muscle	atrophy	0 (0)	<40 0 (0))> 0 (0)	0 (0)	2 (5)	0 (0)	(39) 0 (0)	0 (0)	0 (0)	0)	<33> 0) (0)	0 (0)	0 () } (<3 0 0)	(0)) (0 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe < a > a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

TABLE M 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 20

	Group N	ame Control Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
rgan	Findings	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Integumentar	y system/appandagel				
subcutis	phlegmone	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)
	fibrosis	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Respiratory	system)				
asal cavit	thrombus	<50> 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	\(\langle 50 \rangle \) \[1 0 0 0 \\ (2) (0) (0) (0) \]
	mineralization	29 0 0 0 (58) (0) (0) (0)	28 0 0 0 (56) (0) (0) (0)	31 0 0 0 (62) (0) (0) (0)	21 0 0 0 (42) (0) (0) (0)
	rhinitis	0 0 1 0 (0) (2) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	eosinophilic change:olfactory epithelium	6 32 10 0 (12) (64) (20) (0)	16 29 4 0 (32) (58) (8) (0)	9 36 4 0 (18) (72) (8) (0)	2 20 23 0 ; (4) (40) (46) (0)
	eosinophilic change:respiratory epithelium	12 0 0 0 (24) (0) (0) (0)	9 0 0 0 (18) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	20 0 0 0 (40) (0) (0) (0)

\(\alpha \) a: Number of animals examined at the site
b: Number of animals with lesion
(c) c: b / a * 100
Significant difference; *: P \(\leq 0.05 \) **: P \(\leq 0.01 \) Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 21

		Name Co of Animals on Study	ntrol 50			6	25 pr	om 50				125	nqq 0				25	100 pg	om 50		
rgan	Findings		2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	+ :	3+ 6)	4+ (%)	1 1 (%)		2+ (%)	3+ (%)	4+ (%)		1+ %)	2+	3 (%)		4+ (%)
Respiratory	system)																				
asal cavit	inflammation:foreign body	. 6 (12) (<50) 2 4) (0 0)	0 (0)	2 (4)	2 (4)	(50> ())) (0 0)	1 (2)	(<50 1 2))> 0 (0)	0 (0)	(3 6)	<br 2 (4)	50> 0 (0)		0 0)
	inflammation:respiratory epithelium	11 (22) (0 (0	0 (0)	8 (16)	1 (2)	(())} (0 0)	8 (16)	(0 0) (0 (0)	0 (0)	(1	5 0)	0 (0)	(0)	(0 0)
	respiratory metaplasia:olfactory epithelium	2 (4) (0 (0 0)	0. (0)	1 (2)	0 (0)	(())) (0 0)	1 (2)	ſ	0 0) (0 (0)	0 (0)	(1 2)	0 (0)	(0)	+ (0 0)
	respiratory metaplasia gland	48 (96) (0 0) (0 0)	0 (0)	50 (100)	0 (0)	(())) (0 0)	48 (96)	(0 0) (0 (0)	0 (0)	4 (9	6 2) +	0 (0)	(0)	(0 0}
	squamous cell metaplasia:transitional epit	nelium 0 (0)(0 (0 0)	0 (0)	1 (2)	0 (0)	(())} (0 0)	1 (2)	(0 0) (0 (0)	0 (0)	(0 0) (0 ()	(0)	(0 0)
asopharynx	inflammation:foreign body	1 (2) {	<50) 0 0) (1	0 (0)	0 (0)	0 (0)	(50> ())) (0 0)	0 (0)	(<50 0 0) (0 ()	0 (0)	()	1 2) (1	50> 0 (0)	(0 0)
ırynx	inflammation	0 (0) (<50) 0 0) (0	0 (0)	2 (4)	0	(50> ())) (0 0)	3 (6)	(<50 0 0) (> 0 (0)	0 (0)	;	3 6) (0	50> 0 (0)	(0 0)

< a >

a : Number of animals examined at the site

b: Number of animals with lesion

b (c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 22

		Group Name No. of Animals on Stud Grade		ontrol 5 2+	0 3+	4	+	1		ppm 5(2+) 3+		4+		12 1+	50 pr 50 2+	m 0	l +	4+	1	25 +	00 p	50	3+	4+
gan	Findings	· · · · · · · · · · · · · · · · · · ·	(%)	(%)	(%)	(%)		(%)		(%)	(%)		(%)		(%)	(%)	(%		(%)	(9)		(%)		(%)	(%)
espiratory :	system)																								
rynx	inflammation:foreign body	(0	<50 0 (0)	0	(0)		(0)) (<5(0 0))> 0 (0)	ţ	0 0)	(1 2)	(5 0 0 0)	0> 0 (0) (0 0)	(2		0		0 0)	0 (0)
ing	congestion	(1 2)	<50 1 (2)	0	0 (0)		0 (0)) (<50 0 0))> 0 (0)		0 0)	ſ	2 4}		0> 0 (0		0 0)	(10		0		0 0) (0 (0)
	hemorrhage	(0 0)	0 (0)	0 (0)	(0))	0 (0)) (1 2)	0 (0)	(0 0)	(1 2)	0 0)	(0) (0 0)	(())) (1 2)	(0 0) (0 (0)
	inflammatory infiltration	(3 6)	0 (0)	0 (0)	0 (0)	١	1 (2)) {	1 2)	0 (0)	(0 0)	(0 0)	0 0)	(0) (0 0)	1	!) (0 (0)	(0 0) (0 (0)
	accumulation of foamy cells	(4 8)	0 (0)	0 (0)	(0)	•	2 (4)) (0 0)	(0)	(0 0)	ĺ	1 2) (0 0)	0 (0))} (0 0)	; ((} i) (0 0)	{	0 0) (0 (0)
	bronchiolar-alveolar cell hyperplasia	(2 4)	0 (0)	0 (0)	0 (0)		0 (0)) (0 0)	0 (0)	(0 0)	(0 0) (1 2)	1 (2) (0 0)))} (1 2)		0 0) (0 (0)
	uremic pneumonitis	(0	0 (0)	0 (0)	0 (0)		0 (0)) (0 0)	0 (0)	(0 0)	(0 0) (0 0)	0 (0) (0 0)	1 (2		0 0)		0 0) (0 (0)
lematopoietio	: system}																								
ne marrow	hemorrhage	(0	<56 0 (0)	0	0 (0)		1 (2)		<50 0 0)		(0 0)	(O O) (<5 0 0)	0> 0 (0) (0 0)	1 (2		0		0 0) (0 (0)

(c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoietic	c system)				
oone marrow	granulation	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	3 0 0 0 (6) (0) (0) (0)
	increased hematopoiesis	5 4 3 0 (10) (8) (6) (0)	7 10 1 0 (14) (20) (2) (0)	3 0 7 0 (6) (0) (14) (0)	9 4 1 0 (18) (8) (2) (0)
hymus	inflammatory infiltration	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
pleen	congestion	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (·0)	<pre></pre>	\(\langle 50 \rangle \) 1
	deposit of hemosiderin	16 0 0 0 (32) (0) (0) (0)	17 0 0 0 (34) (0) (0) (0)	18 0 0 0 (36) (0) (0) (0)	21 0 0 0 (42) (0) (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)
	focal lymphoid hyperplasia	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe a : Number of animals examined at the site < a >

b b : Number of animals with lesion (c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX : FEMALE

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
)rgan		Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Hematopoleti	ic system)				
pieen	extramedullary hematopoiesis	<50> 16 4 0 0 (32) (8) (0) (0)	<50> 22 4 2 0 (44) (8) (4) (0)	<50> 16 4 1 0 (32) (8) (2) (0)	<pre></pre>
(Circulatory	system}				
heart	thrombus	<50> 1 0 1 0 (2) (0) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	lymphocytic infiltration	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	20 0 0 0 (40) (0) (0) (0)	24 0 0 0 (48) (0) (0) (0)	15 0 0 0 (30) (0) (0) (0)	22 0 0 0 (44) (0) (0) (0)
{Digestive sy	rstem				
ongue	thrombus	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
(a > b (c)	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 lifference; *: P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

		Group Name Control No. of Animals on Study 50		625 ppm 50	1250 ppm 50	2500 ppm 50
rgan	Findings	Grade 1+ 2+ 3 (%) (%) (%)	3+ 4+ 3) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive s	ysteml					
ongue	inflammatory infiltration	<50> 0 0 0 (0) (0) (0		<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	lymphocytic infiltration	1 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	arteritis	1 0 0		1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
tomach	epidermal cyst	<50> 0 0 0 (0) (0) (0		(50) 0 0 0 0 (0) (0) (0)	(0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	ulcer:forestomach	1 1 0		1 1 1 0 (2) (2) (0)	0 0 2 0 (0) (0) (4) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:forestomach	0 0 0 0 (0) (0) (0)	0) (0)	3 0 0 0 0 (6) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	erosion:glandular stomach	5 0 0 (10) (0) (0		1 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	ulcer:glandular stomach	0 0 0 (0) (0) (0)	0 (0)	0 1 0 0 (0) (2) (0) (0)	0 2 0 0 (0) (4) (0) (0)	0 1 0 0 (0) (2) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion (c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr[Crl][F344/DuCr]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 26

		Group Name No. of Animals on Study		ntrol 50				625 pp	m 50			1	250 p	pm 50		•		2500	ppm 50		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)		. 3	+	4+ (%)	1+ (%)	2+ (%)	3			1· (%)	+ (2+ %}	3+ (%)	4+ (%)
(Digestive sy	stem}																				
small intes	inflammatory infiltration		0	<50) 0 (0) (0	0 (0)	1 (2)	0 (0)	(50> 0 (0) (0 0)	0 (0)	0 (0)	50> 0 (0	0 (0)		1 (2)	(<50) 0 0) (0 0)	0 (0)
large intes	diverticula		0 0)	<50) 1 (2) (0	0 (0)	0 (0)	(0)	(50> 0 (0)) (0 0)	0 (0)	(0 (0)	50> 0 (0	0 (0)		0 (0)	(<50) 0 0) (0 0 0)	0 (0)
iver	herniation	(1	6 2)	<50) 0 (0) (0	0 (0) .	8 (16)	0 (0)	50> 0 (0	,) (0 0)	7 (14)	(0 (0)	50> 0 (0	0 (0)		4 (8)	(<50) 0 0) (0 0 0)	0 (0)
	angiectasis	(0	0 (0) (0 0)	0 (0)	4 (8)	0 (0)	(0)) (0 0)	0 (0)	0 (0)	(0	0 (0)		0 (0)	(0 0) (0	0 (0)
	necrosis:central	ſ	0 0)	1 (2) (0 0)	0 (0)	1 (2)	0 (0)	(0)) (0 0)	0 (0)	1 (2)	(0	0 (0)		2 (4)	(0 0) (0 0)	0 (0)
	necrosis:focal	(0 0)	0 (0) (0 0)	0 (0)	0 (0)	(0)	(0)) (0 0)	1 (2)	0 (0)	(0)	0 (0)		1 (2)	(0 0) (0	0 (0)
	fatty change:central	(1 2)	1 (2) (0 0)	0 (0)	1 (2)	0 (0)	0 (0)) (0 0)	(0)	1 (2)	0	0 (0)		(0)	(0 0) (0	0 (0)

Grade

4+ : Severe

b

a : Number of animals examined at the site

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

^{1+ :} Slight

^{2+ :} Moderate

^{3+ :} Marked

< a >

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 27

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50				
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4· (%) (%) (%) (%)				
Digestive	system)								
iver	fatty change:peripheral	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)				
	deposit of hemosiderin	2 0 0 0 (4) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)				
	mineralization	0 0 0 0 0 (0) (0)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)				
	inflammatory infiltration	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)				
	lymphocytic infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)				
	granulation	26 0 0 0 (52) (0) (0) (0)	37 1 0 0 * (74) (2) (0) (0)	32 1 0 0 (64) (2) (0) (0)	33 0 0 0 (66) (0) (0) (0)				
	inflammatory cell nest	10 0 0 0 (20) (-0) (-0) (-0)	0 1 0 0 ** (0) (2) (0) (0)	1 0 0 0 * (2) (0) (0) (0)	6 0 0 0 (12) (0) (0) (0)				
	extramedullary hematopoiesis	(0)(0)(0)(0)	1 0 0 0 (2) (3) (6)	1 0 0 0 0 (2) (2) (0) (0) (0)	0 0 0 0 0 (0) (0)				
rade a > b c)	1+: Slight 2+: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P								

(HPT150)

BAIS5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 28

Irgan	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive	system)				
iver	acidophilic cell focus	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 6 3 0 0 (12) (6) (0) (0)	<50> 9 1 0 0 (18) (2) (0) (0)	50> 5 2 0 0 (10) (4) (0) (0)
	basophilic cell focus	38 1 0 0 (76) (2) (0) (0)	36 0 0 0 (72) (0) (0) (0)	36 0 0 0 (72) (0) (0) (0)	32 1 0 0 (64) (2) (0) (0)
	spongiosis hepatis	1 0 0 0 (2) (2) (0) (0)	0 0 0 0 0	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	bile duct hyperplasia	26 0 0 0 (52) (0) (0) (0)	31 0 0 0 (62) (0) (0) (0)	23 0 0 0 (46) (0) (0) (0)	18 0 0 0 (36) (0) (0) (0)
	cholangiofibrosis	0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	focal fatty change	2 0 0 0 (4) (0) (0) (0)	2 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0,0 0 0,0 0
ancreas	atrophy	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<pre></pre>
	islet cell hyperplasia	2 1 0 0 (4) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade < a >

