2-アミノ-4-クロロフェノールのラットを用いた 経口投与による13週間毒性試験(混餌試験)報告書

試験番号:0549

APPENDICES

APPENDICES

APPENDIX A 1	IDENTITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY
APPENDIX A 2	STABILITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY
APPENDIX A 3	CONCENTRATION OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY
APPENDIX A 4	HOMOGENEITY OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY
APPENDIX A 5	STABILITY OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY
APPENDIX B 1	CLINICAL OBSERVATION: MALE
APPENDIX B 2	CLINICAL OBSERVATION: FEMALE
APPENDIX C 1	BODY WEIGHT CHANGES: MALE
APPENDIX C 2	BODY WEIGHT CHANGES: FEMALE
APPENDIX D 1	FOOD CONSUMPTION CHANGES: MALE
APPENDIX D 2	FOOD CONSUMPTION CHANGES: FEMALE
APPENDIX E 1	CHEMICAL INTAKE CHANGES: MALE
APPENDIX E 2	CHEMICAL INTAKE CHANGES: FEMALE
APPENDIX F 1	HEMATOLOGY: MALE
APPENDIX F 2	HEMATOLOGY: FEMALE
APPENDIX G 1	BIOCHEMISTRY: MALE
APPENDIX G 2	BIOCHEMISTRY: FEMALE

APPENDICES (CONTINUED)

APPENDIX H 1	URINALYSIS: MALE
APPENDIX H 2	URINALYSIS: FEMALE
APPENDIX I 1	GROSS FINDINGS: MALE
APPENDIX I 2	GROSS FINDINGS: FEMALE
APPENDIX J 1	ORGAN WEIGHT, ABSOLUTE: MALE
APPENDIX J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
APPENDIX K 1	ORGAN WEIGHT, RELATIVE: MALE
APPENDIX K 2	ORGAN WEIGHT, RELATIVE: FEMALE
APPENDIX L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE
APPENDIX L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE

APPENDIX M

METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY

AND BIOCHEMISTRY IN THE 13-WEEK FEED STUDY OF

2-AMINO-4-CHLOROPHENOL

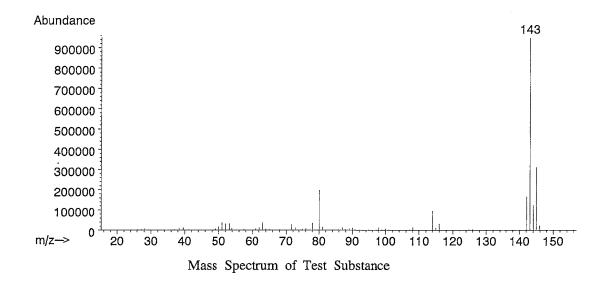
APPENDIX A 1

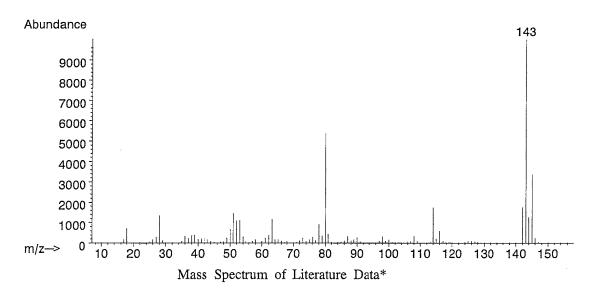
IDENTITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY

IDENTITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY

Test Substance : 2-Amino-4-chlorophenol (Wako Pure Chemical Industries, Ltd.)

Lot No. : CEQ0194


1. Spectral data


Mass Spectrometry

Instrument : Hewlett Packard 5989B Mass Spectrometer

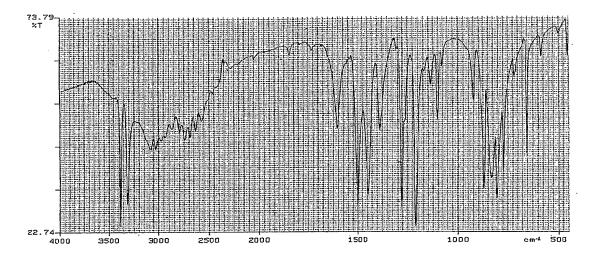
Ionization : EI (Electron Ionization)

Ionization Voltage : 70eV

Result: The mass spectrum was consistent with literature spectrum.

(*McLafferty FW, ed. 1994. Wiley Registry of Mass Spectral Data. 6th ed. New York, NY: John Wiley and Sons.)

Infrared Spectrometry


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2.0 cm⁻¹

Infrared Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Conclusion: The test substance was identified as 2-amino-4-chlorophenol by mass spectrum and infrared spectrum.

APPENDIX A 2

STABILITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY

STABILITY OF 2-AMINO-4-CHLOROPHENOL IN THE 13-WEEK FEED STUDY

Test Substance : 2-Amino-4-chlorophenol (Wako Pure Chemical Industries, Ltd.)

Lot No. : CEQ0194

1. Sample : This lot was used from 2004.9.24 to 2004.12.27. Test substance was

stored in cold storage in a dark place.

2. Gas Chromatography

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : DB-1 (0.25 mm ϕ × 60 m)

Column Temperature : 100 $^{\circ}$ C \rightarrow (10 $^{\circ}$ C/min) \rightarrow 250 $^{\circ}$ C (5 min)

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 µL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
2004.07.27	1	12.373	100
2005.01.11	1	12.374	100

Result: Gas chromatography indicated one major peak (peak No.1) analyzed on 2004.7.27 and one major peak (peak No.1) analyzed on 2005.1.11. No new trace impurity peak in the test substance analyzed on 2005.1.11 was detected.

