2-メチル-1-プロパノールのマウスを用いた経口投与による13週間毒性試験(混水試験)報告書

試験番号:0572

APPENDICES

APPENDICES

APPENDIX A 1	IDENTITY AND IMPURITY OF 2-METHYL-1-PROPANOL IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX A 2	STABILITY OF 2-METHYL-1-PROPANOL IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX A 3	CONCENTRATION OF 2-METHYL-1-PROPANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX A 4	STABILITY OF 2-METHYL-1-PROPANOL IN FORMULATED WATER
APPENDIX B 1	CLINICAL OBSERVATION: MALE
APPENDIX B 2	CLINICAL OBSERVATION: FEMALE
APPENDIX C 1	BODY WEIGHT CHANGES: MALE
APPENDIX C 2	BODY WEIGHT CHANGES: FEMALE
APPENDIX D 1	FOOD CONSUMPTION CHANGES: MALE
APPENDIX D 2	FOOD CONSUMPTION CHANGES: FEMALE
APPENDIX E 1	WATER CONSUMPTION CHANGES: MALE
APPENDIX E 2	WATER CONSUMPTION CHANGES: FEMALE
APPENDIX F 1	CHEMICAL INTAKE CHANGES: MALE
APPENDIX F 2	CHEMICAL INTAKE CHANGES: FEMALE
APPENDIX G 1	HEMATOLOGY: MALE
APPENDIX G 2	HEMATOLOGY: FEMALE
APPENDIX H 1	BIOCHEMISTRY: MALE
APPENDIX H 2	BIOCHEMISTRY: FEMALE

APPENDICES (CONTINUED)

APPENDIX I 1 URINALYSIS: MALE

APPENDIX I 2	URINALYSIS: FEMALE
APPENDIX J 1	GROSS FINDINGS: MALE
APPENDIX J 2	GROSS FINDINGS: FEMALE
APPENDIX K 1	ORGAN WEIGHT, ABSOLUTE: MALE
APPENDIX K 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
APPENDIX L 1	ORGAN WEIGHT, RELATIVE: MALE
APPENDIX L 2	ORGAN WEIGHT, RELATIVE: FEMALE
APPENDIX M 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE

LESIONS: FEMALE

APPENDIX M 2 HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC

APPENDIX N METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-METHYL-1-PROPANOL

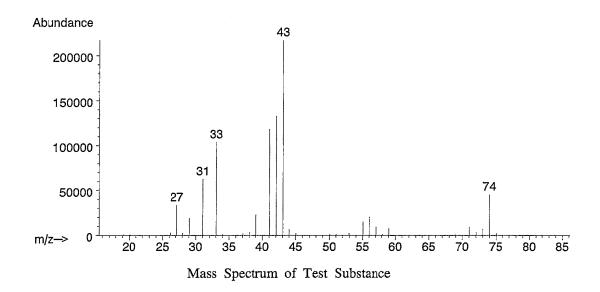
APPENDIX A 1

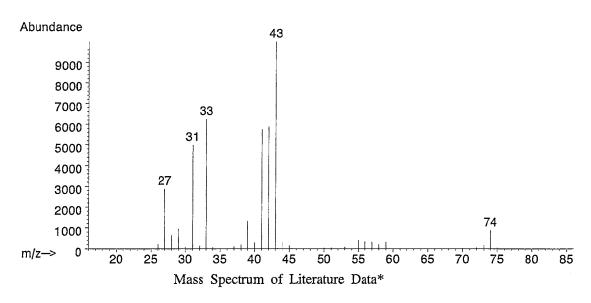
IDENTITY AND IMPURITY OF 2-METHYL-1-PROPANOL IN THE 13-WEEK DRINKING WATER STUDY

IDENTITY AND IMPURITY OF 2-METHYL-1-PROPANOL IN THE 13-WEEK DRINKING WATER STUDY

Test Substance : 2-Methyl-1-propanol (Wako Pure Chemical Industries, Ltd.)

Lot No. : KLH5528


1. Spectral Data

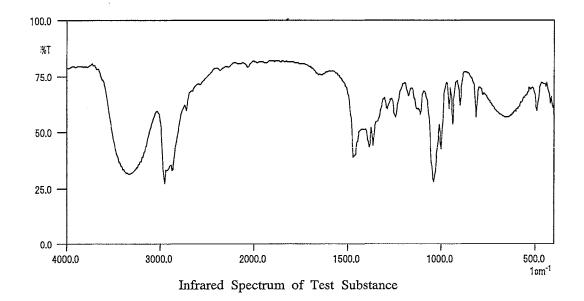

Mass Spectrometry

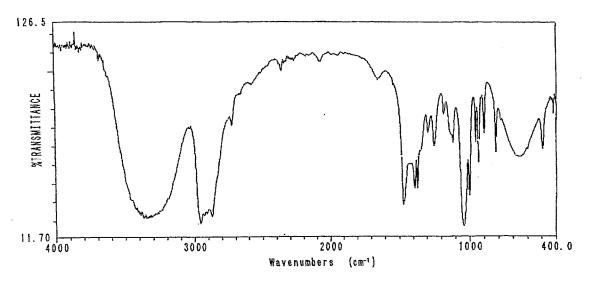
Instrument : Hewlett Packard 5989B Mass Spectrometer

Ionization : EI (Electron Ionization)

Ionization Voltage : 70eV

Result: The mass spectrum was consistent with literature spectrum.


(*McLafferty FW, ed. 1994. Wiley Registry of Mass Spectral Data. 6th ed. New York, NY: John Wiley and Sons.)


Infrared Spectrometry

Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Impurity

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : INNOWAX (0.2 mm ϕ × 50 m)

Column Temperature : 80 °C (1 min) \rightarrow (10 °C/min) \rightarrow 200 °C

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 μL

Sample Name	Peak No.	Area (%)	Peak Name
	1	0.026	Diisobutyl ether
Test Substance	2	99.935	2-Methyl-1-propanol
	3	0.039	1-Butanol

Result: Gas chromatography indicated one major peak (peak No.2) and two impurities. Those impurities (peak No.1 and peak No.3) were identified as diisobutyl ether and 1-butanol by comparing GC-MS with the standard samples. The amount in the test substance was 0.026% (The quantity value by the standard sample was 0.025%.) for diisobutyl ether and 0.039% (The quantity value by the standard sample was 0.039%.) for 1-butanol with a gas chromatograph.

3. Conclusion: The test substance was identified as 2-methyl-1-propanol by mass spectrum and infrared spectrum. Gas chromatography indicated one major peak (2-methyl-1-propanol) and two impurities. Those impurities were dissobutyl ether and 1-butanol in the test substance.

APPENDIX A 2

STABILITY OF 2-METHYL-1-PROPANOL

IN THE 13-WEEK DRINKING WATER STUDY

STABILITY OF 2-METHYL-1-PROPANOL IN THE 13-WEEK DRINKING WATER STUDY

Test Substance : 2-Methyl-1-propanol (Wako Pure Chemical Industries, Ltd.)

Lot No. : KLH5528

1. Sample : This lot was used from 2005.1.24 to 2005.4.27. Test substance was

stored in a dark place at room temperature.

2. Gas Chromatography

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : INNOWAX (0.2 mm ϕ × 50 m)

Column Temperature : 80 °C (1 min) \rightarrow (10 °C/min) \rightarrow 200 °C

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 µL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
2005.01.13	1	3.743	0.026
	2	5.229	99.935
	3	5.559	0.039
2005.05.11	1	3.743	0.026
	2	5.232	99.935
	3	5.560	0.039

Result: Gas chromatography indicated one major peak (peak No.2) and two impurities (peak No.1 and No.3 < 0.1% of total area) analyzed on 2005.1.13 and one major peak (peak No.2) and two impurities (peak No.1 and No.3 < 0.1% of total area) analyzed on 2005.5.11. No new trace impurity peak in the test substance analyzed on 2005.5.11 was detected.