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

^{4+ :} Severe

b

^{1+ :} Slight 2+ : Moderate 3+ : Marked a : Number of animals examined at the site b : Number of animals with lesion

⁽c) c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

PAGE: 29

Organ		Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	em)				
k i dney	hyaline droplet	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	deposit of hemosiderin	0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	(0) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (3) (4)
	scar	1 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	. 1 0 0 0 0 (2) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)
	chronic nephropathy	13 5 1 0 (26) (10) (2) (0)	22 2 0 1 (44) (4) (0) (2)	19 6 0 1 (38) (12) (0) (2)	15 5 0 0 (30) (10) (0) (0)
	papillary necrosis	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	10 0 0 0 ***	25 7 2 0 ** (50) (14) (4) (0)
	mineralization:cortico-medullary junct	1 0 0 0 (2) (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:papilla	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	4 0 0 0 0 (8) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site b : Number of animals with lesion

b (c) c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 30

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ (%) (%) (%)	4+ (%)	625 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary syst	em)					
kidney	mineralization:pelvis	<50> 2 0 0 (4) (0) (0)	0 (0)	<pre></pre>	3 0 0 0 (6) (0) (0) (0)	<pre></pre>
	urothelial hyperplasia:pelvis	0 0 0 (0) (0)	0 (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	3 2 0 0 (6) (4) (0) (0)
	dilated pelvis	0 0 0 (0) (0)	0 (0)	0 1 0 0 (0) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
	dilatation:collecting tubule	0 0 0 (0) (0)	0 (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	deposit of brown pigment	0 0 0 (0) (0)	0 (0)	0 0 0 0 0 (0) (0) (0)	11 0 0 0 ** (22) (0) (0) (0)	41 0 0 0 **
urin bladd	dilatation	<50> 0 0 0 (0) (0) (0)	0 (0)	<50> 0 0 2 0 (0) (0) (4) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 1 0 0 0) (2) (0)
	hemorrhage	0 0 0 (0) (0)	0 (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	papillary and/or nodular hyperplasi	1 0 0 (2) (0) (0)	0 (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)

Grade 1+ : Slight 2+ : Moderate < a >

3+ : Marked

4+ : Severe

a: Number of animals examined at the site b : Number of animals with lesion

b (c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : FEMALE

PAGE: 31

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50			
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)			
{Endocrine s	ystem}							
pituitary	angiectasis	(50) 2 0 0 0 (4) (0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)	(50) 0 4 0 0 * (0) (8) (0) (0)	<pre></pre>			
	cyst	12 4 0 0 (24) (8) (0) (0)	17 4 0 0 (34) (8) (0) (0)	15 6 1 0 (30) (12) (2) (0)	12 4 0 0 (24) (8) (0) (0)			
	hyperplasia	5 5 3 0 (10) (10) (6) (0)	9 7 5 0 (18) (14) (10) (0)	12 5 1 0 (24) (10) (2) (0)	5 9 1 0 (10) (18) (2) (0)			
	Rathke pouch	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)			
thyroid	ultimobranchial body remanet	(0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)			
	C-cell hyperplasia	8 5 0 0 (16) (10) (0) (0)	9 4 0 0 (18) (8) (0) (0)	8 2 3 0 (16) (4) (6) (0)	3 0 0 0 *			
	cystic thyroid follicle	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 1 0 0 (4) (2) (0) (0)			
adrena l	angiectasis	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (.0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)			

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50					
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)					
Endocrine	system)									
drenal	necros i s : zona l	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)					
	inflammatory infiltration	1 0 0 0 (2) (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)					
	hyperplasia:cortical cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (7)	1 0 0 0 0 (2) (0) (0)					
	hyperplasia:medulla	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)	0 1 0 0 (0) (0)					
	focal fatty change:cortex	5 1 0 0 (10) (2) (0) (0)	10 2 0 0 (20) (4) (0) (0)	8 2 1 0 (16) (4) (2) (0)	2 2 0 0 (4) (4) (0) (0)					
eproducti	ve system)									
ary	cyst	(50) 0 2 0 0 (0) (4) (0) (0)	\(\langle 50 \rangle \) 1	<50> 1 2 0 0 (2) (4) (0) (0)	<pre></pre>					
terus	dilatation	<50> 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)					
rade a > b	1+ : Slight 2+ : Moderate 3 a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100	+: Marked 4+: Severe site								

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 33

		No. of Animals on Study				625 ppm 50			1250 ppm 50				2500 ppm 50							
rgan	Findings	Grade 1+ (%)	2+ (%)		4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1 (%	†)	2+ (%)	3+ (%)	4+ (%)	(:	1+ %)	2+ (%)	3+ (%)		4+ %)
Reproductive	system)																			
terus	cystic endometrial hyperplasia	19 (38)	<50> 1 2) (0 (0 0)	25 (50)	(5) (0)	0> 0 (0)	0 (0)	27 (54) (<50 0 0) (> 0 0)	0 (0)	24 (4)	4 8) (<50 0 0)	0> 0 (0)	()	0 0)
agina	dilatation	1 (2) (<50> 0 (0) (0 (0 0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0) (<50 0 0) (> 0 0)	0 (0)	(O O) (<5(0 0)	0> 0 (0)	((0 0)
ammary gl	granulation	1 (2) (<50> 0 0 (0 (0 0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0)) (<50 0 0) (> 0 0)	0 (0)	! ((O O) (<50 0 0)	0> 0 (0)	((0 0)
lervous syste	em)																			
rain	deformity	1 (2) (<50> 0 0) (0 0) (0 0)	0 (0)	<50 0 (0)	0> 0 (0)	0 (0)	0 (0)) (<50 1 2) (> 0 0)	0 (0)	((0 0) (<50 0 0))> 0 (0)	((0 0)
	cyst	1 (2) (0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	(0)		0 0) (0 0)	0 (0)	(+	0 0) (0 0)	0 (0))	0 0)
oinal cord	hemorrhage	1 (2) (<50> 0 0) (0 (0 0}	0 (0)	<5(0 (0)	0> 0 (0)	0 (0)	0 (0)	(<50; 0 0) (> 0 0)	0 (0)		1 2) (<5(0 0)	0> 0 (0)	((0 0)

Grade < a > b

1+ : Slight

2+ : Moderate 3+ : Marked

a : Number of animals examined at the site

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

4+ : Severe

(HPT150)

BAIS5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

PAGE: 34

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50				
gan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)				
pecial sens	se organs/appendage)								
e	cataract	<50> 1 0 2 0 (2) (0) (4) (0)	<50> 3 2 0 0 (6) (4) (0) (0)	<50> 1 2 1 0 (2) (4) (2) (0)	<50> 1 3 0 0 (2) (6) (0) (0)				
	retinal atrophy	13 11 3 0 (26) (22) (6) (0)	11 8 2 0 (22) (16) (4) (0)	7 4 3 0 * (14) (-8) (-6) (-0)	15 8 2 0 (30) (16) (4) (0)				
	keratitis	2 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (7)	2 2 0 0 (4) (4) (0) (0)	0 0 0 0 0 (0) (0)				
	iritis	0 0 0 0 (0) (0)	2 1 0 0 (4) (2) (0) (0)	1 0 0 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)				
	mineralization:cornea	0 0 0 0	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)				
rder gl	degeneration	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)				
	lymphocytic infiltration	4 0 0 0 (8) (0) (0) (0)	2 1 0 0 (4) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)	2 0 0 0 0 (4) (0) (0)				
solacr d	inflammation	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)				

< a > b

a : Number of animals examined at the site b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711
ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : FEMALE

PAGE: 35

		Group Name No. of Animals o		Control 50)		1	625 ;	opm 50				12	50 p	рm 50					2500	ррm 50		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	(9		3+ %)	4+ (%)		1+ (%)	2+ (%)		3+ (%)	4+ (%)		1+ (%)	- 1	2+ %)	3+ (%)	(%)
Musculoskel	etal system)																						
uscle	mineralization		0 (0)	<50 0 (0))> 0 (0)	0 (0)	1 (2)	((<50>) (o o) (0 0)	(1 2)	0 0 0)	(50> (0 0)	0 (0)	(0 0)	(<50 0 0) (> 0 0)	0 (0)
	degeneration		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2	2) ()) (0 0)	(0 0)	0 (0)	(0 0)	0 (0)	(0 0)	(0 0) (0 0)	(0)
one	osteosclerosis		0	<50 1 (2)	0 (0)	0	2 (4)	1	<50>) 1) (0	(3	1 2)	(50>	1 2) (0	(1 2)	(<50 1 2) (> 1 2)	0 (0'

(HPT150)

BAIS5

TABLE M 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 16

Organ		p Name Control of Animals on Study 7 le 1+ 2+ 3+ 4+	625 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 15 1+ 2+ 3+ 4+ (%) (%) (%)
(Respiratory	system)				
nasal cavit	· thrombus	<pre></pre>	<pre></pre>	<pre></pre>	<15> < 15> 0 0 0 (7) (0) (0) (0)
	mineralization	4 0 0 0 (57) (0) (0) (0)	8 0 0 0 (80) (0) (0) (0)	4 0 0 0 0 (50) (0) (0)	4 0 0 0 0 (27) (0) (0)
	rhinitis	0 0 1 0 (0) (14) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	eosinophilic change:olfactory epithelium	4 2 0 0 (57) (29) (0) (0)	5 4 0 0 (50) (40) (0) (0)	2 4 1 0 (25) (50) (13) (0)	1 7 3 0 (7) (47) (20) (0)
	eosinophilic change:respiratory epithelium	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (7) (0) (0)
	inflammation:foreign body	0 1 0 0 (0) (14) (0) (0)	1 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammation:respiratory epithelium	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 (13) (0) (0) (0)
	respiratory metaplasia:olfactory epitheliu	m 0 0 0 0 0 (0) (0)	1 0 0 0 (10) (10) (10)	1 0 0 0 (13) (0) (0) (0)	1 0 0 0 (7) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100 (c)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 17

Organ	Findings	Group Name Control No. of Animals on Study 7 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 15 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Organ	r indings	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
{Respiratory	system)				
nasal cavit	respiratory metaplasia:gland	< 7> 6 0 0 0 (86) (0) (0) (0)	<10> 10 0 0 0 (100) (0) (0) (0)	< 8> 6 0 0 0 (75) (0) (0) (0)	<15> 13 0 0 0 (87) (0) (0) (0)
larynx	inflammation:foreign body	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(15) 0 0 0 0 (0) (0) (0) (0)
lung	congestion		<10> 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (25) (0) (0) (0)	5 0 0 0 (33) (0) (0) (0)
	hemorrhage	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0)	1 0 0 0 0 (13) (0) (0)	0 1 0 0 (7) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (7) (0) (0) (0)
	accumulation of foamy cells	1 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	uremic pneumonitis	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (7) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > (c)

a : Number of animals examined at the site b b : Number of animals with lesion

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE

PAGE: 18 625 ppm 1250 ppm 2500 ppm Group Name Control No. of Animals on Study 15 7 10 8 1+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) {Hematopoietic system} bone marrow hemorrhage 0 0 0 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (0) (0) (0) (0) granulation 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (7) (0) (0) (0) increased hematopoiesis 0 2 1 0 0 4 1 0 (0) (29) (14) (0) (10) (50) (10) (0) (13) (0) (25) (0) (0) (27) (7) (0) spleen < 7> <10> < 8> <15> deposit of hemosiderin 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 (14) (0) (0) (0) (40) (0) (0) (0) (50) (0) (0) (0) (33) (0) (0) (0) fibrosis:focal 0 0 0 (0) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) extramedullary hematopoiesis 2 0 3 2 1 2 0 0 3 4 1 0 (0) (29) (0) (0) (0) (30) (20) (0) (13) (25) (0) (0) (20) (27) (7) (0) (Circulatory system) heart <10> < 8> thrombus 0 1 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a: Number of animals examined at the site

Ь b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX 	: FEMALE				PAGE :
rgan	Findings	Group Name Control No. of Animals on Study 7 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 15 1+ 2+ 3+ 4+ (%) (%) (%) (%)
		(4) (4) (4)	(10) (10) (10)	(4) (4) (4)	(70) (70) (70)
Circulator	y system)				
eart	inflammatory infiltration	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	< 8> 1 0 0 0 (13) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	myocardial fibrosis	3 0 0 0 (43) (0) (0) (0)	6 0 0 0 (60) (60) (60)	2 0 0 0 (25) (0) (0) (0)	2 0 0 0 0 (13) (0) (0) (0)
igestive :	system)				
ngue	thrombus	< 7> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 (0) (0) (0) (0)	< 8> 1 0 0 0 (13) (0) (0) (0)	(15) 0 0 0 0 (0) (0) (0) (0)
	lymphocytic infiltration	1 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (7) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)
omach	ulcer:forestomach	< 7> 1 1 0 0 (14) (14) (0) (0)	<10> 1 1 1 0 (10) (10) (10) (0}	<pre></pre>	<15> 0 0 0 0 (0) (0) (0) (0)