3. Conclusion: The test substance was stable for about 6 months in cold storage in a dark place.

APPENDIX A 3

CONCENTRATION OF 2-AMINO-4-CHLOROPHENOL

IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

CONCENTRATION OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

		Target Concentration											
Date Analyzed	512ª	1280	3200	8000	20000								
2004.09.23	498 (97.3) ^b	1250 (97.7)	3350 (105)	8080 (101)	20600 (103)								

^a ppm ^b %

Analytical method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Shimadzu LC-10 High Performance Liquid Chromatograph

Column

: TSK GEL ODS-80TM (4.6 mm ϕ \times 15 cm)

Column Temperature

: 40 ℃

Flow Rate

: 0.8 mL/min

Mobile Phase

: Methanol : Acetonitrile : Phosphoric Acid

(5 mM Octanesulfonic Acid Sodium Salt Monohydrate pH2.4) = 1:1:3

Detector

: UV (284 nm)

Injection Volume

: 10 μL

APPENDIX A 4

HOMOGENEITY OF 2-AMINO-4-CHLOROPHENOL

IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

HOMOGENEITY OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

	Target Concentration									
	512ª	1280	3200	8000	20000					
Coefficient Variation	1.62 ^b	2.85	1.62	2.16	3.77					

Analytical method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Shimadzu LC-10 High Performance Liquid Chromatograph

Column

: TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature

: 40 ℃

Flow Rate

: 0.8 mL/min

Mobile Phase

: Methanol : Acetonitrile : Phosphoric Acid

(5 mM Octanesulfonic Acid Sodium Salt Monohydrate pH2.4) = 1:1:3

Detector

: UV (284 nm)

Injection Volume

: 10 µL

^a ppm
^b % (n=7)

APPENDIX A 5

STABILITY OF 2-AMINO-4-CHLOROPHENOL

IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

STABILITY OF 2-AMINO-4-CHLOROPHENOL IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

		Target Co	oncentration
Date Prepared	Date Analyzed	512ª	20000
2004.06.11	2004.06.11	484 (100) ^b	19900 (100)
	2004.06.16°	437 (90.3)	19600 (98.5)
	2004.06.25 ^d	477 (98.6)	19400 (97.5)

a ppm

Analytical method : The samples were analyzed by high performance liquid chromatography.

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: 40 ℃

Flow Rate : 0.8 mL/min

Mobile Phase : Methanol : Acetonitrile : Phosphoric Acid

(5 mM Octanesulfonic Acid Sodium Salt Monohydrate pH2.4) = 1:1:3

Detector : UV (284 nm)

Injection Volume : 10 μL

^b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

d Cold storage samples

APPENDIX B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrl;[F344/DuCrj]
REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W	eek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	512 ppm	ō	0	0	Ö	Ö	Ö	0	0	Ö	0	Ô	0	0
	1280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	3200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	8000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррш	0	10	10	2	4	4	4	4	4	4	6	6	6
ON REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10
	512 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	1280 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	3200 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	. 8000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	20000 ppm	10	0	0	8	6	6	6	6	6	6	4	4	4

(HAN190)

APPENDIX B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini	stration W	eek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	512 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	3200 ppm	0	2	2	2	2	2	2	2	2	2	2	2	2
	muq 0008	0	0	0	2	2	2	2	2	2	2	2	2	2
	20000 ppm	2	6	6	7	7	7	7	7	7	7	7	7	7
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	512 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1280 ppm	0	0	0	0	0	0	0	.0	0	0	0	0	0
	3200 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0
	8000 ppm	0	1	2	3	3	3	3	3	3	3	3	3	3
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	512 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	3200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	8000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
•	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1
NON REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10
	512 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	1280 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	3200 ppm	10	8	8	8	8	8	8	8	8	8	8	8	8
	8000 ppm	10	9	8	5	5	5	5	5	5	5	5	5	5
	20000 ppm	8	4	4	3	3	3	3	3	3	3	3	3	3

(HAN190)

APPENDIX C 1

BODY WEIGHT CHANGES: MALE

STUDY NO. : 0549 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

oup Name	Admini	stratio	n week		Administration week												
,,,,,	0		1		2		3		4		5		6				
Control	123 ±	4	153±	6	188±	9	210±	9	229±	11	245±	12	260土	13			
512 ppm	123±	4	152±	5	198±	44	205±	7	220±	9	238±	8	252±	10			
1280 ppm	123±	4	152±	4	185±	6	209±	6	226±	7	242±	9	257±	8			
3200 ppm	123±	4	151±	4	186±	5	206±	5	221±	5	237±	7	253±	6			
8000 ppm	123±	4	150±	5	181上	5	200±	4 * *	212±	7 * * .	223±	10**	240±	12**			
20000 ррт	123±	4	132±	5**	161±	6 **	181±	6 ≯ >*	192±	8**	202±	10**	216±	11**			
Significant differenc	ne; *:P≤0	. 05	**: P ≤ 0.0)T			Test of Du	unnatt					x				

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

230± 11**

UNIT : g REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name Administration week_ 7 9 10 11 12 13 Control 273± 14 286土 15 296± 14 307± 15 314± 15 323± 17 330± 16 512 ppm 267± 10 281 ± 10 292± 11 301 ± 11 309± 11 317± 11 325± 13