3. Conclusion: The test substance was stable for about 4 months in a dark place at room temperature.

APPENDIX A 3

CONCENTRATION OF 2-METHYL-1-PROPANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

CONCENTRATION OF 2-METHYL-1-PROPANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

		,	Γarget Concentration		
Date Analyzed	2500ª	5000	10000	20000	40000
2005.01.24	2470 (98.8) ^b	4880 (97.6)	9910 (99.1)	19900 (99.5)	40000 (100

ppm b %

Analytical method : The samples were analyzed by gas chromatography.

Instrument : Hewlett Packard 5890A Gas Chromatograph

: INNOWAX (0.2 mm ϕ × 50 m) Column

Column Temperature : 80 $^{\circ}$ C (1 min) \rightarrow (10 $^{\circ}$ C/min) \rightarrow 200 $^{\circ}$ C

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 μL

APPENDIX A 4

STABILITY OF 2-METHYL-1-PROPANOL IN FORMULATED WATER

STABILITY OF 2-METHYL-1-PROPANOL IN FORMULATED WATER

		Target Conce	entration
Date Prepared	Date Analyzed	2500ª	40000
2004.08.12	2004.08.12	2450 (100) ^b	40800 (100)
	2004.08.16 ^c	2280 (93.1)	38800 (95.1)

^a ppm

Analytical method

: The samples were analyzed by gas chromatography.

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: INNOWAX (0.2 mm ϕ × 50 m)

Column Temperature : 80 $^{\circ}$ C (1 min) \rightarrow (10 $^{\circ}$ C/min) \rightarrow 200 $^{\circ}$ C

Flow Rate

: 1 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume : 1 μL

^b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

APPENDIX B 1

CLINICAL OBSERVATION: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W	eek-day										
, and the second	·	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
														-
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	40000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	1	1	. 1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1
	10000 ррш	0	0	0	0	0	0	0	0	0	0	0	0	2
	20000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1
	40000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	2	1	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0
	40000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	10	10	10	10	10	10	10	10	9	9	9	9	9
	2500 ppm	10	10	9	10	10	10	10	10	10	10	10	10	10
	5000 ppm	10	10	10	10	9	9	9	9	9	9	9	9	9
	10000 ppm	10	10	8	9	10	10	10	10	10	110	10	10	8
	20000 ррт	10	10	10	10	10	10	10	10	10	110	9	9	9
	40000 ppm	9	10	10	10	10	10	10	10	10	10	10	10	10

(HAN190)

APPENDIX B 2

CLINICAL OBSERVATION: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini:	stration We	eek-day			. <u> </u>							
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	1	1	1
	2500 ppm	Ö	0 `	0	0	0	Ö	Õ	0	Ö	Ŏ	Ô	Ô	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	. 1	0	0	0	0	0	0	0	0	0
	40000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	9	9	9
	2500 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	20000 ppm	10	10	10	9	10	10	10	10	10	10	10	10	10
	40000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10

(HAN190) BAIS 4

APPENDIX C 1

BODY WEIGHT CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g REPORT TYPE : A1 13 SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

up Name	Administration week										
	0	1	2	3	4	5	6				
Control	24.0± 0.7	24.4± 0.8	25.1± 1.1	26. 2± 1. 1	26.8± 1.2	27.7± 1.3	28.3± 1.4				
2500 ррш	23.9± 0.8	24.3± 0.8	25.3± 1.1	25.8± 2.4	26.9± 1.3	27.7± 1.2	28.6± 1.0				
5000 ррт	23.9± 0.8	24.1± 0.9	25.3± 1.1	25.9± 1.2	27.0± 0.9	27.6± 1.1	28.4± 1.2				
10000 ррш	23.9± 0.7	24.6± 0.7	25.8± 0.7	25.7± 2.3	26.8± 1.2	28.0± 0.9	29.0± 1.0				
20000 ppm	23.9± 0.8	24.4± 0.8	25.1± 0.7	25.8± 0.7	26.8± 0.8	27.5± 0.7	27.9± 1.2				
40000 ppm	23.9± 0.8	23.8± 0.7	24.5± 1.2	25.3± 1.2	26.2± 1.2	26.8± 1.3	27.4± 1.2				
	•										

(HAN260)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration week_ 8 9 10 11 12 13 7 28.6± 1.6 30.0± 1.6 29.8± 1.5 30.7 ± 1.8 31.1± 1.5 32.1± 1.8 32.6± 1.6 Control 2500 ppm 28.8± 1.2 30.5± 1.3 30.4± 1.4 31.4± 1.2 32.1± 1.5 32.9 ± 1.6 33.5± 1.5 5000 ppm 28.7 ± 1.3 30.7 ± 1.5 30.1 ± 1.5 30.9 ± 1.4 31.6± 1.6 32.5 ± 1.7 32.7 ± 1.8 29.1± 1.0 32.2± 2.0 10000 ppm 30.5± 1.5 30.1 ± 1.4 30.9 ± 1.8 31.5± 1.8 32.4± 2.0 20000 ppm 28.5 ± 0.9 29.9± 1.1 29.9 ± 1.2 30.4± 1.1 30.9± 1.3 31.8± 1.3 32.3 ± 1.2 40000 ppm 27.6± 1.5 30.9± 1.8 29.0± 1.5 28.6 \pm 1.3 29.2± 1.6 30.1± 2.0 30.6± 1.8

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HAN260)

BAIS 4

PAGE: 2

APPENDIX C 2

BODY WEIGHT CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

ip Name	Administration week							
	0	1	2	3	4	5	6	
Control	19.4± 0.7	19.2± 1.0	20.3± 0.8	21.2± 0.8	21.0± 1.0	21.9± 0.9	22.1± 1.1	
2500 ppm	19.4± 0.7	19.3± 0.6	20.2± 0.7	20.5± 0.7	21.0± 0.5	21.4± 0.6	22.4± 0.7	
5000 ррш	19.4± 0.7	19.4± 0.6	20.5± 0.7	20.6± 0.7	21.4± 0.7	21.7± 0.7	21.9± 0.7	
10000 ррш	19.4± 0.7	19.2± 0.7	19.9± 0.7	20.4± 0.5	20.8± 0.8	21.2± 0.6	21.7± 1.1	
20000 ppm	19.4± 0.7	19.4± 0.6	20.5± 0.6	20.5± 0.7	20.9± 0.6	21.5± 0.6	21.9± 1.0	
40000 ppm	19.4± 0.7	19.1± 0.6	20.0± 0.5	20.5± 0.8	21.0± 0.8	21.3± 0.9	21.9± 0.7	
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administration	week					
	7	8	9	10	11	12	13
Control	22.7± 1.1	23.7± 1.3	23.0± 0.9	23.3± 1.1	23.2± 1.3	23.6± 1.9	23.6± 2.0
2500 ррт	22.5± 0.8	23.3± 1.0	23.2± 0.7	23.4± 0.8	23.5± 0.9	24.0± 1.4	24.1± 0.7
5000 ррт	22.7± 1.1	22.9 ± 0.7	22.8± 0.6	23.0± 0.9	23.5± 1.2	23.0± 1.2	23.7± 1.0
10000 ррт	22.3± 0.7	23.5± 0.9	22.9± 0.7	22.9± 1.1	23.3± 0.8	23.6± 0.7	23.5± 0.8
20000 ррт	22.7± 1.3	23.2± 0.8	23.2± 0.9	23.4± 0.9	23.7± 1.1	23.8± 1.0	23.8± 1.0
40000 ppm	22.3± 1.0	23.1± 0.7	23.0± 1.3	23.3± 0.8	23.7± 1.7	24.0± 0.9	24.0± 1.3
				<u> </u>			
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX D 1