1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe Grade a : Number of animals examined at the site b : Number of animals with lesion < a >

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name Control No. of Aπimals on Study 7	625 ppm 10	1250 ppm 8	2500 ppm 15	
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Digestive sy	vstem}					
stomach	hyperplasia:forestomach	< 7> 0 0 0 0 (0) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)	< 8>	0 0 0 0 (0) (0) (0) (0),	
	erosion:glandular stomach	2 0 0 0 (29) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	ulcer:glandular stomach	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0) (0)	0 2 0 0 (0) (25) (0) (0)	0 1 0 0 (0) (7) (0) (0)	
small intes	inflammatory infiltration	<pre></pre>	<10> 1 0 0 0 (10) (0) (0) (0)	<pre></pre>	(15) 0 0 0 0 (0) (0) (0) (0)	
liver	herniation	\(\langle 7 > \) 1	(10) (0) (0) (0)	2 0 0 0 (25) (0) (0) (0)	2 0 0 0 (13) (0) (0) (0)	
	angiectasis	0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	necrosis:central	0 1 0 0 (0) (14) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 1 0 0 (0) (13) (0) (0)	2 0 0 0 (13) (0) (0) (0)	

Grade

^{1+ :} Slight

^{2+ :} Moderate 3+ : Marked

^{4+ :} Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

⁽c)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 21

	Group Name Control No. of Animals on Study 7		1250 ppm 8	2500 ppm 15		
Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)		
stem)						
fatty change:central	< 7> 1 1 0 0 (14) (14) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	< 8> 0 1 0 0 0 0 (13) (0) (0)	(15) 0 0 0 0 (0) (0) (0) (0)		
fatty change peripheral	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)		
mineralization	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)		
inflammatory infiltration	1 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)		
lymphocytic infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)		
granulation	3 0 0 0 (43) (0) (0) (0)	3 0 0 0 0 (30) (0) (0)	1 0 0 0 (13) (0) (0) (0)	6 0 0 0 (40) (0) (0) (0)		
inflammatory cell nest	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (7) (0) (0)		
acidophilic cell focus	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)		
	fatty change:central fatty change:peripheral mineralization inflammatory infiltration lymphocytic infiltration granulation inflammatory cell nest	No. of Animals on Study Grade	No. of Animals on Study 7 11 2+ 3+ 4+	No. of Animals on Study		

Grade

1+ : Slight

2+ : Moderate 3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site b : Number of animals with lesion

(c) c: b/a * 100 Significant difference; *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 22

		p Name Control of Animals on Study 7	625 ppm 10	1250 ppm 8	2500 ppm 15
rgan	Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive					
iver	basophilic cell focus	<7> 1 0 0 0 (14) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)	< 8> 2 0 0 0 (25) (0) (0) (0)	<15> 2 0 0 0 (13) (0) (0) (0)
	bile duct hyperplasia	3 0 0 0 (43) (0) (0) (0)	2 0 0 0 (20) (20) (30)	2 0 0 0 (25) (0) (0) (0)	3 0 0 0 (20) (0) (0) (0)
	focal fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
ancreas	atrophy	<pre></pre>	<10> 1 0 0 0 (10) (0) (0) (0)	<pre></pre>	<15> 1 0 0 0 (7) (0) (0) (0)
Urinary sy	stem)				
idney	hyaline droplet	<7> 1 0 0 0 (14) (0) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)	< 8> 1 0 0 0 (13) (0) (0) (0)	<15> 0 0 0 0 0 0 0 0 0 0 0
	deposit of hemosiderin	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
rade a > b c)	1+: Slight 2+: Moderate 3+: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.0	rked 4+ : Severe			

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 23

		Group Name Control No. of Animals on Study 7		1250 ppm 8	2500 ppm 15	
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Urinary syst	t em)					
ci dney	scar	< 7> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(8> 1 0 0 0 (13) (0) (0) (0)	(15> 0 0 0 0 0 0 0 0 0 0	
	chronic nephropathy	1 0 0 0 (14) (0) (0) (0)	0 2 0 0 (0) (20) (0) (0)	2 0 0 1 (25) (0) (0) (13)	0 1 0 0 (0) (7) (0) (0)	
	papillary necrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	7 3 1 0 * (47) (20) (7) (0)	
	mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (13) (0) (0) (0)	2 0 0 0 (13) (0) (0) (0)	
	mineralization:pelvis	0 0 0 0 0 (0) (0)	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 1 0 0 (13) (7) (0) (0)	
	dilated pelvis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0)	0 1 0 0 (13) (0) (0)	0 0 0 0 0 (0) (0)	
	deposit of brown pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	6 0 0 0 (40) (0) (0) (0)	

1+ : Slight Grade

2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711

: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

Group Name 625 ppm 1250 ppm 2500 ppm Control No. of Animals on Study 7 10 15 8 1+ 2+ 3+ 4+ 2+ 3+ 1+ 2+ 3+ 4+ 2+ 3+ Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) {Urinary system} urin bladd dilatation 0 0 0 0 0 2 0 (0)(0)(0)(0) (0)(0)(20)(0) hemorrhage 0 0 0 0 0 1 0 0 0 0 (0)(0)(0)(0) (0) (10) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) {Endocrine system} pituitary < 7> <10> < 8> <14> angiectasis 0 0 1 1 0 0 0 0 0 0 (0)(0)(0)(0) (10) (10) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) cyst (0)(0)(0)(0) (30) (0) (0) (0) (13) (13) (0) (0) (7) (7) (0) (0) hyperplasia (0) (14) (0) (0) (10) (0) (0) (0) (13) (0) (0) (0) (0) (7) (0) (0) Rathke pouch 0 (0) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) (7) (0) (0) (0)

1 0 0

(0) (14) (0) (0)

<10>

0 1 0 0

(0) (10) (0) (0)

< 8>

(0)(0)(0)(0)

0 0 0

0

C-cell hyperplasia

thyroid

<15>

0 0 0 0

(0)(0)(0)(0)

Grade 1+ : Slight 2+ : Moderate 4+ : Severe

a : Number of animals examined at the site < a > b : Number of animals with lesion b

⁽c) c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 7	625 ppm 10	1250 ppm 8	2500 ppm 15	
organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
Endocrine sys	stem}					
adrena l	angiectasis	<pre></pre>	<pre></pre>	<pre></pre>	1 0 0 0 (7) (0) (0) (0)	
	inflammatory infiltration	1 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	
	hyperplasia:cortical cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	hyperplasia:medulla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	focal fatty change:cortex	0 0 0 0 0 (0) (0)	2 1 0 0 (20) (10) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (7) (0) (0)	
Reproductive	system)					
terus	dilatation	<pre></pre>	(10) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	
	cystic endometrial hyperplasia	4 0 0 0 (57) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)	4 0 0 0 (50) (0) (0) (0)	7 0 0 0 (47) (0) (0) (0)	
(a > b	+: Slight 2+: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b / a * 100 fference; *: P ≤ 0.05 **:	3+ : Marked 4+ : Severe e site P ≤ 0.01 Test of Chi Square				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

PAGE: 26

Organ	Findings	Group Name Control No. of Animals on Study 7 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 15 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Nervous syst	tem)				
spinal cord	hemorrhage	< 7> 1 0 0 0 (14) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<15> 1 0 0 0 (7) (0) (0) (0)
{Special sens	se organs/appendage)		•		
eye	cataract	< 7> 0 0 1 0 (0) (0) (14) (0)	<10> 3 0 0 0 (30) (0) (0) (0)	<pre></pre>	<15> 0 1 0 0 (0) (7) (0) (0)
	retinal atrophy	1 0 1 0 (14) (0) (14) (0)	0 3 0 0 (0) (30) (0) (0)	0 1 0 0 (0) (13) (0) (0)	2 1 1 0 (13) (7) (7) (0)
	keratitis	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (20) (0) (0) (0)	1 1 0 0 (13) (13) (0) (0)	0 0 0 0 0 (0) (0)
	iritis	0 0 0 0 (0) (0) (0)	1 0 0 0 (10) (10) (10)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:cornea	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
nasolacr d	inflammation	0 0 0 0 0 (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	<pre></pre>	<15> 0 0 0 0 0 0 0 0 0 0 0

4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked a : Number of animals examined at the site < a >

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

	Group Nam	e Control imals on Study 7	625 ppm 10	1250 ppm 8	2500 ppm 15	
Organ	Findings	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
(Musculoskel	etal system)					
nuscle	mineralization	0 0 0 0 0 (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	<pre></pre>	<15> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
one	osteosclerosis	< 7> 0 0 0 0 0 (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	< 8> 1 0 0 0 0 (13) (0) (0) (0)	<15> 1 0 0 0 (7) (0) (0) (0)	
Grade <a>> b (c) Significant	1+: Slight 2+: Moderate 3+: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.01$	4+ : Severe		(13) (0) (0) (0)		

TABLE M 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

		Group Name Control	625 ppm	1250 ppm	2500 ppm
gan	Findings	No. of Animals on Study 43 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	40 1+ 2+ 3+ 4+ (%) (%) (%) (%)	42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	35 1+ 2+ 3+ 4+ (%) (%) (%) (%)
ntegumentar	y system/appandage}		•		
bcutis	phlegmone	<43> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	<35> 0 1 0 0 (0) (3) (0) (0)
	fibrosis	1 0 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
Respiratory	system}				
sal cavit	mineralization	<pre></pre>	<40> 20 0 0 0 (50) (0) (0) (0)	<42> 27 0 0 0 (64) (0) (0) (0)	<35> 17 0 0 0 (49) (0) (0) (0)
	eosinophilic change:olfactory epitheli	um 2 30 10 0 (5) (70) (23) (0)	11 25 4 0 * (28) (63) (10) (0)	7 32 3 0 (17) (76) (7) (0)	1 13 20 0 (3) (37) (57) (0)
	eosinophilic change:respiratory epithe	12 0 0 0 (28) (0) (0) (0)	9 0 0 0 (23) (0) (0) (0)	5 0 0 0 (12) (0) (0) (0)	19 0 0 0 (54) (0) (0) (0)
	inflammation:foreign body	6 1 0 0 (14) (2) (0) (0)	1 2 0 0 (3) (5) (0) (0)	1 1 0 0 (2) (2) (0) (0)	3 2 0 0 (9) (6) (0) (0)
	inflammation:respiratory epithelium	11 0 0 0 0 (26) (0) (0) (0)	8 0 0 0 (20) (0) (0) (0)	8 0 0 0 (19) (0) (0) (0)	3 0 0 0 0 (9) (0) (0)
rade a > b c) gnificant d	a : Number of animals examined at the sib : Number of animals with lesion $c:b/a*100$: Marked 4+ : Severe te			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : FEMALE

PAGE: 16

	Group Name	C als on Study	ontrol 43			6	25 p	pm 40				125	0 ppm 42				25	500 p	pm 35		
rgan	Findings	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2 (%		3+ (%)	4+ (%)	1-	+	2+ (%)	3+ (%)	4+ (%)	(1+ (%)	2+ (%)		3+ %)	4+ (%)
Respiratory	system)																				
asal cavit	respiratory metaplasia:olfactory epithelium	2 (5)	<43) 0 (0) (> 0 0)	0 (0)	0 (0)	(0	<40> } (0 0)	0 (0)	0 (0)	(<42) 0 0) () 0 0)	0 (0)	(0 0)	(0 (0)	35> ((0 0) (0 0)
	respiratory metaplasia:gland	42 (98)	0 (0) (0 0)	0 (0)	40 (100)	(0)) (0 0)	0 (0)	42 (100)	(0 0) (0 0)	0 (0)	3 (9	3 4)	0 (0)	()	ე 0) (0 0)
	squamous cell metaplasia:transitional epithelium	0 (0)	0 (0) (0 0)	0 (0)	1 (3)	0 (0)) (0 0)	0 (0)	1 (2)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	()) (0)	0 0)
asopharynx	inflammation:foreign body	1 (2)	<43) 0 (0) () 1 2)	0 (0)	0 (0)	0 (0	<40>)) (0 0)	0 (0)	0 (0)	(<42 0 0) (> 0 0)	0 (0)	(1 3)	1 (3)	35> (0 0) (0 0)
arynx	inflammation	0 (0)	<43) 0 (0) (> 0 0)	0 (0)	2 (5)	0)	<40>)) (0 0}	0 (0)	3 (7)	(<422 0 0) () 0 0)	0 (0)	(3 9)	(0)	35> (D O) (0 0)
	inflammation:foreign body	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	(0 (0 0)	0 (0)	(2 6)	0 (0)	(() 0) (0 0)
ung	inflammatory infiltration	3 (7)	<43) 0 (0) (> 0 0)	0 (0)	1 (3)	0)	<40>) (0 (0)	0 (0)	0 (0)	(<42) 0 0) (> 0 0)	0 (0)	(0 0)	(0 (0)	(35> ((0 0) (0 0)