1280 ppm	274±	9	289±	9	300±	9	309±	10	318±	11	327±	11	334±	11
3200 ppm	269±	8	283±	8	296±	10	306±	10	316±	11	325±	11	332±	9
8000 ррш	255土	12**	270±	12**	280±	15*	290±	14**	298±	14*	307生	14*	312土	17*

262± 10**

271± 10**

278士 11**

Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

253± 10**

241± 10**

(HAN260)

20000 ppm

BAIS 4

285± 10**

PAGE: 2

APPENDIX C 2

BODY WEIGHT CHANGES: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

oup Name	Admini	stration	week											
	0		1		2		3		4		5		6	
Control	99±	3	113±	4	127±	4	135±	4	141±	5	149±	6	152土	5
512 ppm	99±	3	115±	5	129±	6	137±	7	144±	7	152±	8	157±	9
1280 ppm	99±	3	112±	3	127±	4	135±	6	142±	5	148±	8	153±	8
3200 ppm	99±	3	113±	4	125±	5	134±	6	141±	5	147±	6	151±	7
8000 ppm	99 土	3	111±	4	123生	6	129±	6	134土	б	141土	8	145土	9
20000 ppm	99±	3	104±	4 **	118±	5 **	125±	5**	129±	5**	135±	7**	140±	7 * *
Significant difference	ce; *:P≤(. 05	** : P ≤ 0.0	1			Test of Dur	mett						•

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 13

(SUMMARY)

BODY WEIGHT CHANGES

ALL ANIMALS

7 155±	6	8		9		10		11		12		13	
155土	6												
		158±	6	162±	7	167±	7	169生	7	172±	8	174土	8
160±	11	162±	12	166±	14	170±	14	174±	15	176±	15	178±	15
156±	. 8	158±	10	164±	10	167±	10	171±	11	172±	9	175±	12
156±	7	159±	8	162±	8	166±	7	168生	9	170±	7	172±	7
149±	9	153上	9	156±	9	159土	10	162土	11	164土	11	167±	11
143±	7**	147±	8*	149±	7 ∗	151±	8**	156±	8*	158±	8*	161±	9*
	156± 156± 149±	156± 8 156± 7 149± 9 143± 7**	156± 8 158± 156± 7 159± 149± 9 153± 143± 7** 147±	156± 8 158± 10 156± 7 159± 8 149± 9 153± 9 143± 7** 147± 8*	156± 8 158± 10 164± 156± 7 159± 8 162± 149± 9 153± 9 156± 143± 7** 147± 8* 149±	156± 8 158± 10 164± 10 156± 7 159± 8 162± 8 149± 9 153± 9 156± 9 143± 7** 147± 8* 149± 7*	156± 8 158± 10 164± 10 167± 156± 7 159± 8 162± 8 166± 149± 9 153± 9 156± 9 159± 143± 7** 147± 8* 149± 7* 151±	156± 8 158± 10 164± 10 167± 10 156± 7 159± 8 162± 8 166± 7 149± 9 153± 9 156± 9 159± 10 143± 7** 147± 8* 149± 7* 151± 8**	156± 8 158± 10 164± 10 167± 10 171± 156± 7 159± 8 162± 8 166± 7 168± 149± 9 153± 9 156± 9 159± 10 162± 143± 7** 147± 8* 149± 7* 151± 8** 156±	156± 8 158± 10 164± 10 167± 10 171± 11 156± 7 159± 8 162± 8 166± 7 168± 9 149± 9 153± 9 156± 9 159± 10 162± 11 143± 7** 147± 8* 149± 7* 151± 8** 156± 8*	156± 8 158± 10 164± 10 167± 10 171± 11 172± 156± 7 159± 8 162± 8 166± 7 168± 9 170± 149± 9 153± 9 156± 9 159± 10 162± 11 164± 143± 7** 147± 8* 149± 7* 151± 8** 156± 8* 158±	156± 8 158± 10 164± 10 167± 10 171± 11 172± 9 156± 7 159± 8 162± 8 166± 7 168± 9 170± 7 149± 9 153± 9 156± 9 159± 10 162± 11 164± 11 143± 7** 147± 8* 149± 7* 151± 8** 156± 8* 158± 8*	156± 8 158± 10 164± 10 167± 10 171± 11 172± 9 175± 156± 7 159± 8 162± 8 166± 7 168± 9 170± 7 172± 149± 9 153± 9 156± 9 159± 10 162± 11 164± 11 167± 143± 7** 147± 8* 149± 7* 151± 8** 156± 8* 158± 8* 161±

(HAN260)

APPENDIX D 1

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

oup Name	Administration week						
	1	2	3	4	5	6	7
Control	13.5± 0.7	14.1± 0.8	13.9± 0.7	14.4± 0.8	14.4± 0.9	14.4± 1.0	14.5± 1.0
512 ppm	13.2± 0.7	13.2± 0.7*	13.7± 0.7	13.8± 0.8	14.0± 0.7	14.2± 0.7	14.3± 0.9
1280 ppm	13.4± 0.8	13.8± 0.7	13.7± 0.8	14.1± 0.6	14.1± 0.7	14.5± 0.9	14.7± 0.6
3200 ррт	13.4± 0.5	14.1± 0.7	14.0± 0.7	14.1± 0.7	13.8± 0.5	14.3± 0.4	14.5± 0.8
8000 ppm	13.0± 0.5	13.6± 0.5	13.5 ± 0.4	13.7± 0.6	13.1± 0.9**	13.5 ± 0.9	13.8生 0.9
20000 ррт	11.1± 0.6★★	12.4± 0.6**	12.9± 0.7 * *	12.8± 0.6**	12.3± 0.7**	12.7± 0.8**	13.0± 0.7**
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			144 AND 41 A