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration week_ 1 2 3 4 5 6 7 4.2± 0.3 4.1± 0.3 4.1± 0.2 4.1± 0.2 4.1± 0.2 Control 4.1± 0.2 4.1± 0.2 2500 ppm 4.1± 0.2 4.1± 0.2 4.0± 0.5 4.1± 0.2 4.1± 0.2 4.2± 0.2 4.1± 0.2 5000 ppm 4.1± 0.1 4.0± 0.3 4.0 ± 0.2 4.0± 0.2 4.0± 0.3 4.1± 0.2 4.0± 0.2 4.1± 0.3 10000 ppm 4.2± 0.3 4.2± 0.3 3.8 ± 0.7 4.1± 0.4 4.1± 0.3 20000 ppm $3.9 \pm 0.1*$ 3.9 ± 0.3 3.9生 0.3 3.9± 0.1 3.9 ± 0.1 3.9± 0.2 3.9 ± 0.1 40000 ppm 3.6± 0.2** 3.7生 0.2* 3.9 ± 0.4 3.8± 0.2* 3.7± 0.1** 3.6生 0.2** 3.7生 0.2**

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HAN260)

BAIS 4

PAGE: 1

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Administration week								
	8	9	10	11	12	13			
Control	4.1± 0.2	4.2± 0.2	4.3± 0.3	4.3± 0.3	4.4± 0.3	4.3± 0.3			
2500 ppm	4.2± 0.2	4.3± 0.2	4.3± 0.2	4.4± 0.2	4.4± 0.2	4.3± 0.2			
5000 ррт	4.1± 0.2	4.2± 0.2	4.2± 0.2	4.2± 0.2	4.4± 0.2	4.2± 0.2			
10000 ррт	4.2± 0.4	4.2± 0.3	4.2± 0.4	4.2± 0.4	4.3± 0.4	4.2± 0.4			
20000 ppm	3.9± 0.2	4.1± 0.1	4.0± 0.1	4.1± 0.3	4.2± 0.2	4.1± 0.1			
40000 ppm	3.7± 0.2**	3.7± 0.2**	3.9± 0.3*	3.9± 0.2**	3.9± 0.2**	3.8± 0.2**			
						\			
Significant differen	nce; *: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett					

(HAN260)

APPENDIX D 2

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration week_ 2 3 4 5 6 7 1 Control 3.4± 0.3 3.6± 0.2 3.7± 0.2 3.5 ± 0.3 3.7 ± 0.2 3.7± 0.2 3.8± 0.1 2500 ppm 3.3± 0.3 3.6 ± 0.2 3.6 ± 0.2 3.6± 0.2 3.8± 0.2 3.8 ± 0.2 3.8 ± 0.3 3.4 ± 0.2 3.6 ± 0.1 3.5 ± 0.2 3.6 ± 0.2 3.6 ± 0.2 3.7 ± 0.2 3.8 ± 0.2 5000 ppm 3.6 ± 0.2 10000 ppm 3.2 ± 0.2 3.4± 0.2* 3.4 ± 0.3 3.5 ± 0.2 3.6 ± 0.3 3.3± 0.2** 20000 ppm 3.1生 0.1* 3.3± 0.2** 3.3± 0.2** 3.4 ± 0.3 3.5 ± 0.2 3.5± 0.3* 3.6± 0.3 3.3± 0.1** 3.4± 0.2** 40000 ppm 2.9± 0.2** 3.1± 0.1** 3.2± 0.2** 3.3± 0.2* 3.3± 0.2**

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HAN260)

BAIS 4

PAGE: 3

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

oup Name	Administration week						
	8	9	10	11	12	13	
Control	4.0± 0.2	4.1± 0.2	4.0± 0.2	3.8± 0.4	4.0± 0.4	4.0± 0.3	
2500 ppm	3.9± 0.2	4.1± 0.2	4.0± 0.2	3.9± 0.2	4.0± 0.3	4.0± 0.2	
5000 ррш	3.7± 0.3	3.9± 0.2	3.9± 0.3	3.9± 0.3	3.8± 0.2	3.9± 0.2	
10000 руш	3.8± 0.3	3.8± 0.2	3.7± 0.3	3.8± 0.2	3.9± 0.2	3.7 ± 0.3	
20000 ppm	3.6± 0.2**	3.8± 0.2*	3.7± 0.3	3.8± 0.2	3.8± 0.2	3.7 ± 0.2	
40000 ppm	3.4± 0.2**	3.6± 0.3**	3.6± 0.2**	3.6± 0.3	3.7± 0.2	3.6± 0.3*	
Significant differen	ce; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX E 1

WATER CONSUMPTION CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13 SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

up Name	Administration week							
	1	2	3	4	5	6	7	
Control	4.6± 0.6	4.5± 0.5	4.4± 0.7	4.1± 0.6	4.2± 0.6	4.1± 0.5	4.2± 0.6	
2500 ppm	4.6± 0.6	4.6± 0.6	4.0± 1.3	4.4± 0.7	4.2± 0.6	4.1± 0.5	4.0± 0.5	
5000 руш	4.6± 0.8	4.5± 1.1	4.3± 0.7	4.4± 1.0	4.2± 0.8	4.3± 0.7	4.1± 0.7	
10000 ppm	4.3± 1.1	4.1± 1.0	3.8± 1.1	3.9± 0.9	3.8± 0.9	3.8± 0.8	3.7± 0.6	
20000 ppm	3.6± 0.4**	3.5± 0.5*	3.2± 0.5**	3.3± 0.3*	3.2± 0.2**	3.1± 0.3**	3.2± 0.2**	
40000 ppm	3.0± 0.3**	2.7± 0.5**	2.9± 0.5**	2.9± 0.3**	3.0± 0.2**	2.9± 0.3**	3.0± 0.2**	
Significant difference	; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett				

(HAN260)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Administration week						
	8	9	10	11	12	13	
Control	4.2± 0.6	4.2± 0.6	4.0± 0.5	4.0± 0.7	4.0± 0.6	3.8± 0.6	
2500 ррш	4.2± 0.4	3.8± 0.2	3.9± 0.3	3.8± 0.4	3.8± 0.4	3.4± 0.3	
5000 ppm	4.2± 0.6	3.9± 0.7	3.9± 0.5	3.8± 0.5	3.8± 0.5	3.5± 0.5	
10000 ррт	3.7± 0.6	3.5± 0.7*	3.7± 0.7	3.5± 0.5	3.4± 0.5	3.3± 0.6	
20000 ppm	3.2± 0.2**	3.1± 0.3**	3.2± 0.2**	3.2± 0.3**	3.1± 0.2**	3.1± 0.2*	
40000 ppm	2.9± 0.2**	2.9± 0.3**	2.9± 0.3**	3.0± 0.2**	2.7± 0.3**	2.7± 0.3**	
Significant difference	ce; *:P≦0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX E 2

WATER CONSUMPTION CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

oup Name	Administration week								
	1	2	3	4	5	6	7		
Control	4.5± 0.4	4.4± 0.4	4.3± 0.4	4.2± 0.6	4.2± 0.4	4.2± 0.4	4.3± 0.4		
2500 ppm	3.9± 0.3**	4.2± 0.6	4.0± 0.3	4.1± 0.3	4.0± 0.2	4.1± 0.4	4.4± 0.4		
5000 ppm	3.8± 0.2**	4.1± 0.4	3.8± 0.4*	4.0± 0.4	3.9± 0.4	3.9± 0.4	4.1± 0.4		
10000 ррш	3.7± 0.4**	3.8± 0.5*	4.0± 0.6	4.0± 0.5	3.9± 0.4	3.9± 0.5	3.9± 0.4		
20000 ppm	3.6± 0.5**	3.8± 0.6*	3.7± 0.4*	3.8± 0.5	3.8± 0.4*	3.7± 0.5*	3.9± 0.4		
40000 ррт	2.8± 0.3**	2.9± 0.4**	3.0± 0.5**	3.0± 0.3**	3.0± 0.3**	3.1± 0.2**	3.3± 0.3**		
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett					