Grade

4+ : Severe

1+ : Slight 2+ : Moderate 3+ : Marked

<a>> a: Number of animals examined at the site b : Number of animals with lesion

b

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings		y 1+	trol 43 2+ (%)	3+ (%)	4+ (%)	1+ (%)		1 10 3+ (%)	4+ (%)		12 1+ (%)	50 ppi 4; 2+ (%)		4+ (%)		25 1+ (%)	3! 2+ (%)		4+ (%)
Respiratory :	system}																			
ung	accumulation of foamy cells	(3 7) (<432 0 0) () 0 0) (0 ()	2 (5)	<4 0 (0)	(0)	0 (0)	(1 2) (<42 0 0)	2> 0 (0)	0 (0)	(3 9)	<3! 0 (0)		0 (0)
	bronchiolar-alveolar cell hyperplasia	(2 5) (0 (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	{	0 0) (1 2)	1 (2)	0 (0)	. (0 0) (1 (3)	(0)	0 (0)
(Hematopoletic	c system)																			
one marrow	hemorrhage	(0 (<43) 0 0) (0	0	0 (0)	(4 0 (0)	0 (0)	0 (0)	(0 0) (<42 0 0)	2> 0 (0)	0 (0)	(1 3) (<3! 0 (0)	5> 0 (0)	0 (0)
	granulation	(3 7) (0 0) (0 0} (0 0)	1 (3)	0 (0)	0 (0)	0 (0)	(0 0) (1 2)	0 (0)	0 (0)	(2 6) (0 (0)	0 (0)	0 (0)
	increased hematopoiesis	(1	5 12) (2 5) (2 5) (0 0)	6 (15)	5 (13)	0 (0)	0 (0)	(2 5) (0 0)	5 (12)	0 (0)	(9 26) (0 (0)	0 (0)	0 (0)
thymus	inflammatory infiltration	(0 (<43) 0 0) (0	0 0)	0 (0)	(4 0 (0)	0 (0)	0 (0)	(1 2) (<42 0 0)	2> 0 (0)	0 (0)	(1 3) (<39 0 (0)	5> 0 (0)	0 (0)
(a > b (c)	+: Slight 2+: Moderate 3+ a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 fference; *: P ≤ 0.05 **: P ≤										<u>,</u>									

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Organ	Findings	Group Name Control No. of Animals on Study 43 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%)	1250 ppm 42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 35 1+ 2+ 3+ 4+ (%) (%) (%)
(Hematopoie	tic system}				
sp l een	congestion	<43> 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	<42> 1 0 0 0 (2) (0) (0) (0)	35> 1 0 0 0 (3) (0) (0) (0)
	deposit of hemosiderin	15 0 0 0 (35) (0) (0) (0)	13 0 0 0 (33) (0) (0) (0)	14 0 0 0 (33) (0) (0) (0)	16 0 0 0 (46) (0) (0) (0)
	focal lymphoid hyperplasia	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	16 2 0 0 (37) (5) (0) (0)	22 1 0 0 (55) (3) (0) (0)	15 2 1 0 (36) (5) (2) (0)	16 0 0 0 (46) (0) (0) (0)
Circulatory	y system)				•
eart	thrombus	<43> 1 0 0 0 (2) (0) (0) (0)	(40) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	35> 0 0 0 0 0 0 0 0 0 0 0 0
	lymphocytic infiltration	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	17 0 0 0 (40) (0) (0) (0)	18 0 0 0 (45) (0) (0) (0)	13 0 0 0 (31) (0) (0) (0)	20 0 0 0 (57) (0) (0) (0)
rade a > b c) ignificant	1+: Slight 2+: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b/a * 100 difference; *: P≤ 0.05 **:	3+ : Marked 4+ : Severe he site P ≤ 0.01 Test of Chi Square			

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : FEMALE SEX

PAGE: 19

		No. of Animals on Study	Cont	43			6	25 pp	40		12	250 r	42			2	500 pr	15	
Organ	Findings	Grade 1+ (%)	(5	2+ %)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2- (%)	(%)	(%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
(Digestive s	ystem}																		
tongue	inflammatory infiltration	0 (0)	((<43) 0 0) () 0 0) (0 (0)	0 (0)	0 (0)	40> 0 (0)	0 (0)	0 (0)	0 (0)	(42> 0 (0)	0 (0)	(2 6)	<3 0 (0)	.5> 0 (0)	0 (0)
	lymphocytic infiltration	0 (0)	((0 0) (0 0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	· 0 (0)	0 (0)	0 (0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)
	arteritis	1 (2)	((0 0) (0 0) (0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)
stomach	epidermal cyst	0 (0)	((<43) 0 0) (0 0) (0 (0)	0 (0)	(0 (0)	40> 0 (0)	0	0 (0)	1 (2)	(42> 0 (0)	0 (0)	(O O)	<3 0 (0)	5> 0 (0)	(0)
	hyperplasia:forestomach	0 (0)	((0 0) (0 0) (0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	(0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)
	erosion:glandular stomach	3 (7)	((0 0) (0 0) (0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)
small intes	inflammatory infiltration	0 (0)	((<43) 0 0) () 0 0) (0 (0)	0 (0)	0	40> 0 (0)	0 (0)	(<u>0</u>)	0 (0)	(42> 0 (0)	0 (0)	(1 3)	<3 0 (0)	5> 0 (0)	0 (0)

Grade

1+ : Slight

2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c: b/a * 100 Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

STUDY NO. : 0711

ANIMAL .: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 43 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%)	1250 ppm 42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 35 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sys	stem)				
large intes	diverticula	<43> 0 1 0 0 (0) (2) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)
liver	herniation	<43> 5 0 0 0 (12) (0) (0) (0)	<40> 7 0 0 0 (18) (0) (0) (0)	<42> 5 0 0 0 (12) (0) (0) (0)	<35> 2 0 0 0 (6) (0) (0) (0)
	angiectasis	0 0 0 0 0 (0) (0) (0)	3 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)
	fatty change:central	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:peripheral	2 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	deposit of hemosiderin	2 0 0 0 (5) (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammatory infiltration	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

^{1+:} Slight 2+: Moderate 3+: M a: Number of animals examined at the site b: Number of animals with lesion Grade 3+ : Marked 4+ : Severe

< a > b

⁽ c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 21

		Group Name Control No. of Animals on Study 43	625 ppm 40	1250 ppm 42	2500 ppm 35
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive	system)				
liver	lymphocytic infiltration	<43> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	granulation	23 0 0 0 (53) (0) (0) (0)	34 1 0 0 ** (85) (3) (0) (0)	31 1 0 0 (74) (2) (0) (0)	27 0 0 0 (77) (0) (0) (0)
	inflammatory cell nest	10 0 0 0 (23) (0) (0) (0)	0 1 0 0 ** (0) (3) (0) (0)	1 0 0 0 *	5 0 0 0 (14) (0) (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	8 0 0 0 (19) (0) (0) (0)	6 2 0 0 (15) (5) (0) (0)	9 1 0 0 (21) (2) (0) (0)	5 2 0 0 (14) (6) (0) (0)
	basophilic cell focus	37 1 0 0 (86) (2) (0) (0)	34 0 0 0 (85) (0) (0) (0)	34 0 0 0 (81) (0) (0) (0)	30 1 0 0 (86) (3) (0) (0)
	spongiosis hepatis	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	bile duct hyperplasia	23 0 0 0 (53) (0) (0) (0)	29 0 0 0 (73) (0) (0) (0)	21 0 0 0 (50) (0) (0) (0)	15 0 0 0 (43) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		No. of Animals on Study Grade 1+	Contro 21	43 -	3+	4 †		1+	5 ppm 4 2+ (%)	10	+	4+		1+	21 21 (%)	42	3+ (%)	4+		1+	2+	35 +	3+	4-1
rgan	Findings	(%)	(%)		(%)	(%)		%)	(%)	(%)) 	(%)		(%)	(%)	((%)	(%)		(%)	(%)		(%)	(%)
Digestive sy	vstem)																							
iver	cholangiofibrosis	0 (0)	0	(43> (0 0)	0 { 0}	(0 0) (<4 0 0)	(0)) (0 0)	(1 2)	0 (0)	(42> (0 0) (0 (0)	(0 0)	0 (0)	(35> (0 0)	0 (0)
	focal fatty change	2 (5)	(0)	(0 0)	0 (0)	(1 3) (0 0)	(0)) (0 0)	(0 0)	0 (0)	(0 0) (0 (0)	(0 0)	(0)	(0 0)	0 (0)
ancreas	atrophy	(0)	1	(43> (0 0)	0 (0)	(3 8) (<4 0 0)	10> 0 (0)	(0 0)	(3 7)	0 (0)	(42>	0 0) (0 (0)	(2 6)	(1 (3)	(35> (0	0 (0)
	islet cell hyperplasia	2 (5)	1 (2)	(0 0)	0 (0)	, (1 3) (0 0)	(0)	(0 0)	(1 2)	0 (0)	(0 0) (0 (0)	(0 0)	0 (0)	(0 0) (0 (0)
Urinary syst	em)																							
idney	inflammatory infiltration	0 (0)	0	(43> (0 0)	0 (0)	(0 0) (<4 0 0)	(0)	(0 0)	(1 2) (0 (0)	42> (.	0 0) (0 [0)	(1 3)	(0)	(35> (0 0)	0 (0)
	scar	1 (2)	0 (0)	(0 0)	0 (0)	(1 3) (0 0)	0 (0)	. {	0 0)	(0 0) (0 (0)	(0 0) (0 (0)	(3 9)	0 (0)	(0 0)	0 (0)

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

· HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 23

		up Name Control of Animals on Study 43	625 ppm 40	1250 ppm 42	2500 ppm 35
Organ	Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary sys	stem)				
kidney	chronic nephropathy	<43> 12 5 1 0 (28) (12) (2) (0)	<pre></pre>	<42> 17 6 0 0 (40) (14) (0) (0)	<pre></pre>
	papillary necrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	10 0 0 0 ** (24) (0) (0) (0)	18 4 1 0 ** (51) (11) (3) (0)
	mineralization:cortico-medullary junction	1 0 0 0 (2) (3) (3)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (4)	2 0 0 0 0 (6) (6) (0) (0)
	mineralization:pelvis	2 0 0 0 (5) (6) (6)	1 0 0 0 0 (3) (0) (0)	3 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (3) (3) (0) (0)
	dilatation:collecting tubule	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (6)	0 0 0 0 0 (0) (0)
	deposit of brown pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	11 0 0 0 ** (26) (0) (0) (0)	35 0 0 0 ** (100) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion c:b/a * 100

(c)

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
SACRIFICED ANIMALS (105W)

PAGE: 24

Findings	Group Name Control No. of Animals on Study 43 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	625 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 42 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 35 1+ 2+ 3+ 4+ (%) (%) (%) (%)
mi				
papillary and/or nodular hyperplasia	<43> 1 0 0 0 (2) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0	<42> 0 0 0 0 (0) (0) (0) (0)	<35> 2 0 0 0 (6) (0) (0) (0)
tem}				
angiectasis	<43> 2 0 0 0 (5) (0) (0) (0)	<40> 1 0 0 0 (3) (0) (0) (0)	<42> 0 4 0 0 * (0) (10) (0) (0)	<35> 1 1 0 0 (3) (3) (0) (0)
cyst	12 4 0 0 (28) (9) (0) (0)	14 4 0 0 (35) (10) (0) (0)	14 5 1 0 (33) (12) (2) (0)	11 3 0 0 (31) (9) (0) (0)
hyperplasia	5 4 3 0 (12) (9) (7) (0)	8 7 5 0 (20) (18) (13) (0)	11 5 1 0 (26) (12) (2) (0)	5 8 1 0 (14) (23) (3) (0)
Rathke pouch	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
ultimobranchial body remanet	<43> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0	<42> 1 0 0 0 (2) (0) (0) (0)	<35> 0 0 0 0 0 0 0 0 0 0 0
	mapillary and/or nodular hyperplasia temal anglectasis cyst hyperplasia Rathke pouch	No. of Animals on Study Grade	No. of Animals on Study	No. of Animals on Study

(HPT150)

BA1S5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 25

Organ	Findings	Group Name Control No. of Animals on Study 43 Grade 1+ 2+ 3+ 4+	625 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 35 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Endocrine	system)	•			
hyroid	C-cell hyperplasia	<43> 8 4 0 0 (19) (9) (0) (0)	\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc	<pre></pre>	35> 3 0 0 0 (9) (0) (0) (0)
	cystic thyroid follicle	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	· 2 1 0 0 (6) (3) (0) (0)
drenal	angiectasis	\(\langle 43 \rangle \) 1	· <40> 2 0 0 0 (5) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	<35> 1 1 0 0 (3) (3) (0) (0)
	necrosis:zonal	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	hyperplasia:cortical cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (5) (0) (0)	1 0 0 0 0 (3) (0) (0)
	hyperplasia:medulla	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 1 0 0 (0) (0)
	focal fatty change:cortex	5 1 0 0 (12) (2) (0) (0)	8 1 0 0 (20) (3) (0) (0)	8 2 1 0 (19) (5) (2) (0)	1 2 0 0 (3) (6) (0) (0)
Reproducti	ve system)				
vary	cyst	<43> 0 2 0 0 (0) (5) (0) (0)	<40> 1 3 0 0 (3) (8) (0) (0)	<42> 1 2 0 0 (2) (5) (0) (0)	<35> 0 1 0 0 (0) (3) (0) (0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name Control No. of Animals on Study 43		625 ppm 40	1250 ppm 42	2500 ppm 35
rgan	Findings	Grade 1+ 2+ (%) (%)	3+ 4+ (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) {%} (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Reproductive	system)					
terus	cystic endometrial hyperplasia	<43> 15 1 (35) (2) (0 0	<40> 22 0 0 0 (55) (0) (0) (0)	<pre></pre>	<35> 17 0 0 0 (49) (0) (0) (0)
agina	dilatation	<43> 1 0 (2) (0) (0 0	<40> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	35> 0 0 0 0 (0) (0) (0) (0)
ammary gl	granulation	<43> 1 0 (2) (0) (0 0 0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	35> 0 0 0 0 (0) (0) (0) (0)
Vervous syste	m)					
rain	deformity	\(\lambda 43 \rangle \) 1	0 0	<40> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	35> 0 0 0 0 0 0 0 0 0 0
	cyst	1 0 (2) (0) (0 0 0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)
Special sense	organs/appendage)					
ye	cataract	<43> 1 0 (2) (0) (1 0 2) (0)	<40> 0 2 0 0 0 0 (5) (0) (0)	<42> 0 2 1 0 0 0) (5) (2) (0)	<35> 1 2 0 0 (3) (6) (0) (0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