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

p Name	8	9	10			Administration week							
			10	11	12	13							
Control	14.4± 0.8	14.2± 0.7	14.3± 0.7	14.2± 0.9	14.4± 1.0	14.4± 0.9							
512 ppm	14.0± 0.9	14.1± 0.8	14.1± 0.6	13.9± 0.8	14.3± 0.9	14.1± 0.8							
1280 ppm	14.3± 0.7	14.3± 0.7	14.3± 0.6	14.5± 0.7	14.2± 0.6	14.2± 0.7							
3200 ррш	14.4± 0.7	14.5± 0.8	14.6± 0.5	14.6± 0.6	14.9± 0.5	14.7± 0.8							
8000 ppm	14.1± 0.8	13.6± 0.9	13.7± 0.9	13.8± 0.7	13.8± 0.9	13.6± 1.7							
20000 ррт	12.9± 0.8≯≠	13.2± 0.6*	13.1± 0.8★★	13.2生 0.6***	13.1± 0.8**	13.2± 0.6*							
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett									

APPENDIX D 2

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

oup Name	Administration	week					
	1	2	3	4	5	6	7
Control	9.7± 0.5	9.9± 0.4	9.9 ± 0.6	9.9± 0.8	10.3± 0.8	9.9± 0.6	9.7 ± 0.8
512 ppm	9.9± 0.5	9.9± 0.8	10.1± 0.9	10.3± 0.8	10.3± 0.9	9.8± 0.9	9.9± 0.8
1280 ppm	9.4± 0.6	9.7± 0.7	10.0± 0.6	10.2± 1.0	10.4± 1.1	10.1± 0.8	9.7± 1.1
3200 ррт	9.9± 0.4	9.4± 0.5	9.7± 0.7	10.2± 0.5	9.9± 0.7	9.8± 0.6	9.8± 0.8
8000 ррш	9.3 ± 0.5	9.4± 0.6	9.2± 0.8	9.6± 0.8	9.7± 0.8	9.1± 0.9	9.1± 0.7
20000 ppm	9.4± 0.7	9.2± 0.7	9.5± 0.4	9.0± 0.7	9.3± 0.7*	9.0± 0.9	8.8± 0.7
- T.D							
Significant differen	rce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 4

oup Name	Administration	week					
	8	9	10	11	12	13	
Control	9.5± 0.5	9.5± 0.5	9.4± 0.6	9.3± 0.5	9.3± 0.6	9.2± 0.5	
512 ppm	9.0± 1.1	9.2± 1.1	9.4± 0.9	9.5± 1.1	9.6± 0.8	9.2± 0.9	
1280 ppm	9.3± 1.1	9.7± 1.2	9.7± 1.1	9.6± 1.1	9.3± 1.0	9.4± 1.1	
3200 ррт	9.2± 0.6	9.3± 0.6	9.3± 0.5	8.9± 0.4	9.2± 0.6	8.9± 0.5	
8000 ppm	9.0± 0.6	9.1± 0.5	9.0± 0.7	9.0± 0.8	9.0± 0.7	8.9± 0.9	
20000 ррт	9.0± 0.5	8.7± 0.7	8.6± 0.6	9.0± 0.6	9.0± 0.6	8.9± 0.8	
Significant differen	ve; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX E 1

CHEMICAL INTAKE CHANGES: MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

rlj[F344/DuCrj] ALL ANIMALS

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

oup Name	Administration	(weeks)			*		
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000	0.000± 0.000	0.000± 0.000
512 ppm	0.044± 0.002	0.035± 0.005	0.034± 0.001	0.032± 0.001	0.030± 0.001	0.029± 0.001	0.027± 0.001
1280 ppm	0.113± 0.005	0.095± 0.003	0.084± 0.003	0.080± 0.002	0.075± 0.001	0.072± 0.002	0.069± 0.001
3200 ppm	0.284± 0.011	0.242± 0.008	0.218± 0.009	0.204± 0.008	0.186± 0.005	0.181± 0.004	0.172± 0.008
8000 ppm	0.694± 0.018	0.600± 0.012	0.540± 0.019	0.520± 0.022	0.469± 0.014	0.451± 0.014	0.433 ± 0.018
20000 ppm	1.681 ± 0.065	1.540± 0.048	1.425± 0.064	1.333± 0.077	1.216± 0.024	1.174± 0.042	1.127± 0.037

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g / kg / d a y
REPORT TYPE : A1 13

ALL ANIMALS

SEX : MALE

PAGE: 2

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000	0.000± 0.000	0.000± 0.000	
512 ppm	0.026± 0.001	0.025± 0.001	0.024± 0.001	0.023± 0.001	0.023± 0.001	0.022± 0.001	
1280 ppm	0.064± 0.002	0.061± 0.002	0.059± 0.001	0.058± 0.001	0.056± 0.002	0.054± 0.002	
3200 ppm	0.163± 0.006	0.156± 0.005	0.153± 0.003	0.149± 0.005	0.146± 0.004	0.142± 0.007	
8000 ppm	0.417± 0.021	0.389± 0.014	0.380± 0.016	0.372± 0.014	0.361± 0.013	0.348± 0.033	
20000 ррш	1.070± 0.067	1.043± 0.049	0.997± 0.056	0.972± 0.036	0.940± 0.050	0.925± 0.044	

(IIAN300)

APPENDIX E 2

CHEMICAL INTAKE CHANGES: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
UNIT : g/kg/day
REPORT TYPE : A1 13