(HAN260)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

oup Name	Administration	week					
	8	9	10	11	12	13	
Control	4.5± 0.4	4.4± 0.4	4.4± 0.4	4.2± 0.7	4.1± 0.7	4.0± 0.7	
2500 ppm	4.3± 0.4	4.3± 0.2	4.4± 0.3	4.1± 0.4	4.4± 0.5	4.2± 0.3	
5000 ррш	4.0± 0.5*	4.1± 0.5	4.1± 0.5	4.0± 0.4	3.9± 0.5	3.9± 0.4	
10000 ррш	4.0± 0.6	3.9± 0.4*	4.1± 0.4	4.0± 0.4	4.1± 0.4	4.0± 0.6	
20000 ppm	3.8± 0.3**	4.1± 0.4	4.1± 0.4	3.9± 0.5	3.9± 0.5	3.9± 0.6	
40000 ppm	3.3± 0.3**	3.3± 0.3**	3.3± 0.3**	3.4± 0.4**	3.2± 0.3**	3.4± 0.4	
					·		
Significant differen	nce; *: P ≤ 0.05 *	$*: P \leq 0.01$		Test of Dunnett			
N260)							В

PAGE: 4

APPENDIX F 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

Administration	(weeks)					
1	2	3	4	5	6	7
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
0.478± 0.064	0.456± 0.062	0.376± 0.116	0.409± 0.064	0.381± 0.045	0.362± 0.036	0.350± 0.037
0.955± 0.197	0.895± 0.230	0.837± 0.155	0.814± 0.178	0.768± 0.157	0.752± 0.121	0.711± 0.127
1.738± 0.452	1.574± 0.410	1.424± 0.407	1.454± 0.346	1.352± 0.283	1.301± 0.269	1.287± 0.214
2.987± 0.285	2.780± 0.350	2.494± 0.347	2.453± 0.202	2.318± 0.171	2.217± 0.199	2.251± 0.143
5.104± 0.431	4.456± 0.721	4.581± 0.642	4.408± 0.428	4.428± 0.320	4.250± 0.343	4.356± 0.392
	1 0.000± 0.000 0.478± 0.064 0.955± 0.197 1.738± 0.452 2.987± 0.285	1 2 0.000± 0.000 0.000± 0.000 0.478± 0.064 0.456± 0.062 0.955± 0.197 0.895± 0.230 1.738± 0.452 1.574± 0.410 2.987± 0.285 2.780± 0.350	1 2 3 0.000 \pm 0.000 0.000 \pm 0.000 0.000 \pm 0.000 0.478 \pm 0.064 0.456 \pm 0.062 0.376 \pm 0.116 0.955 \pm 0.197 0.895 \pm 0.230 0.837 \pm 0.155 1.738 \pm 0.452 1.574 \pm 0.410 1.424 \pm 0.407 2.987 \pm 0.285 2.780 \pm 0.350 2.494 \pm 0.347	1 2 3 4 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.478± 0.064 0.456± 0.062 0.376± 0.116 0.409± 0.064 0.955± 0.197 0.895± 0.230 0.837± 0.155 0.814± 0.178 1.738± 0.452 1.574± 0.410 1.424± 0.407 1.454± 0.346 2.987± 0.285 2.780± 0.350 2.494± 0.347 2.453± 0.202	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(HAN300)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

UNIT : g/kg/d a y
REPORT TYPE : A1 13
SEX : MALE

PAGE: 2

roup Name	Administration						
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
2500 ррш	0.340± 0.030	0.312± 0.019	0.307± 0.023	0.296± 0.029	0.286± 0.030	0.257± 0.023	
5000 ppm	0.692± 0.107	0.652± 0.121	0.630± 0.088	0.607± 0.079	0.578± 0.079	0.530± 0.078	
10000 ррш	1.215± 0.188	1.157± 0.203	1.201± 0.199	1.110± 0.143	1.043± 0.130	1.022± 0.179	
20000 ppm	2.133± 0.133	2.103± 0.144	2.074± 0.134	2.070± 0.137	1.922± 0.122	1.910± 0.142	
40000 ppm	4.050± 0.243	3.996± 0.453	4.031± 0.356	3.925± 0.299	3.487± 0.371	3.538± 0.384	

(HAN300) BAIS 4

APPENDIX F 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
UNIT : g /kg/d a y
REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

roup Name	Administration (weeks)					
	1	2	3	4	5	6	7
0.4.1	0.000-1- 0.000	0.000 ± 0.000	0.000-1.0.000	0.000+ 0.000	0.000-1.0000	0.000± 0.000	0.000 + 0.000
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
2500 ррш	0.508± 0.044	0.513± 0.067	0.489± 0.032	0.487± 0.037	0.466± 0.013	0.462± 0.043	0.483± 0.040
5000							0.000 0.405
5000 ppm	0.980 ± 0.059	0.992± 0.094	0.924 ± 0.084	0.925± 0.081	0.906± 0.091	0.898± 0.102	0.896± 0.107
10000 ppm	1.925± 0.223	1.920± 0.211	1.949± 0.283	1.916± 0.224	1.825± 0.170	1.812± 0.183	1.751± 0.191
20000 ppm	3.689 ± 0.460	3.719± 0.538	3.641 ± 0.446	3.628± 0.582	3.508 ± 0.489	3.361 ± 0.449	3.433± 0.370
40000 ppm	5.837± 0.542	5.710± 0.821	5.770± 0.862	5.729± 0.463	5.679± 0.545	5.734± 0.436	5.878± 0.643

(HAN300)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

_	ı (weeks)			· · · · · · · · · · · · · · · · · · ·	
8	9	10	11	12	13
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
0.461± 0.039	0.462± 0.033	0.468± 0.031	0.441± 0.041	0.457± 0.059	0.435± 0.035
0.863± 0.107	0.892± 0.103	0.884± 0.106	0.852± 0.094	0.854± 0.122	0.825± 0.098
1.706± 0.208	1.725± 0.168	1.775± 0.183	1.694± 0.161	1.727± 0.156	1.703± 0.228
3.251± 0.322	3.514± 0.425	3.483± 0.302	3.311± 0.352	3. 295± 0. 359	3.243± 0.477
5.669± 0.615	5.793± 0.619	5.641± 0.558	5.714± 0.517	5.410± 0.553	5.691± 0.588
	0.461 ± 0.039 0.863 ± 0.107 1.706 ± 0.208 3.251 ± 0.322	0.461 ± 0.039 0.462 ± 0.033 0.863 ± 0.107 0.892 ± 0.103 1.706 ± 0.208 1.725 ± 0.168 3.251 ± 0.322 3.514 ± 0.425	0.461 ± 0.039 0.462 ± 0.033 0.468 ± 0.031 0.863 ± 0.107 0.892 ± 0.103 0.884 ± 0.106 1.706 ± 0.208 1.725 ± 0.168 1.775 ± 0.183 3.251 ± 0.322 3.514 ± 0.425 3.483 ± 0.302	$0.461\pm \ 0.039$ $0.462\pm \ 0.033$ $0.468\pm \ 0.031$ $0.441\pm \ 0.041$ $0.863\pm \ 0.107$ $0.892\pm \ 0.103$ $0.884\pm \ 0.106$ $0.852\pm \ 0.094$ $1.706\pm \ 0.208$ $1.725\pm \ 0.168$ $1.775\pm \ 0.183$ $1.694\pm \ 0.161$ $3.251\pm \ 0.322$ $3.514\pm \ 0.425$ $3.483\pm \ 0.302$ $3.311\pm \ 0.352$	$0.461\pm \ 0.039$ $0.462\pm \ 0.033$ $0.468\pm \ 0.031$ $0.441\pm \ 0.041$ $0.457\pm \ 0.059$ $0.863\pm \ 0.107$ $0.892\pm \ 0.103$ $0.884\pm \ 0.106$ $0.852\pm \ 0.094$ $0.854\pm \ 0.122$ $1.706\pm \ 0.208$ $1.725\pm \ 0.168$ $1.775\pm \ 0.183$ $1.694\pm \ 0.161$ $1.727\pm \ 0.156$ $3.251\pm \ 0.322$ $3.514\pm \ 0.425$ $3.483\pm \ 0.302$ $3.311\pm \ 0.352$ $3.295\pm \ 0.359$