SEX : FEMALE

		Group Name Control No. of Animals on Study 43	625 ppm 40	1250 ppm 42	2500 ppm 35
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Special sens	se organs/appendage}				
eye	retinal atrophy	<pre></pre>	<pre></pre>	7 3 3 0 * (17) (7) (7) (0)	35> 13 7 1 0 (37) (20) (3) (0)
	keratitis	2 0 0 0 (5) (6) (7)	1 0 0 0 0 (3) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	iritis	0 0 0 0 (0) (0)	1 1 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
arder gl	degeneration	<pre></pre>	<40> 1 0 0 0 (3) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)
	lymphocytic infiltration	4 0 0 0 0 (9) (0) (0)	2 1 0 0 (5) (3) (0) (0)	1 1 0 0 (2) (2) (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
asolacr d	inflammation	(43) 1 0 0 0 (2) (0) (0) (0)	2 0 0 0 (5) (0) (0) (0)	<42> 0 1 0 0 (0) (2) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)
Musculoskele	tal system				
uscle	degeneration	<43> 0 0 0 0 0 0 0 0 0 0 0	<40> 0 1 0 0 (0) (3) (0) (0)	<42> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35> 0 0 0 0 (0) (0) (0) (0)
(a > b (c)	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the sib b: Number of animals with lesion c: b / a * 100 ifference; $*: P \le 0.05$ **: $P \le$		· · · · · · · · · · · · · · · · · · ·		

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE

		Group Name Control No. of Animals on Study 43			625 ppm 40			1250 ppm 42			2500 ppm 35											
rgan	Findings	Grade		1+ (%)	2+ (%)	3+ (%)	4+ (%)	1 (%			3+ (%)	4+ (%)	1+ (%)		+) 	3+ (%)	4+ (%)	1 (%	() ()	2+ (%)	3+ (%)	4+ (%)
usculoskel	etal system)																					
ne	osteosclerosis		(0 0)	<43 1 (2)	5> 0 (0)	0 (0)	2 (5	1		0 0) (0 0)	2 (5)	1	<42>) (1 2)	0 (0)	0 ())) (<35 1 3)	i> 1 (3)	0 (0)
rade a > b c)	1+: Slight 2+: Moderate 3 a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P		4+ : S of Chi																			

TABLE N 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

STUDY NO. : 0711 NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE

Time-related Weeks	Items	Group Name	Control	625 ppm	1250 ppm	2500 ррт	,
0 - 52	NO. OF EXAMINED ANIMALS		1	1	2	0	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		1 1 0	1 1 0	1 1 0	0 0 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 1 1	. 0 1 1	0 1 1	0 0 0	
53 - 78	NO. OF EXAMINED ANIMALS	1 1	0	1	2	3	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		0 0 0	1 1 0	2 1 1	3 3 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 0 0	1 0 1	3 2 5	1 2 3	
79 - 104	NO. OF EXAMINED ANIMALS		9	9	13	13	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		9 3 6	9 7 2	13 2 11	13 5 8	. '
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		12 5 17	11 3 14	17 11 28	17 5 22	
105 - 105	NO. OF EXAMINED ANIMALS		40	39	33	34	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		40 10 30	38 8 30	33 14 19	33 8 25	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		79 12 91	85 10 95	66 4 70	55 11 66	

STUDY NO. : 0711

ANIMAL : RAT F344/DuCrICrlj[F344/DuCrj] REPORT TYPE : A1

SEX : MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ime-related Weeks	I tems	Group Name	Control	625 ppm	1250 ppm	2500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		50	49	49	49	
	NO. OF ANIMALS WITH SINGLE TUMORS		14	17	18	16	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		36	32	31	33	
	NO. OF BENIGN TUMORS		91	97	86	73	
	NO. OF MALIGNANT TUMORS		18	14	18.	18	
	NO. OF TOTAL TUMORS		109	111	104	91	
PT070)							E

TABLE N 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]

REPORT TYPE : A1

: FEMALE SEX

Time-related Weeks	ltems	Group Name Control	625 ppm	1250 ppm	2500 ppm	
0 - 52	NO. OF EXAMINED ANIMALS	0	Ó	0	2	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS	0 0 0	0 0 0	0 0 0	0 0 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS	0 0 0	0 0 0	0 0 0	0 0 0	
53 - 78	NO. OF EXAMINED ANIMALS	2	3	2	5	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS	2 2 0	3 2 1	2 1 1	2 1 1	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS	1 1 2	3 1 4	3 0 3	2 1 3	
79 - 104	NO. OF EXAMINED ANIMALS	5	7	6	8	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS	5 3 2	7 5 2	6 4 2	5 4 1	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS	4 4 8	4 5 9	4 4 8	3 3 6	
105 - 105	NO. OF EXAMINED ANIMALS	43	40	42	35	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS	34 20 14	21 10 11	27 16 11	19 15 4	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS	43 9 52	31 3 34	35 7 42	26 0 26	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ime-related Weeks	Items	Group Name	Control	625 ppm	1250 ppm	2500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		41	31	35	26	
	NO. OF ANIMALS WITH SINGLE TUMORS		25	17	21	20	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		. 16	14	14	6	
	NO. OF BENIGN TUMORS		48	38	42	31	
	NO. OF MALIGNANT TUMORS		14	9	11	4	
	NO. OF TOTAL TUMORS		62	47	53	35	

(HPT070)

BAIS5

TABLE O 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

)rgan	Findings	Group Name Contro No. of animals on Study	50	625 pp	m 50	1250 ppm 50	2500 ppm 50
{ ntegumentar	y system/appandage)						
skin/app	squamous cell papilloma	0	<50> (0%)	1	<50> (2%)	<50> 2 (4%)	<50> 1 (2%)
	trichoepithelioma	0	(0%)	1	(2%)	0 (0%)	0 (0%)
	keratoacanthoma	3	(6%)	. 2	(4%)	4 (8%)	0 (0%)
subcutis	fibroma	5	<50> (10%)	11	<50> (22%)	<50> 4 (8%)	<50> 4 (8%)
	lipomą	0	(0%)	1	(2%)	2 (4%)	0 (0%)
	leiomyoma	1	(2%)	0	(0%)	0 (0%)	0 (0%)
	schwannoma	1	(2%)	0	(0%)	1 (2%)	0 (0%)
	hemangiosarcoma	1	(2%)	0	(0%)	0 (0%)	0 (0%)
Respiratory s	system)						
asal cavit	adenoma	1	<50> (2%)	0	<50> (0%)	<50> 0 (0%)	<50> 1 (2%)
	fibroma	0	(0%)	0	(0%)	1 (2%)	0 (0%)
	chondroma	0	(0%)	1	(2%)	0 (0%)	0 (0%)
ung	bronchiolar-alveolar adenoma	1	<50> (2%)	3	<50> (6%)	<50> 1 (2%)	<50> 1 (2%)
< a > (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a * 1	nn					-

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX

: MALE

rgan	Findings	Group Name Control No. of animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
Respiratory s	ystem)				
ung	bronchiolar-alveolar carcinoma	<50> 2 (4%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
lematopoietic	system)				
ne marrow	histiocytic sarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
leen	fibroma	· <50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	hemangioma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
	hemangiopericytoma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
	mononuclear cell leukemia	4 (8%)	4 (8%)	3 (6%)	1 (2%)
irculatory s	ystem}				
art	atriocaval node tumor:malignan	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
igestive sys					
al cavity	squamous cell papilloma	<50> 0 (0%)	<50> 0 (0%)	<50> 2 (4%)	<50> 0 (0%)
	squamous cell carcinoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
ongue	squamous cell papilloma	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

Organ	Findings	Group Name Control No. of animals on Study 50	625 pp	m 50	1250 ppi	n 50	2500 p	pm 50
(Digestive sys	stem)							
small intes	leiomyoma	<50> 0 (0		<50> (0%)		<50> (0%)	1	<50> (2%)
	leiomyosarcoma	0 (0	%) 1	(2%)	0	(0%)	0	(0%)
large intes	liposarcoma	<50> 0 (0		<50> (0%)		<50> (0%)	1	<50> (2%)
iver	hepatocellular adenoma	<50> 1 (2		<50> (0%)		<50> (0%)	2	<50> (4%)
oancreas	islet cell adenoma	<50> 2 (4		<50> (12%)		(50) (0%)	5	<50> (10%)
	acinar cell adenoma	0 (0	%} 0	(0%)	1	(2%)	0	(0%)
	mixed acinar-islet cell adenoma	0 (0	%) 1	(2%)	0	(0%)	0	(0%)
	islet cell adenocarcinoma	2 (4	%) 2	(4%)	1	(2%)	0	(0%)
Urinary syste	em)							
cidney .	transitional cell carcinoma	<50> 0 (0		<50> (0%)		(50> (4%)	0	<50> (0%)
{Endocrine sys	stem}							
pituitary	adenoma	<50> 18 (36		<50> (42%)		(50> (38%)	10	<50> (20%)
	adenocarcinoma	1 (2	%) 0	(0%)	0	(0%)	0	(0%)
< a > b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b	/ a * 100						

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

Organ	Findings	Group Name Contro No. of animals on Study	50 	625 pp	m 50	1250 p	pm 50	2500 p	pm 50
{Endocrine sys	tem)								
thyroid	C-cell adenoma	10	<50> (20%)	7	<50> (14%)	7	<50> (14%)	8	<50> (16%)
	follicular adenoma	1	(2%)	1	(2%)	2	(4%)	1	(2%)
	C-cell carcinoma	3	(6%)	1	(2%)	3	(6%)	2	(4%)
	follicular adenocarcinoma	0	(0%)	.0	(0%)	1	(2%)	4	(8%)
adrenal	pheochromocytoma	. 8	<50> (16%)	4	<50> (8%)	2	<50> (4%)	1	<50> (2%)
	pheochromocytoma:malignant	1	(2%)	2	(4%)	2	(4%)	0	(0%)
Reproductive	system}								
estis	interstitial cell tumor	34	<50> (68%)	32	<50> (64%)	35	<50> (70%)	35	<50> (70%)
ammary gl	adenoma	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)
	fibroadenoma	0	(0%)	1	(2%)	0	(0%)	0	(0%)
orep/cli gl	adenoma	4	<50> (8%)	2	<50> (4%)	1	<50> (2%)	0	<50> (0%)
Nervous syste	m)								
brain	glioma	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)
<a>> b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a *	100							

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
{Nervous system	m)				
brain	meningioma:malignant	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
spinal cord	glioma	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
{Special sense	organs/appendage)				
Harder gl	adenocarcinoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
Zymbal gl	Zmbal gland tumor:benign	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 2 (4%)
	Zymbal gland tumor:malignant	0 (0%)	0 (0%)	0 (0%)	1 (2%)
(Musculoskeleta	al system)				
one	osteosarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
ertebra	chordoma:malignant	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
(Body cavities)	1				
leura	leiomyosarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	histiocytic sarcoma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
mediastinum	histiocytic sarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)

b (c) b : Number of animals with neoplasm c : b / a * 100

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

		50	50	50	50
ody cavities}					
ritoneum 	iposarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
m	eso the lioma	1 (2%)	2 (4%)	1 (2%)	4 (8%)

TABLE O 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : FEMALE

)rgan	Findings	Group Name Control No. of animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
{ ntegumentary	system/appandage				
skin/app	squamous cell papilloma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	trichoepithelioma	1 (2%)	0 (0%)	1 (2%)	0 (0%)
	squamous cell carcinoma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
ubcutis	fibroma	<50> 1 (2%)	<50> 3 (6%)	<50> 1 (2%)	<50> 1 (2%)
	lipoma	0 (0%)	2 (4%)	0 (0%)	0 (0%)
	fibrosarcoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
Respiratory s	ystem}				
ung	bronchiolar-alveolar adenoma	<50> 3 (6%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
lematopoietic	system)				
one marrow	histiocytic sarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
pleen	histiocytic sarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	mononuclear cell leukemia	4 (8%)	2 (4%)	4 (8%)	0 (0%)
Digestive sys	tem}				
ral cavity	squamous cell papilloma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : RAT REPORT TYPE : A1