SEX : FEMALE

Group Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000
512 ppm	0.044± 0.003	0.039 ± 0.002	0.038± 0.003	0.037 ± 0.002	0.035 ± 0.002	0.032± 0.002	0.032± 0.002
1280 ppm	0.107± 0.005	0.098± 0.007	0.095± 0.003	0.092± 0.007	0.090± 0.006	0.085 ± 0.004	0.080 ± 0.006
3200 ppm	0.280± 0.007	0.241± 0.008	0.0004 0.010	0.232± 0.009	0.017 + 0.000	0.007 ± 0.000	0.000-1- 0.011
3200 ppiii	0.200 ± 0.001	0.241 = 0.006	0.232± 0.010	0.232± 0.009	0.217± 0.009	0.207± 0.009	0.202± 0.011
8000 ppm	0.674± 0.029	0.614± 0.031	0.567± 0.031	0.569± 0.030	0.548± 0.022	0.502± 0.033	0.491± 0.022
20000 ppm	1.807± 0.089	1.566± 0.108	1.519± 0.075	1.398± 0.069	1.367± 0.064	1.283± 0.076	1.230± 0.064

(IIAN300)

BAIS 4

PAGE: 3

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g / kg / d a y
REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
512 ppm	0.028± 0.002	0.029± 0.001	0.029± 0.001	0.028± 0.001	0.028± 0.001	0.026± 0.001	
1280 ppm	0.075± 0.005	0.076± 0.006	0.075± 0.006	0.072± 0.005	0.069± 0.005	0.069± 0.005	
3200 ppm	0.187± 0.010	0.184± 0.009	0.179± 0.007	0.171± 0.010	0.174± 0.011	0.165± 0.009	
8000 ppm	0.470± 0.012	0.467± 0.019	0,455± 0,021	0.445± 0.017	0.439± 0.020	0.424± 0.028	
20000 ppm	1. 234± 0. 044	1.165± 0.059	1.142± 0.058	1.152± 0.038	1.136± 0.029	1.111± 0.039	

(IIAN300)

BAIS 4

PAGE: 4

APPENDIX F 1

HEMATOLOGY: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

oup Name	NO. of Animals	RED BLO	OOD CELL	HEMOGLO g/dl	DBIN	HEMATOC %	CRIT	MCV f l		MCH pg		MCHC g/dl		PLATELET 1 0³/µ	
Control	10	9.34±	0. 17	16.3±	0.3	45.6±	0.6	48.8±	0.6	17.5±	0.4	35.8±	0.6	687±	53
512 ppm	10	9.40±	0. 19	16.4±	0.3	45.9±	1.0	48.9±	0.6	17.4±	0.2	35.6±	0.4	680±	29
1280 ppm	10	9.32±	0. 17	16.2±	0. 2	45.5±	0.8	48.9±	0.6	17.4±	0.2	35.6±	0.6	711±	40
3200 ppm	10	8.97±	0.13**	15.6±	0.3**	44.5±	0.9*	49.6±	0.5*	17.4±	0.3	35.1±	0.5**	745±	64*
mqq 0008	10	8.56±	0.17**	15.3±	0.3**	44.0±	0.6**	51.4±	0.7**	17.8±	0.2**	34.7生	0. 3**	796土	60**
20000 թթա	10	7.82±	0.15**	14.6±	0.2**	42.3±	0.8**	54.0±	0.6**	18.7±	0. 2**	34.5±	0. 3**	748±	42*

(HCL070) BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

SEX : MALE	REPORT 1	TYPE: A1								PAGE: 2
Group Name	NO. of Animals	RETICUI %	LOCYTE	metiiemogl %	OBIN .	 				
Control	10	1.8±	0. 1	0.3±	0. 1					
512 ppm	10	1.8±	0. 2	0.3±	0.1					
1280 ppm	10	2.0±	0. 2*	0.3±	0. 1					
3200 ppm	10	2.6±	0. 2**	0.5±	0. 1					
8000 ppm	10	3.8±	0.3**	0.8±	0. 3**					
20000 թբա	10	5.6±	0. 2**	1.0±	0. 2**					
Significant	difference;	*: P ≤ (0.05 *	* : P ≤ 0.01		Test of	Dunnett	 	 	
(HCL070)								 	 	DATE

(HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 3 Group Name NO. of WBC Differential WBC (%) Animals $10^{3}/\mu l$ N-BAND N-SEG EOSINO BASO MONO LYMPHO OTHER Control 10 4.54± 1.14 0± 19± 0 3 $1\pm$ 0± 0 $3\pm$ 2 77 ± 0土 0 512 ppm 10 4.81 ± 0.87 $0\pm$ 0 17± 3 土 1 $0\pm$ 0 $3\pm$ 78± 0± 0 1280 ppm 10 5.11 ± 0.93 0± 0 18± 3 1± 0± 0 $3\pm$ 2 78± $0\pm$ 0 3200 ppm 10 4.82± 1.04 0± 0 20土 3 i± 1 0± 0 3± 2 76± 0 0± 8000 ppm 10 5.03± 0.85 0<u>+</u> 0 17± 1± 0土 3 -1-79<u>-1-</u> <u>1-</u>0 0 1 20000 ppm 10 4.94± 0.98 Ο± 16± 4 1± 1 0± 0 3± 2 80 ± $0\pm$ 0 Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HCL070)