(HAN300)

APPENDIX G 1

HEMATOLOGY: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

roup Name	NO. of Animals	RED BLOOD CELL 1 O ^s /µl	HEMOGLOBIN g/dl	HEMATOCRIT %	MCV f l	MCH pg	MCHC g∕dl	PLATELET 1 0³/µl	
Control	9	10.60± 0.23	15.6± 0.3	49.6± 1.2	46.8± 0.8	14.7± 0.2	31.4± 0.3	1341± 93	
2500 ppm	10	10.78± 0.34	15.8± 0.5	50.4± 1.4	46.8± 0.5	14.6± 0.1	31.3± 0.3	1327± 107	
5000 ppm	10	10.62± 0.40	15.5± 0.4	49.5± 1.5	46.7± 1.0	14.6± 0.3	31.3± 0.4	1323± 87	
10000 ppm	10	10.87± 0.46	15.8± 0.5	50.4± 1.6	46.4± 1.0	14.6± 0.3	31.4± 0.3	1379± 116	
20000 ppm	10	10.73± 0.20	15.7± 0.4	50.3± 1.4	46.8± 0.6	14.6± 0.2	31.2± 0.3	1365± 46	
40000 թթա	10	10.84± 0.17	15.8± 0.3	50.9± 1.0	47.0± 0.6	14.6± 0.2	31.1± 0.4	1390± 75	

BAIS 4 (HCL070)

STUDY NO. : 0572
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

SEX : MALE	REPORT TY		PAGE: 2	
Common Norman	NO C	DESTALL CAVAS	-	

roup Name	NO. of Animals	RETICUL	ОСУТЕ			 	
Control	9	2.1±	0.2				
2500 ррт	10	2.3±	0.1				
5000 ppm	10	2.1±	0.2		•		
10000 ppm	10	2.1±	0.3				
20000 ppm	10	2.2±	0.2				
40000 բթա	10	2.3±	0.2				

(HCL070)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Significant difference; $*: P \leq 0.05$

 $** : P \leq 0.01$

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

(%) Differential WBC Group Name NO. of WBC Animals $1.0^{3}/\mu\ell$ N-BAND EOSINO BAS0 MONO LYMPIIO OTHER N-SEG $2\pm$ 2 5 0土 0 Control 9 1.86± 1.21 $1\pm$ $15\pm$ 4 1± 0土 0 81± 2500 ppm 10 1.60± 0.59 1± 14土 3 1± 1 0土 0 $2\pm$ 1 82± 4 $0\pm$ 0 5000 ppm 10 1.71 ± 0.80 $1\pm$ 1 $15\pm$ 7 $2\pm$ 1 0土 0 $2\pm$ 1 80土 7 $0\pm$ 0 10 17± 5 $2\pm$ 1 0± 0 $3\pm$ 2 78± 5 0± 0 10000 ppm 1.96± 1.04 $0\pm$ 0 20000 ppm $0\pm$ 0 10 2.18± 0.92 $0\pm$ 1 3 $2\pm$ $0\pm$ 0 $3\pm$ 2 82± 14± 1 4 4 $2\pm$ 0± $2\pm$ 2 82± 3 $0\pm$ 0 40000 руш 10 1.99 ± 0.92 1± 1 $13\pm$ 1 0

PAGE: 3

(HCLO70) BAIS 4

Test of Dunnett

APPENDIX G 2

HEMATOLOGY: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

SEX : FEMALE		TYPE : A1						PAGE: 4
Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁵ /µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f l	MCH pg	MCHC g∕dl	PLATELET 1 0³/µl
Control	10	10.61± 0.43	15.7± 1.0	49.2± 2.8	46.4± 1.0	14.7± 0.5	31.8± 0.6	1237± 71
2500 թթտ	10	10.69± 0.24	15.9± 0.5	50.3± 1.2	47.0± 0.4	14.9± 0.1	31.8± 0.4	1219± 94
5000 ppm	10	10.78± 0.38	16.0± 0.5	50.8± 1.7	47.1± 0.4	14.9± 0.1	31.6± 0.5	1234± 53
10000 ppm	9	10.72± 0.23	15.9± 0.3	50.2± 1.2	46.8± 0.5	14.8± 0.2	31.7± 0.5	1275± 38
20000 ppm	10	10.78± 0.21	16.0± 0.4	50.8± 1.0	47.1± 0.7	14.9± 0.1	31.6± 0.6	1249± 78
40000 թթա	10	10.70 ± 0.35	15.9± 0.6	50.7± 1.4	47.4± 0.6	14.9± 0.1	31.4± 0.5	1155± 95
Significant	difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HCL070) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

roup Name	NO. of Animals	RETICULO %	осуте						
Control	10	2.5±	1. 1						
2500 ppm	10	2.3±	0.5						
5000 ppm	10	2.4±	0.2						
10000 ppm	9	2.1±	0.6						
20000 ppm	10	2.3±	0.5						
40000 թթո	10	2.7±	0.8						
Significant	difference;	*: P ≤ 0.	. 05	** : P ≤ 0.01	 Test of Dunnet	it	<u>_</u> .	 	<u>,</u>
(10,070)					 			 	DATE

(HCL070)

BAIS 4

PAGE: 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 6

oup Name	NO. of Animals	WBC 1 0³/µl	Di N-BAND	fferentia	1 WBC (% N-SEG	5)	EOSINO		BASO		MONO	,	LYMPHO		OTHER	
Control	10	2.13± 1.03	0±	1	17±	6	1±	1	0±	0	2±	1	80±	7	0±	0
2500 թթա	10	1.69± 0.78	0±	0	14±	5	1±	1	0±	0	1±	1	83±	6	0±	(
5000 ppm	10	1.59± 0.78	0±	1	13±	5	2±	1	0±	0	1±	1	84土	5	0±	(
10000 ppm	9	1.39± 0.70	Ι±	1	13±	7	1±	1	0±	0	1±	1	84±	7	0±	(
20000 ppm	10	1.36± 0.71	0±	0	12±	4	2±	1	0±	0	2±	1	84±	5	0±	
40000 բբա	10	1.32± 0.71	0±	1	16±	3	2±	2	0±	0	2±	1	80±	4	0±	ļ
Significant	difference	; *: P ≤ 0.08	**: P ≦	0.01			Test	of Dum	nett							
ICL070)									-							BAI

(HCL070)

APPENDIX H 1

BIOCHEMISTRY: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

roup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g∕dl		A/G RAT	10	T-BILI) mg/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	10	5.2±	0. 2	2.9±	0.2	1.3±	0. 1	0.15±	0.03	194±	45	89±	9	33±	10
2500 ррт	10	5.1±	0.1	2.9±	0.1	1.3±	0.1	0.14±	0. 02	226±	39	92±	11	41±	15
5000 ppm	10	5.2±	0.2	2.9±	0.1	1.3±	0. 1	0.14±	0.01	197±	32	89±	11	36±	18
10000 ppm	10	5.3±	0.3	2.9±	0.1	1.3±	0.1	0.14±	0. 02	218±	36	93±	29	32±	12
20000 ррт	10	5.0±	0.1	2.8±	0.1	1.2±	0. 1	0.13±	0. 01	229±	28	88±	10	40±	11
40000 թթա	10	5.2±	0.1	2.9±	0.1	1.3±	0. 1	0.14±	0.01	243±	37*	85±	10	32±	11

PAGE: 1

(HCL074)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

REPORT TYPE : A1 PAGE: 2

roup Name	NO. of Animals	PHOSPHOI mg/dl	PHOSPHOLIPID mg/dl		AST I U/l		ALT IU/l		LDH IU/l		ALP IU/2		G-GTP I U / l		CK I U / L	
Control	10	179±	16	50±	8	16土	2	228±	72	136±	8	1±	1	66±	40	
2500 ррт	10	177±	15	45±	9	15±	2	187±	27	132±	11	1±	0	50±	15	
5000 ppm	10	179±	19	45土	10	15±	2	189±	24	137±	11	1±	1	55±	22	
10000 ppm	10	181±	45	46±	13	16±	2	199±	46	132±	12	1±	1	56±	18	
20000 ppm	10	176±	16	43±	7	15土	1	178±	27	131±	5	1±	1	57±	20	
40000 ppm	10	170±	15	40±	6	14±	2	180生	28	145±	12	1±	0	68±	36	