SEX

: FEMALE

Organ	Findings	Group Name Control No. of animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
{Digestive sy	ystem)				
oral cavity	squamous cell carcinoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
tongue	squamous cell carcinoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
arge intes	hemangiosarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
liver	hepatocellular adenoma	<50> . 1 (2%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
	histiocytic sarcoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
pancreas	islet cell adenoma	<50> 1 (2%)	<50> 3 (6%)	<50> 1 (2%)	<50> 0 (0%)
	islet cell adenocarcinoma	1 (2%)	0 (0%)	0 (0%)	0 (0%)
Endocrine sy	ystem}				
ituitary	adenoma	<50> 13 (26%)	<50> 11 (22%)	<50> 14 (28%)	<49> 9 (18%)
	adenocarcinoma	2 (4%)	2 (4%)	1 (2%)	0 (0%)
hyroid	C-cell adenoma	<50> 2 (4%)	<50> 2 (4%)	<50> 5 (10%)	<50> 4 (8%)
	C-cell carcinoma	2 (4%)	0 (0%)	0 (0%)	1 (2%)
(Reproductive	e system)				
ovary	granulosa cell tumor:benign	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
< a >	a : Number of animals examined at the site				

b (c)

b : Number of animals with neoplasm

c : b / a * 100

STUDY NO. : 0711
ANIMAL : RAT F344/DuCriCrij [F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

Organ	Findings	Group Name Contro No. of animals on Study	50	625 ppm 50	1250 ppm 50	2500 ppm 50
(Reproductiv	ve system)					
ovary	adenocarcinoma	1	<50> (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
terus	adenoma	1	<50> (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	endometrial stromal polyp	13	(26%)	4 (8%)	8 (16%)	9 (18%)
	adenocarcinoma	0	(0%)	1 (2%)	1 (2%)	0 (0%)
	endometrial stromal sarcoma	1	(2%)	3 (6%)	1 (2%)	0 (0%)
nmary gl	adenoma	2	<50> (4%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	fibroadenoma	5	(10%)	8 (16%)	7 (14%)	6 (12%)
	adenocarcinoma	0	(0%)	1 (2%)	0 (0%)	0 (0%)
ep/cli gl	adenoma	2	<50> (4%)	<50> 3 (6%)	<50> 2 (4%)	<50> 2 (4%)
ervous sys	tem}					
ain	glioma		<50> (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)
pecial sen	se organs/appendage)					
mbal gl	Zmbal gland tumor:benign		<50> (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)

TABLE P 1

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SEX : MALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm
	SITE : skin/appendage TUMOR : keratoacanthoma			
Tumor rate	TOMOR : Keraldacanthoma			
Overall rates (a)	3/50 (6.0)	2/50 (4. 0)	4/50 (8. 0)	0/50 (0.0)
Adjusted rates(b)	7. 50	5. 13	11. 11	0. 0
Terminal rates(c) tatistical analysis Peto test	3/40 (7.5)	2/39 (5. 1)	3/33 (9. 1)	0/34 (0. 0)
Standard method(d)	P =			
Prevalence method (d)	P = 0.8823			
Combined analysis (d)	P =			
Cochran-Armitage test(e)	P = 0.1848			
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.1212
- N	SITE : subcutis TUMOR : fibroma			
Tumor rate	, cc.			
Overall rates(a)	5/50 (10. 0)	11/50 (22. 0)	4/50 (8. 0)	4/50 (8. 0)
Adjusted rates (b)	12. 50	24. 39	10. 26	8. 82
Terminal rates (c)	5/40 (12. 5)	9/39 (23. 1)	3/33 (9. 1)	3/34 (8. 8)
Statistical analysis Peto test				
Standard method (d)	P = 0. 2282			
Prevalence method (d)	P = 0. 8456			
Combined analysis (d)	P = 0.7633	•	•	
Cochran-Armitage test(e)	P = 0.3031			
Fisher Exact test(e)		P = 0.0857	P = 0.5000	P = 0.5000
Tumor rate	SITE : lung TUMOR : bronchiolar-alveolar adenoma			
Overall rates (a)	1/50 (2.0)	3/50 (6. 0)	1/50 (2.0)	1/50 (2. 0)
Adjusted rates (b)	2. 50	7. 69	3. 03	1/50 (2. 0) 2. 94
Terminal rates (c)	1/40 (2.5)	3/39 (7. 7)	1/33 (3. 0)	1/34 (2. 9)
Statistical analysis				
Peto test	_			
Standard method (d)	P =			
Prevalence method(d) Combined analysis(d)	P = 0. 5834 P =			
Cochran-Armitage test(e)	P = 0.6742			
OUTINI MIMILARE LESTIN	F - U. U(42			

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

CEA	MALE		

TEN . MINEL					FAGE .
Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : lung		_		
Tumor rate	TOMOR . BIOICHIOIAI-AIVEOIA	ar adenoma, bronchiolar-alveolar carcinom	d.		
Overall rates(a)	3/50 (6.0)	3/50 (6. 0)	1/50 (2.0)	1/50 (2. 0)	
Adjusted rates (b)	5. 00	7. 69	3. 03	2. 94	
Terminal rates(c) tatistical analysis Peto test	2/40 (5. 0)	3/39 (7. 7)	1/33 (3.0)	1/34 (2. 9)	
Standard method(d)	P = 0.9034 ?				
Prevalence method(d)	P = 0.7370			•	
Combined analysis(d)	P = 0.8444				
Cochran-Armitage test(e)	P = 0.2225				
Fisher Exact test(e)		P = 0. 6611	P = 0.3087	P = 0. 3087	
	SITE : spleen				
umor rate	TUMOR : mononuclear cell le	eukemia			
Overall rates (a)	4/50 (8. 0)	4/50 (8. 0)	3/50 (6. 0)	1/50 (2. 0)	
Adjusted rates (b)	7. 50	2. 56	0. 0	0. 0	
Terminal rates(c)	3/40 (7.5)	1/39 (2. 6)	0/33 (0. 0)	0/34 (0. 0)	
tatistical analysis					
Peto test Standard method(d)	D = 0 5447				
Prevalence method (d)	P = 0. 5447 P = 0. 9852				
Combined analysis (d)	P = 0. 8888				
Cochran-Armitage test(e)	P = 0. 1588				
Fisher Exact test(e)		P = 0. 6425	P = 0.5000	P = 0.1811	
	SITE : pancreas				
Tumor rate	TUMOR : islet cell adenoma				
Overall rates(a)	2/50 (4. 0)	6/50 (12. 0)	0/50 (0. 0)	5/50 (10 n)	
Adjusted rates (b)	5. 00	15. 38	0/50 (0.0)	5/50 (10. 0) 14. 71	
Terminal rates (c)	2/40 (5. 0)	6/39 (15. 4)	0/33 (0. 0)	5/34 (14. 7)	
tatistical analysis					
Peto test	D _				
Standard method(d) Prevalence method(d)	P = P = 0. 1873				
Combined analysis (d)	P = 0. 1873 P =				
Cochran-Armitage test(e)	P = 0. 5285				
Fisher Exact test(e)		P = 0. 1343	P = 0. 2475	P = 0.2180	
				1 0, 2100	

STUDY No. : 0711 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
SEX : MALE

					TAUL .
Group Name	Control	625 ррт	1250 ррт	2500 ppm	
	SITE : pancreas TUMOR : islet cell adenoma,	islat asll adappassinama			
Tumor rate	TOWOR . ISTEL CETT adenoma,	istet cett adenocarcinoma			
Overall rates(a)	4/50 (8. 0)	8/50 (16. 0)	1/50 (2. 0)	5/50 (10. 0)	
Adjusted rates(b)	10. 00	20. 51	0. 0	14. 71	
Terminal rates(c) tatistical analysis Peto test	4/40 (10. 0)	8/39 (20. 5)	0/33 (0.0)	5/34 (14. 7)	
Standard method(d)	P = 0.3944				
Prevalence method (d)	P = 0. 4968				
Combined analysis(d)	P = 0.4783				
Cochran-Armitage test(e)	P = 0.8021				•
Fisher Exact test(e)		P = 0. 1783	P = 0. 1811	P = 0.5000	
umor rate	SITE : pancreas TUMOR : islet cell adenoma,	mixed acinar-islet cell adenoma, islet c	ell adenocarcinoma	•	
Overall rates(a)	4/50 (8. 0)	9/50 (18. 0)	1/50 (2.0)	5/50 (10. 0)	
Adjusted rates(b)	10. 00	21. 43	0. 0	14. 71	
Terminal rates(c)	4/40 (10. 0)	8/39 (20. 5)	0/33 (0.0)	5/34 (14. 7)	
tatistical analysis					
Peto test	D 0.0044				
Standard method(d) Prevalence method(d)	P = 0.3944 P = 0.5579				
Combined analysis (d)	P = 0.5382				
Cochran-Armitage test(e)	P = 0. 7137				
Fisher Exact test(e)		P = 0.1168	P = 0.1811	P = 0.5000	
Trans. Exact toot (o)					
	SITE : pituitary gland TUMOR : adenoma				
umor rate					
Overall rates (a)	18/50 (36. 0)	21/50 (42. 0)	19/50 (38. 0)	10/50 (20. 0)	
Adjusted rates(b)	35. 71	42. 50	45. 71	17. 65	
Terminal rates(c) tatistical analysis Peto test	13/40 (32. 5)	16/39 (41. 0)	14/33 (42. 4)	6/34 (17. 6)	
Standard method(d)	P = 0. 1922				
Prevalence method(d)	P = 0. 9858				
Combined analysis(d)	P = 0.9280				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 0435*				
FISHEL EXACT TEST(6)		P = 0.3410	P = 0.5000	P = 0.0591	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

F			
			IJΕ

Group Name	Control	625 ppm	1250 ppm	2500 ррт
	SITE : pituitary gland TUMOR : adenoma, adenocarcinoma			
Tumor rate	Tomore . adenoma, adenocal cinoma			
Overall rates (a)	19/50 (38. 0)	21/50 (42. 0)	19/50 (38. 0)	10/50 (20. 0)
Adjusted rates(b) Terminal rates(c)	38. 10 14/40 (35. 0)	42. 50 16/39 (41. 0)	45. 71 14/33 (42. 4)	17. 65
tatistical analysis	147 40 (33. 0)	10/33 (41. 0/	14/33 (42. 4)	6/34 (17. 6)
Peto test Standard method(d)	P = 0.1922			
Prevalence method (d)	P = 0. 9911			
Combined analysis (d)	P = 0.9470			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 0287*	D 0 4100	D 0 5045	B 0.0005
FISHER EXACT TEST (6)		P = 0. 4192	P = 0.5815	P = 0. 0385*
	SITE : thyroid			
umor rate	TUMOR : C-cell adenoma			
Overall rates (a)	10/50 (20. 0)	7/50 (14. 0)	7/50 (14. 0)	8/50 (16. 0)
Adjusted rates(b)	22. 50	17. 95	15. 15	18. 60
Terminal rates (c)	9/40 (22. 5)	7/39 (17. 9)	5/33 (15. 2)	5/34 (14. 7)
Statistical analysis Peto test				
Standard method(d)	P = 0.3793			
Prevalence method(d)	P = 0.6130			
Combined analysis(d)	P = 0.5942			
Cochran-Armitage test(e)	P = 0.6956			
Fisher Exact test(e)		P = 0. 2977	P = 0.2977	P = 0. 3976
	SITE : thyroid			
umor rate	TUMOR : C-cell carcinoma			
Overall rates (a)	3/50 (6.0)	1/50 (2. 0)	3/50 (6. 0)	2/50 (4. 0)
Adjusted rates (b)	7. 32	2. 56	8. 11	2. 94
Terminal rates(c) tatistical analysis	2/40 (5. 0)	1/39 (2. 6)	2/33 (6. 1)	1/34 (2. 9)
Peto test				
Standard method(d)	P = 0.1080			
Prevalence method(d)	P = 0. 7233			
Combined analysis (d)	P = 0.5149			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 8627	P = 0.3087	D 0.0014	D 0 7000
LAUGE 1031 (C)		r = U. 300/	P = 0.6611	P = 0.5000