APPENDIX F 2

HEMATOLOGY: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 4 Group Name NO. of RED BLOOD CELL HEMOGLOBIN HEMATOCRIT MCV MCH MCHC PLATELET Animals 1 05/µl g/dl % f £ g/dl 103/µl рg Control 10 8.76± 0.23 $16.3 \pm$ 0.5 44.5± 1.1 $50.9 \pm$ 0.5 18.6± 0.1 36.5± 740± 0.5 33 43.8± 1.0 512 ppm 10 8.60 ± 0.21 16.0± 0.4 $50.9 \pm$ 0.6 18.6± 0.1 $36.6 \pm$ 0.3 724± 60 1280 ppm 10 8.50 ± 0.16* 15.9± 0.3 43.8± 0.6 0.6* 18.7 \pm 0.2 $51.6 \pm$ $36.3 \pm$ 0.4 $776 \pm$ 53 3200 ppm 10 8.20± 0.22** 15.6± 0.4** 43.6± 1.3 53.2生 0.6** 19.0± 0.2** $35.8 \pm$ 0.4** 763± 61 8000 ppm 10 7.75± 0.25** 15.0 \pm 0.4** 41.9± 1.2** $54.1 \pm$ 0.4** 19.4土 0.3** $35.8 \pm$ 0.4** 869± 85** 20000 ppm 10 7.14± 0.16** 14.1± 0.3** $40.0 \pm$ 0.8** 56.1 \pm 0.5** 19.8± 0.3** $35.4 \pm$ 0.5** 848± 65** Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett

(HCL070)

STUDY NO. : 0549
ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

oup Name	NO. of Animals	RETICUI %	OCYTE	METHEMOG %	LOBIN					
Control	10	1.7±	0. 2	0.3±	0. 1					
512 ppm	10	1.7±	0.2	0.3±	0.1					
1280 ppm	10	2.1±	0.2	0.3±	0.0					
3200 ppm	10	2.5±	0.4**	0.3±	0. 1					
8000 ppm	10	3.7±	0. 7**	0.7±	0.3			·		
20000 ррт	10	5.7±	0.7**	1.0±	0.3**		•			
Significant	difference;	*: P ≤ 0). 05 *	* : P ≤ 0.01		 Test of D	unnett		 	
CL070)					****	 			 	BA

PAGE: 5

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 6

roup Name	NO. of Animals	₩BC 1 0³/1		Dif N-BAND	ferentia	1 WBC (% N-SEG	n)	EOSINO		BAS0		MONO	,	LYMPHO		OTHER	
Control	10	2. 45±	0. 70	0±	0	17±	4	1±	1	0±	0	4 1 :	2	78±	5	0生	0
512 ppm	10	2.66±	1. 20	0±	0	18±	4	1±	1	0±	0	3±	2	77±	5	0±	0
1280 ppm	10	2.52±	0.78	0±	0	17±	3	2±	1	0±	0	4±	2	78±	3	0±	0
3200 ppm	10	2.49±	0. 47	0±	0	18±	3	1±	ı	0±	0	<u>4±</u>	2	78±	4	0±	0
8000 ppm	10	2.86±	0.82	0±	0	17±	4	ι±	1	0±	0	3±	2	79土	4	0±	0
20000 թբm	10	3. 22±	1. 25	0±	0	18±	4	1±	1	0±	0	4 ±	2	78±	5	0±	0
	difference ;			0± **: P ≦		18±	4		1 of Dunr		0	4± 	2	78±	5		;±

BAIS 4 (HCL070)

APPENDIX G 1

BIOCHEMISTRY: MALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME : 1
SEX : MALE REPORT TYPE : A1

PAGE: 1

oup Name	NO. of Animals	TOTAL F g/dl		ALBUMIN g∕dl	ı	A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	10	6.3±	0.2	3.5±	0.1	1.3±	0.1	0.11±	0.01	210±	22	65±	4	60 <u>-</u> 1-	15
512 ppm	10	6.4±	0.2	3.5±	0.1	1.3±	0.1	0.12±	0.01	214±	18	63±	4	68±	16
1280 ppm	10	6.4±	0. 1	3.5±	0.1	1.2±	0.1	0.12±	0.01	213±	15	62±	5	63±	20
3200 ppm	10	6.5±	0. 1	3.6±	0.1	1.2±	0.0	0.12±	0.01	221±	19	63±	5	66±	16
8000 ppm	10	6.4±	0. 1	3.5±	0. 1	1.3±	0. 1	0.12±	0.01	206±	12	62±	4	56土	23
20000 թթա	10	6.5±	0.2	3.6±	0. 1	1.2±	0. 1	0.16±	0. 02**	201±	12	73±	6**	54±	16

(HCL074)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 2 Group Name NO. of PHOSPHOLIPID AST ALT LDH ALP G-GTP CK mg/dl Animals IU/l IU/2 IU/l IU/l IU/l IU/2 Control 10 115士 7 56± 109± 45 16 215± 74 $242\pm$ 15 1土 1 112± 11 10 115± 122± 512 ppm 34 59± 13 227± 48 248± 15 $1 \pm$ 109± 11 1280 ppm 10 116± 9 110± 37 $53 \pm$ 12 $205\pm$ 67 $252\pm$ 10 1± 108± 14 3200 ppm 10 118± 8 131± 68 $59\pm$ 20 257± 134 250± 22 $2\pm$ 118± 21 8000 ppm 10 115± 7 99± 28 $45\pm$ 10 177± 46 $242 \pm$ 25 $2\pm$ 1 100土 11 20000 ppm 10 $130 \pm$ 7** 84± 10 35± 3** 160± 45 $225\pm$ 27 $4\pm$ 1** 94± 14* Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(IICL074)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : AI