(HCL074) BAIS 4

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of Animals	UREA NI mg/dl	TOROGEN	SODIUM mEq/2		POTASS m Eq/		CHLORIDE m Eq / 2		CALCIUM mg/dl		INORGAN mg/dl	TIC PHOSPHORUS
Control	10	26.7±	3.6	151±	2	4. 4±	0. 3	120±	2	8.6±	0.4	6.3±	0. 9
2500 թթա	10	24.0±	3.6	151±	1	4. 4±	0.3	120±	2	8.6±	0.2	6.4±	0.6
5000 ppm	10	27.5±	5. 8	152±	1	4.5±	0.3	121±	1	8.7±	0.3	6.3±	0.8
10000 ppm	10	26.1±	4.6	150±	2	4.4±	0.3	119生	4	8.8±	0.5	5.7±	1. 1
20000 ppm	10	23.5±	4. 7	151±	1	4.5±	0. 3	120±	2	8.6±	0.2	6.0±	1. 0
40000 ppm	10	23.8±	3.3	150±	1	4.5±	0.4	119±	2	8.7±	0.3	5.8±	1.0
Significant	difference;	*: P ≤ 0). 05	** : P ≤ 0.01	, ,a			Test of Dunne	ett				

(HCL074)

APPENDIX H 2

BIOCHEMISTRY: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 4

roup Name	NO. of Animals	TOTAL PRO	TEIN	ALBUMIN g/dl		A/G RAT	I0	T-BILII mg∕dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYCE mg/dl	ERIDE
Control	10	5.2±	0.2	3.2±	0.1	1.6±	0.2	0.13±	0.01	157±	28	71±	9	18±	7
2500 ррт	10	5.3±	0.3	3.2±	0.1	1.6±	0. 1	0.13±	0.02	164±	24	74±	10	20±	7
5000 ppm	10	5.2±	0.2	3.2±	0.1	1.7±	0. i	0.13±	0.01	165±	20	71±	10	13±	4
10000 ppm	10	5.2±	0.2	3.2±	0.1	1.6±	0.1	0.12±	0. 01	173±	22	74±	10	18±	6
20000 ppm	10	5.2±	0.1	3.2±	0.1	1.6±	0. 1	0.13±	0.01	181±	30	72±	9	17±	4
40000 ррш	10	5.1±	0.1	3.1±	0.1	1.6±	0.1	0.12±	0.01	182±	37	77±	17	23±	14

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HCL074) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 5

oup Name	NO. of Animals	PHOSPHOI mg/dl	LIPID	AST IU/L		ALT IU/2		LDH IU/L		ALP IU/L		G-GTP IU/1		CK IU/£	!
Control	10	139±	14	51±	7	19土	3	189±	33	194±	35	1±	0	86±	57
2500 ррш	10	146±	17	51±	8	17±	3	196土	59	206±	16	1±	1	78±	53
5000 ppm	10	136±	13	49±	11	17±	3	175±	35	210±	16	1±	0	60±	20
10000 ppm	10	146±	18	53±	14	19±	5	201±	73	204±	16	1±	1	89±	91
20000 ppm	10	144±	16	51±	14	16±	2	176±	34	197±	17	1±	0	89±	71
40000 բբա	10	152±	29	44±	7	16±	3	167±	31	187±	29	1±	0	66±	23

(HCLO74)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 6 Group Name NO. of UREA NITOROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS mg/dl mEq/l mEq/2 mg/dl mg/dl Animals mEq/1 Control 10 20.1± 2.8 150± 1 4.5生 0.1 120± 2 8.6± 0.3 5.6± 0.8 2500 ppm 10 20.6± 2.9 151土 1 4.5土 0.3 121± 2 8.6± 0.1 5.8± 0.7 20.2± 151± 2 121± 2 $8.5 \pm$ 0.2 5.5± 0.8 5000 ppm 10 2.0 4.5± 0.2 150± 2 2 8.5± 10000 ppm 10 19.1± 3.3 4.5± 0.3 120土 0.2 5.8± 0.7 20000 ppm 10 $18.0 \pm$ 2.4 $152 \pm$ 1 4.3± 0.2 121± 2 8.6± 0.2 5.6± 1.0 40000 ppm 10 $16.3 \pm$ 3.4* 151± 2 4.4± 0.2 $122 \pm$ 2 $8.5 \pm$ 0.2 5.7± 1.1 Significant difference; $*: P \leq 0.05$ $** : P \leq 0.01$ Test of Dunnett

(IICL074) BAIS 4

APPENDIX I 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

oup Name	NO. of	pH_							Pre	otei	I1				Glu	cose				Ket	one	body				0cc	ult	blo	od	
	Animals	5.0	6.0	6.5	7.0	7. 5	8.0	8.5 CHI		±	+ :	2+ 3	+ 4+	CHI	_	± -	+ 2+	3+	4+ CHI	_	± -	2+	3+	4+ C	HI		±	+ 2	+ 3+	CHI
Control	10	0	0	0	0	1	6	3	0	0	4	6	0 0		10	0	0 0	0	0	1	3	4 2	0	0		10	0	0	0 0	i
2500 ppm	10	0	0	0	0	1	8	1	0	0	4	6	0 0		10	0	0 0	0	0	0	4	6 0	0	0		10	0	0	0 0	i
5000 ppm	10	0	0	0	0	0	9	1	0	0	6	3	1 0		10	0	0 0	0	0	0	4	6 0	0	0		10	0	0	0 0	
10000 ppm	10	0	0	0	1	2	7	0	0	1	4	4	1 0		10	0	0 0	0	0	0	2	7 1	0	0		10	0	0	0 0	ı
20000 ppm	10	0	0	0	0	2	8	0	0	0	1	9	0 0		10	0	0 0	0	0	0	0	8 2	0	0		10	0	0	0 0	,
40000 ppm	10	0	0	1	0	2	7	0	0	0	1	8	1 0		10	0	0 0	0	0	0	0	5 5	0	0		10	0	0	0 0	•

PAGE: 1

(HCL101) BAIS 4

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name NO. of Urobilinogen ± + 2+ 3+ 4+ CHI Animals 10 10 0 0 0 0 Control 2500 ppm 10 10 0 0 0 0 5000 ppm 10 0 0 0 0 10 10 0 0 0 0 10000 ppm 10 20000 ppm 10 0 0 0 0 10 40000 ppm 10 10 0 0 0 0 Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

(HCL101)

BAIS 4

PAGE: 2

APPENDIX I 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of	υH							Protein	Glucose	Ketone body	Occult blood
	Animals		6.0	6. 5	7. 0	7.5	8.0	8.5 CHI	 - ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ CHI
Control	10	0	0	0	1	3	2	4	0 0 8 2 0 0	10 0 0 0 0 0	3 3 3 1 0 0	10 0 0 0 0
2500 ppm	10	0		0	1	5	4	0	0 0 7 3 0 0	10 0 0 0 0 0	1 5 3 1 0 0	10 0 0 0 0
5000 ppm	10	0	0	3	1	4	2	0	0 0 8 2 0 0	10 0 0 0 0 0	4 2 4 0 0 0	10 0 0 0 0
10000 ppm	10	0	0	1	1	4	4	0	0 0 7 3 0 0	10 0 0 0 0 0	0 6 3 1 0 0	10 0 0 0 0
20000 ppm	10	0	0	1	4	1	2	2	0 0 4 6 0 0	10 0 0 0 0 0	1 4 4 1 0 0	10 0 0 0 0
40000 ppm	10	0	0	3	2	4	1	0	0 0 3 7 0 0 *	10 0 0 0 0 0	0 0 9 1 0 0 *	10 0 0 0 0