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : thyroid TUMOR : follicular adenocar				
umor rate	TOMOR . TOTTTCUTAT adenocar	cinoma			
Overall rates (a)	0/50 (0.0)	0/50 (0. 0)	1/50 (2.0)	4/50 (8. 0)	
Adjusted rates (b)	0. 0	0. 0	2. 63	11. 76	
Terminal rates(c) tatistical analysis Peto test	0/40 (0.0)	0/39 (0.0)	0/33 (0. 0)	4/34 (11. 8)	
Standard method (d)	P =				
Prevalence method (d)	P = 0. 0021**				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0046**				
Fisher Exact test(e)		P = N. C.	P = 0.5000	P = 0. 0587	
umor rate	SITE : thyroid TUMOR : C-cell adenoma, C-ce	II carcinoma			
Overall rates(a)	13/50 (26. 0)	8/50 (16. 0)	10/50 (20. 0)	10/50 (20. 0)	
Adjusted rates(b)	29. 27	20. 51	22. 22	20. 93	
Terminal rates(c)	11/40 (27. 5)	8/39 (20. 5)	7/33 (21. 2)	6/34 (17. 6)	
tatistical analysis Peto test					
Standard method (d)	P = 0. 1296				
Prevalence method (d)	P = 0. 7274				
Combined analysis(d)	P = 0.6089				
Cochran-Armitage test(e)	P = 0.6570				
Fisher Exact test(e)		P = 0. 1631	P = 0.3176	P = 0.3176	
umor rate	SITE : thyroid TUMOR : follicular adenoma,	follicular adenocarcinoma			
Overall rates(a)	1/50 (2. 0)	1/50 (2. 0)	3/50 (6.0)	5/50 (10. 0)	
Adjusted rates(b)	2. 50	2. 56	6. 38	13. 51	
Terminal rates(c)	1/40 (2. 5)	1/39 (2. 6)	1/33 (3. 0)	4/34 (11. 8)	
tatistical analysis Peto test					
Standard method(d)	P =				
Prevalence method (d)	P = 0. 0185*				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0. 0372*				
Fisher Exact test(e)		P = 0.7525	P = 0.3087	P = 0. 1022	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	625 ppm	1250 ppm	2500 ррт	
	SITE : adrenal gland				
Tumor rate	TUMOR : pheochromocytoma				
Overall rates(a)	8/50 (16. 0)	4/50 (8. 0)	2/50 (4. 0)	1/50 (2. 0)	
Adjusted rates(b)	20. 00	9. 52	6. 06	2. 94	
Terminal rates(c)	8/40 (20. 0)	3/39 (7. 7)	2/33 (6. 1)	1/34 (2. 9)	
Statistical analysis					
Peto test Standard method (d)	P =				
Prevalence method (d)	P = 0. 9939				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0.0097**				
Fisher Exact test(e)		P = 0.1783	P = 0.0458*	P = 0.0154*	
Tumor rate Overall rates (a) Adjusted rates (b) Terminal rates (c) Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e) Fisher Exact test (e)	TUMOR : pheochromocytoma, pheo	6/50 (12. 0) 14. 29 5/39 (12. 8) P = 0. 2883	4/50 (8. 0) 6. 06 2/33 (6. 1) P = 0. 1168	1/50 (2. 0) 2. 94 1/34 (2. 9) P = 0. 0078**	
umor rate	SITE : testis TUMOR : interstitial cell tumor				
Overall rates (a)	34/50 (68. 0)	32/50 (64. 0)	35/50 (70. 0)	35/50 (70. 0)	
Adjusted rates(b)	75. 00	76. 92	82. 35	86. 49	
Terminal rates(c) tatistical analysis Peto test	30/40 (75. 0)	30/39 (76. 9)	27/33 (81. 8)	29/34 (85. 3)	
Standard method(d)	P =				
Prevalence method(d)	P = 0.1003				
Combined analysis (d)	P =				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.6818	D 0 440F			
TOTAL LAGE (CSI (C)		P = 0.4165	P = 0.5000	P = 0.5000	

: 0711

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	625 ppm	1250 ррм	2500 ppm	
	SITE : preputial/clitoral gland TUMOR : adenoma				
Tumor rate	TOMOR . AUCTIONIA				
Overall rates (a)	4/50 (8. 0)	2/50 (4. 0)	1/50 (2. 0)	0/50 (0.0)	
Adjusted rates(b)	7. 50	5. 13	2. 13	0. 0	
Terminal rates (c)	3/40 (7. 5)	2/39 (5. 1)	0/33 (0.0)	0/34 (0.0)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.9095 ?				
Prevalence method(d)	P = 0.9687				
Combined analysis(d)	P = 0.9872				
Cochran-Armitage test(e)	P = 0.0319*				
Fisher Exact test(e)		P = 0.3389	P = 0.1811	P = 0.0587	

0/50 (0.0)

0/33 (0.0)

P = 0.5000

0. 0

0/50 (0.0)

0/39 (0.0)

P = 0.5000

0. 0

(HPT360A)

Overall rates(a)

Adjusted rates (b)

Terminal rates (c)

Statistical analysis Peto test

Standard method(d)

Prevalence method (d)

Combined analysis (d)

Fisher Exact test(e)

Cochran-Armitage test(e)

1/50 (2.0)

1/40 (2.5)

P = 0.0041**?

P = 0.9078 ?

P = 0.0475*

P = 0.0877

2. 50

BAIS5

3/50 (6.0)

0/34 (0.0)

P = 0.3087

0. 0

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

SEX : MALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : peritoneum				
umor rate	TUMOR : mesothelioma				
Overall rates(a)	1/50 (2.0)	2/50 (4. 0)	1/50 (2. 0)	4/50 (8. 0)	
Adjusted rates (b)	2. 50	5. 13	0. 0	8. 82	
Terminal rates (c)	1/40 (2. 5)	2/39 (5. 1)	0/33 (0. 0)	3/34 (8. 8)	
tatistical analysis		2, 35 (5. 7,	5, 55 (5. 5)	0,01(0.0)	
Peto test					
Standard method(d)	P = 0. 1315				
Prevalence method(d)	P = 0. 1307				
Combined analysis(d)	P = 0.0588				
Cochran-Armitage test(e)	P = 0. 1432				
Fisher Exact test(e)		P = 0.5000	P = 0.7525	P = 0.1811	

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

TABLE P 2

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm
	SITE : subcutis			
Tumor rate	TUMOR : fibroma			
Overall rates(a)	1/50 (2. 0)	3/50 (6.0)	1/50 (2. 0)	1/50 (2. 0)
Adjusted rates (b)	2 33	2. 50	2. 38	2. 86
Terminal rates(c) Statistical analysis	1/43 (2. 3)	1/40 (2. 5)	1/42 (2. 4)	1/35 (2. 9)
Peto test				
Standard method(d)	P = 0.7085			
Prevalence method(d) Combined analysis(d)	P = 0. 4282 P = 0. 5895			
Cochran-Armitage test (e)	P = 0. 5695 P = 0. 6742			
Fisher Exact test(e)		P = 0.3087	P = 0.7525	P = 0.7525
	SITE : subcutis			
	TUMOR : fibroma, fibrosarcoma			
Tumor rate Overall rates(a)	1/50 (2. 0)	2/50/ 5.03	1/50/ 0.0	0.(50.(, 4.0)
Adjusted rates (b)	2. 33	3/50 (6. 0) 2. 50	1/50 (2. 0) 2. 38	2/50 (4. 0) 2. 86
Terminal rates(c)	1/43 (2. 3)	1/40 (2. 5)	1/42 (2. 4)	1/35 (2. 9)
Statistical analysis				
Peto test Standard method(d)	P = 0.3357		·	
Prevalence method(d)	P = 0. 4282			
Combined analysis(d)	P = 0. 3485			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.8453	B = 0 2007	D 0 7505	3
Traner Exact (est (e)		P = 0. 3087	P = 0.7525	P = 0. 5000
	SITE : lung			
umor rate	TUMOR : bronchiolar-alveolar a	adenoma		
Overall rates (a)	3/50 (6.0)	0/50 (0.0)	1/50 (2.0)	0/50 (0.0)
Adjusted rates(b)	6. 98	0. 0	2. 38	0. 0
Terminal rates (c)	3/43 (7. 0)	0/40 (0. 0)	1/42 (2. 4)	0/35 (0. 0)
itatistical analysis Peto test			•	
Standard method(d)	P =			
Prevalence method(d)	P = 0.9570			
Combined analysis (d)	P =			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 0877	P = 0. 1212	P = 0.3087	D = 0 1212
		1 - 0. 1212	r - u. 3001	P = 0. 1212

STUDY No. : 0711 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : spleen	***************************************			
Tuman wata	TUMOR : mononuclear cell leukemia				
Tumor rate Overall rates(a)	4/50/ 0.0\	0/50/ 4.0)	4/50 / 0.0	0 (50 (0 0)	
Adjusted rates (b)	4/50 (8. 0) 2. 33	2/50 (4. 0)	4/50 (8. 0)	0/50 (0. 0)	
Terminal rates (c)	1/43 (2. 3)	2. 50	7. 14	0. 0	
Statistical analysis	1/45 (2. 5)	1/40 (2. 5)	3/42 (7. 1)	0/35 (0.0)	
Peto test					
Standard method(d)	P = 0.9576				
Prevalence method (d)	P = 0.6341				
Combined analysis (d)	P = 0. 9277				
Cochran-Armitage test (e)	P = 0. 0999				
Fisher Exact test (e)	0.0000	P = 0.3389	P = 0.6425	P = 0.0587	
		0.0000	1 - 0.0423	1 - 0. 0301	
	CLTE				
	SITE : pancreas				
T	TUMOR : islet cell adenoma				
Tumor rate	1/50 (0 0)	0 (50 (0.0)	4 (70 (0.0)	0 (ma /	
Overall rates (a)	1/50 (2. 0)	3/50 (6. 0)	1/50 (2. 0)	0/50 (0. 0)	
Adjusted rates (b)	2. 33	7. 32	2. 38	0. 0	
Terminal rates(c)	1/43 (2. 3)	2/40 (5. 0)	1/42 (2. 4)	0/35 (0.0)	
Statistical analysis Peto test					
Standard method(d)	D				
Prevalence method (d)	P = P = 0.8439				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0. 2508				
Fisher Exact test(e)	r - 0. 2000	D = 0 2007	D 0.7505		
1 131161 EXACT TEST (6)		P = 0. 3087	P = 0.7525	P = 0.5000	
	CITE				
	SITE : pancreas TUMOR : islet cell adenoma, islet cel	Ladanonarainama			
Tumor rate	TOMOR . ISTEL CETT AUCHOMA, ISTEL CET	i auenocarcinoma			
Overall rates (a)	2/50 (4. 0)	2/50 (6 0)	1/50/ 2.0\	0 (50 (0.0)	
Adjusted rates (b)	4. 65	3/50 (6. 0)	1/50 (2. 0)	0/50 (0. 0)	
Terminal rates (c)	2/43 (4. 7)	7. 32	2. 38	0. 0	
Statistical analysis	C/ 40 (4. 1)	2/40 (5. 0)	1/42 (2. 4)	0/35 (0. 0)	
Peto test					
Chardend mathe I(I)	D.				

P = 0.5000

P = 0.5000

Standard method (d) Prevalence method (d)

Combined analysis(d)

Fisher Exact test(e)

Cochran-Armitage test(e)

P = 0.9274

P = ----

P = 0.1232

P = 0.2475

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : pituitary gland		,		
Tumor rate	TUMOR : adenoma				
Overall rates(a)	13/50 (26. 0)	11/50 (22. 0)	14/50 (28. 0)	9/49 (18. 4)	
Adjusted rates (b)	27. 27	23. 26	25. 58	22. 86	
Terminal rates (c)	11/43 (25. 6)	9/40 (22. 5)	10/42 (23. 8)	8/35 (22. 9)	
tatistical analysis		., ., <u></u>		0, 00 (22. 0)	
Peto test					
Standard method(d)	P = 0.3993				
Prevalence method (d)	P = 0.6245				
Combined analysis (d)	P = 0. 5836				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 4468	D = 0 407C	D 0 7000	D 0.0512	
TISHEL EXACT TEST (E)		P = 0. 4076	P = 0. 5000	P = 0. 2513	
	SITE : pituitary gland				
	TUMOR : adenoma, adenocarcinoma				
Cumor rate	45 (50 (40 0)				
Overall rates(a) Adjusted rates(b)	15/50 (30. 0)	13/50 (26. 0)	15/50 (30. 0)	9/49 (18. 4)	
Terminal rates (c)	29. 55 12/43 (27. 9)	26. 19 10/40 (25. 0)	26. 09	22. 86	
Statistical analysis	12/40 (21. 3)	10/40 (25. 0)	10/42 (23. 8)	8/35 (22. 9)	
Peto test					
Standard method(d)	P = 0.6045				
Prevalence method(d)	P = 0.7328				
Combined analysis(d)	P = 0.7552				
Cochran-Armitage test(e)	P = 0.2116				
Fisher Exact test(e)		P = 0.4120	P = 0.5862	P = 0.1322	
	SITE : thyroid	1		7	
	TUMOR : C-cell adenoma				
umor rate	Tomor To Soll additional				
Overall rates (a)	2/50 (4. 0)	2/50 (4. 0)	5/50 (10. 0)	4/50 (8. 0)	
Adjusted rates(b)	4. 65	5. 00	11. 90	11. 43	
Terminal rates (c)	2/43 (4. 7)	2/40 (5. 0)	5/42 (11. 9)	4/35 (11. 4)	
Statistical analysis					
Peto test Standard method(d)	D				
Standard method(d) Prevalence method(d)	P = P = 0.0988				
Combined analysis (d)	P = 0.0988 P =				
Cochran-Armitage test(e)	P = 0.3086				
Fisher Exact test (e)		P = 0.6913	P = 0.2180	P = 0.3389	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

: FEMALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : thyroid				
	TUMOR : C-cell adenoma, C-ce	II carcinoma			
umor rate Overall rates(a)	4/50 (8. 0)	0.750 (`4.0)	F/F0 / 40 0)	5 (50 / 40 0)	
Adjusted rates(b)	9. 30	2/50 (4. 0) 5. 00	5/50 (10. 0) 11. 90	5/50 (10. 0) 11. 43	
Terminal rates(c)	4/43 (9. 3)	2/40 (5. 0)	5/42 (11. 9)	4/35 (11. 4)	
tatistical analysis Peto test	7, 70 (3. 3)	2740 (3. 0)	3/42 (11. 3)	4/33 (11. 4)	
Standard method(d)	P = 0.0858 ?				
Prevalence method(d)	P = 0.2689				
Combined analysis (d)	P = 0.1571				
Cochran-Armitage test(e)	P = 0.4809				
Fisher Exact test(e)		P = 0. 3389	P = 0.5000	P = 0. 5000	,
	SITE : uterus				
umor rate	TUMOR : endometrial stromal	polyp			
Overall rates(a)	13/50 (26. 0)	4/50 (8. 0)	8/50 (16. 0)	9/50 (18. 0)	
Adjusted rates (b)	29. 55	10. 00	16. 00	20. 00	
Terminal rates (c)	12/43 (27. 9)	4/40 (10. 0)	6/42 (14. 3)	7/35 (20. 0)	
tatistical analysis		7	57 12 (1 11 5)	1, 55 (25. 5,	
Peto test					
Standard method(d)	P =				
Prevalence method (d)	P = 0.5902				
Combined analysis(d) Cochran-Armitage test(e)	P = P = 0.6560				
Fisher Exact test(e)	r - 0. 0300	P = 0.0155*	P = 0.1631	D = 0.0040	
		r - 0. 0135*	r - u. 1031	P = 0. 2348	
	SITE : uterus				
umor rate	TUMOR : endometrial stromal	sarcoma			
Overall rates(a)	1/50 (2. 0)	3/50/ 6.0\	1/50/ 0.0	0 (50 (0.0)	
Adjusted rates (b)	2. 33	3/50 (6. 0) 0. 0	1/50 (2. 0) 0. 0	0/50 (0. 0)	
Terminal rates (c)	1/43 (2. 3)	0. 0	0. 0	0. 0 0/35 (0. 0)	
tatistical analysis	17 10 (2. 07	07 40 (0. 0)	0/42 (0.0)	0/33 (0. 0/	
Peto test					
Standard method (d)	P = 0.6948				
Prevalence method (d)	P = 0.9006 ?	•			
Combined analysis (d)	P = 0.8414				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.2508	D = 0 2007	D 0	n a	
ISHOT EXACT (EST (E)		P = 0.3087	P = 0.7525	P = 0.5000	

STUDY No. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SEX : FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 13

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : mammary gland TUMOR : fibroadenoma				
Tumor rate	TOWOR . ITOTOAUENOMA				
Overall rates (a)	5/50 (10. 0)	8/50 (16. 0)	7/50 (14. 0)	6/50 (12. 0)	
Adjusted rates (b)	11. 63	17. 50	16. 67	17. 14	
Terminal rates (c)	5/43 (11. 6)	7/40 (17. 5)	7/42 (16. 7)	6/35 (17. 1)	
Statistical analysis	0/ 40 (11: 0/	1740 (11. 3)	1742 (10. 17	0/33 (11. 1)	
Peto test					
Standard method(d)	P = 0.5644				
Prevalence method(d)	P = 0.2842				
Combined analysis(d)	P = 0.3211				
Cochran-Armitage test(e)	P = 0.9433				
Fisher Exact test(e)		P = 0.2768	P = 0.3798	P = 0.5000	
	SITE : mammary gland TUMOR : adenoma fibroadenom	13. adenocarcinoma			
Tumor rate		a, addiodal official			
Overall rates(a)	7/50 (14. 0)	10/50 (20. 0)	7/50 (14. 0)	6/50 (12. 0)	
Adjusted rates(b)	16. 28	20. 00	16. 67	17. 14	
Terminal rates(c)	7/43 (16. 3)	8/40 (20. 0)	7/42 (16. 7)	6/35 (17. 1)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.7004				
	P = 0.5066				
Prevalence method(d)					
Prevalence method(d) Combined analysis(d)	P = 0. 5768				
Prevalence method(d)		P = 0.2977	P = 0.6129	P = 0.5000	

(HPT360A)

BAIS5

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE

Group Name	Control	625 ppm	1250 ppm	2500 ppm	
	SITE : preputial/clitoral glam TUMOR : adenoma	d			
umor rate					
Overall rates(a)	2/50 (4. 0)	3/50 (6. 0)	2/50 (4. 0)	2/50 (4. 0)	
Adjusted rates(b)	2. 33	7. 50	2. 38	0. 0	
Terminal rates(c)	1/43 (2. 3)	3/40 (7.5)	1/42 (2. 4)	0/35 (0. 0)	
tatistical analysis			77 12 (5, 55 (5, 5)	
Peto test					
Standard method(d)	P = 0.1450				
Prevalence method(d)	P = 0. 8415				
Combined analysis (d)	P = 0. 4928				
Cochran-Armitage test(e)	P = 0. 8627				
Fisher Exact test(e)		P = 0.5000	P = 0.6913	P = 0.6913	

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$

N. C. : Statistical value cannot be calculated and was not significant.

BA IS5

TABLE Q 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Group Name Control 625 ppm 1250 ppm 2500 ppm No. of Animals on Study 50 50 Organ___ Findings_ {Respiratory system} nasal cavit <50> <50> **<50>** <50> leukemic cell infiltration nasopharynx <50> <50> **<50>** <50> leukemic cell infiltration 0 lung **<50>** ⟨50⟩ **<50>** <50> leukemic cell infiltration metastasis:thyroid tumor 0 metastasis:bone tumor metastasis:vertebra tumor metastasis:pleura tumor {Hematopoietic system} bone marrow **<50>** <50> <50> **<50>** leukemic cell infiltration 2 2 metastasis:pleura tumor 0 0 lymph node **<50>** ⟨50⟩ **<50> <50>** leukemic cell infiltration metastasis:thyroid tumor metastasis:pleura tumor {Circulatory system} heart **<50> <50> <50>** <50> leukemic cell infiltration < a > a : Number of animals examined at the site b : Number of animals with lesion

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
Organ	Findings		50	50	əu
{Circulator	y system)				
heart	metastasis:pleura tumor	<50> 0	<50> 0	<50> 1	<50> 0
(Digestive	system)				
tongue	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
	metastasis:oral cavity tumor	0	0	0	1
liver	leukemic cell infiltration	<50⟩ 3	<50> 3	<50> 3	<50> 1
	metastasis:pancreas tumor	0	0	1	0
	metastasis:pleura tumor	0	0	1	0
pancreas	leukemic cell infiltration	<50> 0	<50> 1	<50> 1	<50> 0
{Urinary sys	stem				
kidney	leukemic cell infiltration	<50> 0	<50> 2	<50> 1	<50> 1
	metastasis:pleura tumor	0	0	· 1	0
{Endocrine s	system)				
adrenal	leukemic cell infiltration	<50> 1	<50> 0	<50> 0	<50> 0
(Nervous sys	stem)				
brain	leukemic cell infiltration	<50> 0	⟨50⟩ 1	<50>	<50> 0
< a > b	a : Number of animals examined at the s b : Number of animals with lesion	iite		·	

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 3

STUDY NO. : 0711
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

Organ		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
(Nervous syst	em)				
brain	metastasis:bone tumor	<50> 1	<50> 0	<50> 0	<50> 0
spinal cord	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
< a > b	a : Number of animals examined at the si b : Number of animals with lesion	te			
(JPT150)					BAISS

TABLE Q 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

(JPT150)

SEX : FEMALE

PAGE: 4

BAIS5

Organ	Findings	Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
{Integumentar	y system/appandage}				
skin/app	metastasis:oral cavity tumor	<50> 0	<50> 0	<50> 1	<50> 0
{Respiratory s	system}				
nasal cavit	leukemic cell infiltration	<50> 0	<50> 0	⟨50⟩ 1	<50> 0
	metastasis:liver tumor	0	0	0	1
nasopharynx	metastasis:liver tumor	<50> 0	<50> 0	<50> 0	<50> 1
lung	leukemic cell infiltration	<50> 3	<50> 1	< 50> 3	<50> 0
	metastasis:liver tumor	0	0	0	1
(Hematopoietic	c system)				
bone marrow	leukemic cell infiltration	<50> 2	<50> 0	<50⟩ 1	<50> 0
lymph node	leukemic cell infiltration	<50> 1	<50> 1	<50> 0	<50> 0
	metastasis:liver tumor	0	0	. 0	1
	metastasis:uterus tumor	1	0	0	0
	metastasis:spleen tumor	. 0	0	1	0
(Circulatory s	system!				
heart	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
< a > b	a : Number of animals examined at th b : Number of animals with lesion	e site			

STUDY NO. : 0711 ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

SEX

(JPT150)

: FEMALE

PAGE: 5

BA1S5

Organ	Findings	Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
// 6uii	111011183				
(Digestive s	vstem)				
ongue	metastasis:oral cavity tumor	<50> 0	<50> 0	<50> 1	<50> 0
arge intes	metastasis:uterus tumor	<50> 0	<50> 1	<50> 0	<50> 0
iver	leukemic cell infiltration	<50> 3	<50> 1	<50> 4	<50> 0
Urinary syst	tem) ·				
(idney	leukemic cell infiltration	<50> 1	<50> 0	<50> 2	<50> 0
Reproductive	e system)				
agina	metastasis:uterus tumor	<50> 0	<50> 1	<50> 0	<50> 0
ammary gl	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
Nervous syst	tem)				
rain	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
	metastasis:liver tumor	0	0	0	1
	metastasis:pituitary tumor	1	1	1	0
Special sens	se organs/appendage)				
уе	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
a > b	a : Number of animals examined at the b : Number of animals with lesion	site	-		

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

Organ		Group Name Control No. of Animals on Study 50	625 ppm 50	1250 ppm 50	2500 ppm 50
(Special sens	se organs/appendage}				
Harder gl	metastasis:oral cavity tumor	<50> 0	<50> 0	<50> 1	<50> 0
(Body cavitie	es}				
peritoneum	metastasis:large intestine tumor	<50> 1	<50> 0	<50> 0	<50> 0
(a >	a : Number of animals examined at the si b : Number of animals with lesion	te			
(JPT150)				•	

TABLE R

TABLE R HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrlj MALE RATS

Organs	No. of animals	No. of animals	Incidence	Min Max
Tumors	examined	bearing tumor	(%)	(%)
Thyroid	2841			
follicular adenoma ¹⁾		27	1.0	0 - 4
follicular adenocarcinoma ²⁾		38	1.3	0 - 8
1) + 2)		65	2.3	0 - 8
Zymbal gland	2848			
Zymbal gland tumor: benign ¹⁾		10	0.4	0 - 4
Zymbal gland tumor: malignant ²⁾		16	0.6	0 - 4
1) + 2)		26	0.9	0 - 4

57 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0043,\,0059,\,0061,\,0063,\,0065,\,0067,\,0095,\,0104,\,0115,\,0130,\,0141,\,0158,\,0162,$ 0189, 0205, 0210, 0224, 0242, 0246, 0267, 0269, 0278, 0284, 0288, 0294, 0296, 0318, 0328, 0342, 0347, 0365, 0371, 0396, 0399, 0401, 0407, 0417, 0421, 0437, 0448, 0457, 0461, 0497, 0535, 0560, 0579, 0581, 0610, 0612, 0641, 0667, 0675,

0684, 0686, 0691, 0704, 0731

TABLE S 1

CAUSE OF DEATH: MALE

STUDY NO. : 0711 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SEX : MALE

COUSE OF DEATH (SUMMARY) (0-105W)

PAGE: 1

			1250 ppm	2500 ppm
Number of Dead and Moribund Animal	10	11	17	16
urinary sy les	0	0	1	0
renal lesion	0	1	0	0
urinary retention	1	1	0	0
chronic nephropathy	0	0	1	2
tumor d:leukemia	1	3	3	1
tumor d:subcutis	1	1	0	1
tumor d:nasal cavit	0	1	0	0
tumor d:lung	1	0	0	0
tumor d:oral cavity	0	0	0	1
tumor d:pancreas	0	0	1	0
tumor d:kidney	0	0	1	0
tumor d:pituitary	2	3	3	4
tumor d:thyroid	0	0	1	1
tumor d:adrenal	0	Ō	2	'n
tumor d:prep/cli gl	1	Ō	ō	ñ
tumor d:brain	1	Ō	Õ	ĭ
tumor d:spinal cord	0	Ĭ	Õ	'n
tumor d:Harder gl	1	Ó	Ŏ	ő
tumor d:Zymbal gl	0	Ō	Õ	3
tumor d:bone	ĺ	Õ	1	ñ
tumor d:pleura	Ó	Õ	2	ñ
tumor d:mediastinum	Õ	Õ	ñ	1
tumor u.mcurustinum				•

(BI0120)

BAIS5

TABLE S 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0711 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

COUSE OF DEATH (SUMMARY)

(0-105W)

SEX : FEMALE

Group Name Control 625 ppm 1250 ppm 2500 ppm 10 Number of Dead and 7 8 15 Moribund Animal no microscop confirm 0 0 3 respiratory sy les 0 renal lesion tumor d:leukemia tumor d:subcutis tumor d:oral cavity tumor d:liver tumor d:pituitary tumor d:thyroid tumor d:ovary Λ tumor d:uterus tumor d:mammary gl 0 tumor d:prep/cli gl tumor d:brain 0 0

(BI0120)

BAIS5