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

Group Name NO. of UREA NITOROGEN CREATININE SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg/dl mg/dl m Eq / L m Eq/2 mEq/ℓ mg/dl mg/dl Control 10 18.4± 1.2 $0.5\pm$ 0.1 141± 3.4 ± 0.2 1 104土 1 10.2 ± 0.2 5.3± 0.6 512 ppm 10 18.5 \pm 1.0 $0.5 \pm$ 0.1 141± $3.3 \pm$ 0.2 104± 10.2± 0.2 5.5± 0.5 1280 ppm 0.2 10 18.5± 1.8 $0.5 \pm$ 0.1 142± 3.4 ± 0.2 104± $10.3 \pm$ 5.4生 0.5 3200 ppm 10 18.9± 1.3 $0.6 \pm$ 0.1 $142 \pm$ 3.4生 0.2 104± 10.3± 0.2 5.5± 0.5 8000 ppm 10 18.4± 2.0 0.5± 0.1 141± 1 3.5± 0.2 104± 10.2± 0.3 $5.5 \pm$ 0.6 20000 ppm 10 18.9± 1.9 0.5± 0.1 141± 1 3.8± 0.2** 103± 10.4± 0.2 5.7± 0.5 Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

PAGE: 3

(HCL074)

APPENDIX G 2

BIOCHEMISTRY: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1 SEX: FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

oup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g/dl		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYCE mg/dl	RIDE
Control	10	6. 3土	0.2	3.5±	0. 1	1.2±	0. 1	0.14±	0.02	151±	16	75±	6	14±	4
512 ppm	10	6.2±	0.2	3.5±	0. 1	1.3±	0.1	0.14±	0.02	152±	11	74±	5	14±	4
1280 ppm	10	6.3±	0.2	3.5±	0.1	1.3±	0.1	0.14±	0.03	151±	16	79±	3	16±	7
3200 ppm	10	6.2±	0.2	3.4±	0.1	1.3±	0.1	0.19±	0.14	143±	17	75±	4	14±	4
8000 ppm	10	6.3±	0.2	3.6±	0. 1	1.4±	0.1**	0.15±	0.02	162±	10	82±	6**	11±	7
20000 ppm	10	6.3±	0.2	3.5±	0.1	1.3±	0. 1	0.17±	0.02*	180±	20**	93 ±	6**	16±	5

PAGE: 4

(IICL074) BAIS 4

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1 SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

oup Name	NO. of Animals	PHOSPHOI mg/dL	LIPID	AST IU/1		ALT IU/L	!	LDH I U/	2	ALP IU/£	!	G-GTP I U/2		I U/A	2
Control	10	140±	11	87±	12	40±	5	261±	84	179±	21	2±	1	127±	23
512 ppm	10	139±	9	80±	10	37±	3	266±	190	188±	26	2±	1	134±	50
1280 ppm	10	150±	8	78±	9	37±	6	252±	154	174土	24	1±	1	126±	46
3200 ppm	10	141 ±	6	81±	18	34±	6*	427±	605	187±	18	2±	1	179±	120
8000 ppm	10	150±	11	90±	33	37±	13*	268±	110	186±	17	3±	1**	125±	29
20000 ppm	10	158±	8**	86±	11	34±	5	294±	155	191±	19	7±	2**	126±	41

BAIS 4 (HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : AI

PAGE: 6

oup Name	NO. of Animals	UREA NIT mg/dl	OROGEN	CREATIN mg/dl	INE	SODIUM m Eq/l		POTASSI m Eq/		CHLORIDE m Eq / L		CALCIUN mg/dl	[INORGAN mg/dl	IC PHOSPHORU
Control	10	19.0生	1. 0	0.5±	0.1	141±	1	3.5±	0.3	105±	2	9.8±	0.3	5. 2土	1.0
512 ppm	10	19.0±	1.6	0.5±	0.1	141±	1	3.6±	0.2	105±	2	9.9±	0.3	5.2±	0.8
1280 ppm	10	18.0±	2.4	0.6±	0.1	141生	2	3.5±	0.3	105±	2	9.7±	0.3	5.0±	0.8
3200 ppm	10	17.7±	2.0	0.6±	0. 1	140±	2	3.8±	0.5	106±	2	9.7±	0.3	5.6±	0.7
8000 ppm	10	19.1±	1.3	0.6生	0.1	141±	1	3.6±	0.3	105±	1	9.7±	0. 4	5. 1 '	0.8
20000 ррш	10	20.6±	1. 3	0.5±	0.0	140±	1	3.7±	0.3	105±	1	9.8±	0.3	5.2±	0. 7

(HCL074)