BAIS 4 (HCL101)

URINALYSIS

STUDY NO. : 0572 ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI	
10	10 0 0 0 0	
10	10 0 0 0 0	
10	10 0 0 0 0	
10	10 0 0 0 0	
10	10 0 0 0 0	
10	10 0 0 0 0	
1:66	: *: P ≤ 0.05 **: P ≤ 0.01	Test of CHI SQUARE
	10 10 10 10 10 10	Animals ± + 2+ 3+ 4+ CHI 10

(HCL101)

BAIS 4

PAGE: 4

APPENDIX J 1

GROSS FINDINGS: MALE

STUDY NO. : 0572 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)	10000 ppm 10 (%)
pleen	black zone		0 (0)	0 (0)	0 (0)	0 (0)
dney	white zone		0 (0)	0 (0)	0 (0)	1 (10)
	hydronephrosis		1 (10)	1 (10)	1 (10)	2 (20)

(HPT080)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

: MALE SEX

PAGE: 2

Organ	Findings	Group Name 20000 ppm NO. of Animals 10 (%)	40000 ppm 10 (%)	
spleen	black zone	1 (10)	1 (10)	
kidney	white zone	0 (0)	0 (0)	
	hydronephrosis	1 (10)	1 (10)	
(HPT080)				BAIS 4

APPENDIX J 2

GROSS FINDINGS : FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 3

10 (%)	10 (%)
0 (0)	0 (0)

(HPT080)

STUDY NO. : 0572
ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

SEX	: FEMALE				PAGE: 4
Organ	Findings	Group Name NO. of Animals	20000 ppm 10 (%)	40000 ppm 10 (%)	
spleen	black zone		2 (20)	1 (10)	
(HPT080)					BAIS 4

APPENDIX K 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

roup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	29.5± 1.7	0.033± 0.002	0.012± 0.002	0.225± 0.029	0.160± 0.013	0.149± 0.008
2500 ppm	10	30.7± 1.3	0.034± 0.003	0.012± 0.002	0.216± 0.027	0.165± 0.009	0.146± 0.006
5000 թթտ	10	30.0± 1.6	0.032± 0.004	0.013± 0.003	0.225± 0.042	0.163± 0.011	0.146± 0.011
10000 ppm	10	29.6± 2.0	0.033± 0.004	0.012± 0.003	0.234± 0.021	0.163± 0.011	0.150± 0.009
20000 ppm	10	29.7± 1.4	0.033± 0.003	0.013± 0.003	0.228± 0.022	0.158± 0.010	0.145± 0.011
40000 ppm	10	28.4± 1.9	0.033± 0.004	0.012± 0.002	0.227± 0.018	0.158± 0.014	0.140± 0.007
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Test	of Durnett		

(HCL040)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 2

oup Name	NO. of Animals	KIDN	NEYS	SPLI	EEN	LIV	ER	BRA		
Control	10	0.508±	0. 198	0.054士	0.010	1. 130±	0.035	0.432±	. 011	
2500 ppm	10	0.490±	0. 133	0.052±	0. 007	1. 137±	0. 050	0.436±	. 010	
5000 ppm	10	0.641±	0.604	0.054±	0.010	1.138±	0.070	0.437±	. 015	
10000 ррш	10	0.689±	0.490	0.058±	0.016	1.135±	0.065	0.431±	. 012	
20000 ррт	10	0.506±	0.140	0.058±	0.011	1. 175±	0.063	0.431±	. 011	
40000 ppm	10	0.467±	0. 029	0.052±	0.008	1. 131±	0. 077	0.431±	. 016	

(HCL040)

APPENDIX K 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 3

oup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.0± 1.9	0.039± 0.011	0.015± 0.002	0.030± 0.005	0.128± 0.007	0.136± 0.011	
2500 ppm	10	21.4± 0.9	0.039± 0.007	0.015± 0.002	0.032± 0.004	0.128± 0.007	0.136± 0.006	
5000 ppm	10	21.0± 0.6	0.041± 0.005	0.015± 0.002	0.029± 0.002	0.124± 0.007	0.135± 0.006	
10000 ppm	10	21.2± 0.8	0.039± 0.006	0.015± 0.003	0.029± 0.004	0.128± 0.012	0.136± 0.010	
20000 ppm	10	21.3± 1.0	0.038± 0.004	0.015± 0.002	0.032± 0.005	0.131± 0.006	0.138± 0.009	
40000 ppm	10	21.9± 0.9	0.038± 0.005	0.014± 0.002	0.030± 0.004	0.129± 0.009	0.136± 0.010	
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Test	of Dunnett			

(HCL040)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

oup Name	NO. of Animals	KIDI	NEYS	SPLI	EEN	LIVI	ER .	BRA?		
Control	10	0.290±	0.013	0.063±	0.021	0.872±	0. 058	0.440±	. 011	
2500 ррт	10	0.309±	0.008*	0.060±	0.005	0.898±	0.044	0.448±	. 017	
5000 ppm	10	0.293±	0.014	0.057±	0.005	0.846±	0.040	0.443±	. 016	
10000 ррш	10	0.298±	0.018	0.059±	0.004	0.874±	0.060	0.442±	. 015	
20000 ppm	10	0.306±	0.011	0.056±	0.006	0.874±	0.062	0.435±	. 012	
40000 ppm	10	0.322±	0.017**	0.063±	0. 007	0.938±	0. 085	0.433±	. 013	

(HCL040)

APPENDIX L 1

ORGAN WEIGHT, RELATIVE : MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

oup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	29.5± 1.7	0.114± 0.010	0.040± 0.006	0.763± 0.096	0.545± 0.049	0.505± 0.035	
2500 ppm	10	30.7± 1.3	0.112± 0.008	0.040± 0.008	0.705± 0.089	0.537± 0.036	0.474± 0.021	
5000 ppm	10	30.0± 1.6 0.108± 0.012		0.042± 0.009 0.749± 0.1		0.543± 0.039	0.487± 0.049	
10000 ppm	10	29.6± 2.0	0.111± 0.013	0.042± 0.008	0.794± 0.079	0.553± 0.036	0.508± 0.053	
20000 ppm	10	29.7± 1.4	0.110± 0.010	0.043± 0.009	0.767± 0.074	0.532± 0.024	0.487± 0.026	
40000 ppm	10	28.4± 1.9	0.116± 0.011	0.043± 0.009	0.804± 0.084	0.557± 0.049	0.494± 0.038	
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	et of Dunnett			
CL042)								<u> </u>

STUDY NO. : 0572
ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 2

oup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.720± 0.654	0.182± 0.032	3.837± 0.165	1.468± 0.076	
2500 ppm	10	1.600± 0.458	0.169± 0.023	3.701± 0.082	1.423± 0.078	
5000 ppm	10	2.151± 2.065	0.179± 0.033	3.797± 0.224	1.459± 0.084	
10000 ppm	10	2.339± 1.661	0.197± 0.051	3.840 ± 0.139	1.462± 0.101	
20000 ppm	10	1.695± 0.414	0.194± 0.031	3.953± 0.143	1.451± 0.069	
40000 ppm	10	1.651± 0.142	0.186± 0.032	3.988± 0.177	1.524± 0.097	

(HCL042)

APPENDIX L 2

ORGAN WEIGHT, RELATIVE : FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 3

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.0生 1.9	0.184± 0.043	0.072± 0.012	0.141± 0.020	0.611± 0.036	0.653± 0.051	
2500 ppm	10	21.4± 0.9	0.181± 0.028	0.072± 0.008	0.148± 0.015	0.598± 0.030	0.637± 0.041	
5000 ppm	10	21.0± 0.6	0.195± 0.024	0.071 ± 0.009	0.137± 0.013	0.590 ± 0.042	0.644± 0.031	
10000 ppm	10	21.2± 0.8	0.182± 0.027	0.069± 0.012	0.137± 0.019	0.606± 0.059	0.643± 0.051	
20000 ppm	10	21.3± 1.0	0.177± 0.020	0.070± 0.009	0.149± 0.022	0.617± 0.040	0.647± 0.030	
40000 ppm	10	21.9± 0.9	0.173± 0.020	0.065± 0.010	0.135± 0.018	0.588± 0.038	0.622± 0.040	
Significant	difference;	*: P ≤ 0.05	** : P ≤ 0.01		st of Dunnett			

(HCL042) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.394± 0.117	0.307± 0.142	4. 193± 0. 517	2.114± 0.174	
2500 ppm	10	1.446± 0.064	0.282± 0.022	4.201± 0.198	2.097± 0.108	
5000 ppm	10	1.392± 0.071	0.272± 0.021	4.023± 0.213	2.107± 0.104	
10000 ppm	10	1.410± 0.105	0.276± 0.015	4.125± 0.259	2.089± 0.083	
20000 ppm	10	1.436± 0.052	0.265± 0.025	4. 100± 0. 173	2.047± 0.094	
40000 ppm	10	1.470± 0.069	0.286± 0.025	4.270± 0.240	1.975± 0.090	
Significant	difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Tes	t of Dunnett	

(HCL042)

APPENDIX M 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

SEX

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

: MALE

1

0 (0) (<10> 0 0 0 0 0 0 0 0 1 0 0 0 1 0	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0
(0) (0 (0) (0 0 0 (0) (0) (0) (10) 1 0 0 (10) (0) (0)	0 0 0 0 (0) (0) (0) (0) <10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0) <10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0) <10> 0 1 0 0 (0) (10) (0) (0)
(0) (0 1 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
(0) (0 1 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
(0) ((0) (10) (0)	0 0 1 0 (0) (10) (0)	0 0 1 0 (0) (10) (0)	0 0 2 0 (0) (0) (0)
tubule 0 (0) (0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10) (10)
	<10> 0 0 0 (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)
	<10> 0 0 0 (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)
	(0) sia 1 (10)	tion 0 0 0 0 0 (0) (0) (0) (0) (0) (0) (0) (tion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

: MALE

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL

SEX

REPORT TYPE : A1

Group Name 20000 ppm 40000 ppm No. of Animals on Study 10 10 Organ_ Findings_ (%) {Hematopoietic system} spleen <10> <10> deposit of melanin 0 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) {Urinary system} kidney <10> inflammatory polyp 0 0 1 0 0 (0)(0)(0)(0) (0)(10)(0)(0) hydronephrosis 0 (0)(0)(10)(0) (0)(0)(10)(0) degeneration:proximal tubule (0)(0)(0)(0) (0)(0)(0)(0) urin bladd <10> <10> inflammatory infiltration 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (Endocrine system) adrenal <10> <10> spindle-cell hyperplasia 0 0 0 0 0 (20) (0) (0) (0) (20) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 Significant difference : * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

APPENDIX M 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX

: FEMALE

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 10 2 3 4 (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Respiratory	system)					
nasal cavit	eosinophilic change:respiratory epith		<10> 0 0 0 (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
{Hematopoieti	c system)					
spleen	deposit of melanin	1 (10)	<10> 0 0 0 (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	extramedullary hematopoiesis	1 (10)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Circulatory	system}	·				
heart	inflammatory infiltration	1 (10)	<10> 0 0 0 (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 (0) (0) (0) (0)
{Digestive sy	stem)					
liver	granulation	2 (20)	<10> 0 0 0 (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10)(0)(0)(0)	1 0 0 0 (10) (0) (0) (0)
Grade <a>> b (c) Significant d	a : Number of animals examined at the s b : Number of animals with lesion c : b / a * 100					

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

ANIMAL REPORT TYPE : A1

SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

PAGE: 4 20000 ppm Group Name 40000 ррш No. of Animals on Study 10 10 Organ_ Findings_ (%) (%) {Respiratory system} nasal cavit <10> <10> eosinophilic change:respiratory epithelium 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) {Hematopoietic system} spleen <10> <10> deposit of melanin 0 0 0 0 0 (20) (0) (0) (0) (10) (0) (0) (0) extramedullary hematopoiesis 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) {Circulatory system} heart inflammatory infiltration 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) {Digestive system} liver <10> <10> granulation 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 5

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Cor 10 2 (%)	3 (%)	<u>4</u> (%)	1 (%)	250 10 2 (%)	3	4 (%)	<u>1</u> (%)		000 pp 10 <u>3</u> (%)	4_	<u>1</u> (%)	1 2 (%		<u>4</u> (%)
{Endocrine :	system)																
adrenal	spindle-cell hyperplasia	9 (90) (<102 0 (0) () 0 0) (0 (0)	10 (100)	<10 0 (0) (0	0 0)	10 (100)	<1 0 (0)	10> 0 (0)	-	9 (90)	0) (0 0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the s: b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤																

(HPT150)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

SEX : FEMALE PAGE: 6 Group Name 20000 рри 40000 ррш No. of Animals on Study 10 10 Findings_ Organ__ (%) (%) (%) {Endocrine system} adrenal <10> <10> spindle-cell hyperplasia 0 0 0 (80) (0) (0) (0) (80) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100 Significant difference : * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

APPENDIX N

METHODS, UNITS AND DECIMAL PLACE FOR
HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK
DRINKING WATER STUDY OF 2-METHYL-1-PROPANOL

METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13- WEEK DRINKING WATER STUDY OF 2-METHYL-1-PROPANOL

Item	Method	Unit	Decimal
Homotology			place
Hematology Red blood cell (RBC)	Tight coattoning moth odl)	×10 ⁶ /μL	2
•	Light scattering method ¹⁾ Cyanmethemoglobin method ¹⁾	1	1
Hemoglobin(Hgb)	Calculated as RBC×MCV/10 1)	g/dL	1
Hematocrit(Hct)		%	1
Mean corpuscular volume(MCV)	Light scattering method 10	fL	1
Mean corpuscular hemoglobin(MCH)	Calculated as Hgb/RBC×10 10	pg	1
Mean corpuscular hemoglobin concentration	Calculated as Hgb/Hct×100 1	g/dL	1
(MCHC)	1)		
Platelet	Light scattering method 1)	$\times 10^3/\mu L$	0
Reticulocyte	Light scattering method 1)	%	1
White blood cell(WBC)	Light scattering method 1)	$\times 10^{3}/\mu \mathrm{L}$	2
Differential WBC	Pattern recognition method 23	%	0
	(Wright staining)		
Biochemistry			
Total protein(TP)	Biuret method 3)	g/dL	1
Albumin (Alb)	BCG method 3)	g/dL	1
A/G ratio	Calculated as Alb/(TP-Alb) 3)	-	1
T-bilirubin	Alkaline azobilirubin method 3)	mg/dL	2
Glucose	GlcK·G-6·PDH method 3)	mg/dL	0
T-cholesterol	CE·COD·POD method 3)	mg/dL	0
Triglyceride	LPL·GK·GPO·POD method 3)	mg/dL	0
Phospholipid	PLD·ChOD·POD method 3)	mg/dL	0
Aspartate aminotransferase (AST)	JSCC method 3)	IU/L	0
Alanine aminotransferase (ALT)	JSCC method 3)	IU/L	0
Lactate dehydrogenase (LDH)	SFBC method 3)	IU/L	0
Alkaline phosphatase (ALP)	GSCC method 3)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	JSCC method ³⁾	IU/L	0
Creatine kinase (CK)	JSCC method 3)	IU/L	0
Urea nitrogen	Urease·GLDH method 3)	mg/dL	1
Sodium	Ion selective electrode method 3)	mEq/L	0
Potassium	Ion selective electrode method 3)	mEq/L	1
Chloride	Ion selective electrode method 3)	mEq/L	0
Calcium	OCPC method 3)	mg/dL	1
Inorganic phosphorus	PNP·XOD·POD method 3)	mg/dL	1

¹⁾ Automatic blood cell analyzer (ADVIA120 : Bayer Corporation) $\,$

²⁾ Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)

³⁾ Automatic analyzer (Hitachi 7080 : Hitachi,Ltd.)