APPENDIX H 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

10

MEASURE. TIME: 1

8000 ppm

20000 ppm

SEX : MALE

REPORT TYPE : A1

NO. of	pf]									P:	rote	in_					G1	uco	se.					Ket	one	body	r				Bili	uhir	1				
Animals	5.	0 6	6.0	6.5	7.0	7.5	8.0	8.5	CHI	_	- ±	+	2+	3+	4+	CHI	_	±	+	2+	3+ 4	4+ CH)						4+	CIII					CIII			
																																					-
10	0	1	0	0	0	0	4	6			0 (6	4	0	0		10	0	0	0	0	0		0	3	7 (0	0			10	0	0				
10	0	,	0	0	0	0	3	7			0 (8 (2	0	0		10	0	0	0	0	0		0	6	4 (0	0			10	0	0				
10	O	1	0	0	0	0	4	6			0 1	. 7	2	0	0		10	0	0	0	0	0		2	4	4 (0	0			10	0	0				
10	0	;	0	0	0	0	2	8		:	0 (10	0	0	0	*	10	0	0	0	0	0		0	8	2 (0	0	*		10	0	0				
	Animals 10 10 10	Animals 5. 10 0 10 0 10 0	10 0 10 0 10 0	10 0 0 10 10 0 0 10 0 0	10 0 0 0 10 10 0 0 0	Animals 5.0 6.0 6.5 7.0 10 0 0 0 0 10 0 0 0 0 10 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 10 0 0 0 0 0 0 10 0 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 10 0 0 0 0 0 4 10 0 0 0 0 0 3 10 0 0 0 0 0 4	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 10 0 0 0 0 0 4 6 10 0 0 0 0 0 3 7 10 0 0 0 0 0 4 6	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI 10 0 0 0 0 0 4 6 10 0 0 0 0 3 7 10 0 0 0 0 0 4 6	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI 10 0 0 0 0 0 4 6 10 0 0 0 0 3 7 10 0 0 0 0 0 4 6	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ±	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 10 0 0 0 0 0 4 6 0 0 6 10 0 0 0 0 0 3 7 0 0 8 10 0 0 0 0 0 4 6 0 1 7	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 10 0 0 0 0 0 4 6 0 0 6 4 10 0 0 0 0 0 3 7 0 0 8 2 10 0 0 0 0 0 4 6 0 1 7 2	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 10 0 0 0 0 0 4 6 0 0 6 4 0 10 0 0 0 0 0 3 7 0 0 8 2 0 10 0 0 0 0 0 4 6 0 1 7 2 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4+ CH 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4+ CHI 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 10 0 0 0 0 0 3 7 0 0 8 2 0 0 10 0 0 0 0 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4+ CHI — 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4+ CHI — ± - ± - 10 0 0 0 0 0 4 6 0 0 6 4 0 0 10 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 8 2 0 0 10 0 0 0 0 6 10 0 0 0 0 0 4 6 0 1 7 2 0 0 10 0 0 0 0 0 2 4	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI 10 0 0 0 0 0 0 0 4 6 0 0 0 6 4 0 0 10 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — + 2+ 3+ 4+ CHI — ± + 2+ 3+ 4	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — ± + 2+ 3+	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — + 2+ 3+ 4+ CHI — + 2+ 3	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — + 2+ 3+ 4+ CHI — + 2+ 3+ 4+ CHI — + 2+	Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI — ± + 2+ 3+ 4+ CHI — + 2+ 3+

10 0 0 0 0 0

10 0 0 0 0 0

2 6 2 0 0 0

7 2 1 0 0 0 **

10 0 0 0

0 10 0 0 **

0 3 7 0 0 0 *

0 10 0 0 0 0 **

PAGE: 1

Significant difference ; *: $P \le 0.05$ **: $P \le 0.01$ Test of CHI SQUARE

0 0 0 0 2 4 4

0 0 0 1 6 2 1 *

(HCL101) BAIS 4

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood $-\pm +2+3+$ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	9 1 0 0 0	10 0 0 0 0		
512 ppm	10	10 0 0 0 0	10 0 0 0 0		
1280 ppm	10	10 0 0 0 0	10 0 0 0 0		
3200 ppm	10	9 0 1 0 0	10 0 0 0 0		
8000 ppm	10	10 0 0 0 0	10 0 0 0 0		
20000 ppm	10	10 0 0 0 0	10 0 0 0 0		
Significant	difference	; *: P ≤ 0.05 **	$: P \leq 0.01$	Test of CHI SQUARE	
(HCL101)					BAIS

PAGE: 2

APPENDIX H 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of	Hu								Prot	ein				(luce	se_				Ket	one	bod	lv				Bi!	iru	oin		
	Animals	5. 0	6.0	6.5	7. 0	7.5	8.0	8.5	CHI	- =			3+	4+ CH				2+	3+ 4	4+ CHI					+ 4+	· C	HI			2+ 3-	+	CHI
Control	10	0	0	0	0	0	8	2		0	4 8	5 (0	0	:	.0 (0	0	0	0	4	6	0	0	0 0)		10	0	0 (0	
512 ppm	10	0	0	0	0	0	1	9	**	0	4 6	5 (0	0	:	.0	0	0	0	0	6	4	0	0	0 0)		10	0	0 0	0	
1280 ppm	10	0	0	0	0	0	2	8	**	0	4 6	6 (0	0		.0	0	0	0	0	6	4	0	0	0 0)		10	0	0 (0	
3200 ppm	10	0	0	0	0	0	1	9	**	0	7 :	3 (0	0		.0	0	0	0	0	6	4	0	0	0 0)		10	0	0 (0	
mqq 0008	10	0	0	0	0	0	. 3	7	*	2	6 2	2 (0	0		.0	0	0	0	0	7	3	0	0	0 0)		7	3	0 (0	
20000 ррв	10	0	0	0	0	0	10	0		i	7 2	2 (0	0		0	0	0	0	0 .	10	0	0	0	0 0) *	*	2	8	0	0	**

(HCL101) BAIS 4

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
0 . 1	10	10.0.0.0	10.000		
Control	10	10 0 0 0 0	10 0 0 0 0		
512 ppm	10	10 0 0 0 0	10 0 0 0 0		
1280 ppm	10	10 0 0 0 0	10 0 0 0 0		
3200 ppm	10	10 0 0 0 0	10 0 0 0 0		
8000 ppm	10	10 0 0 0 0	10 0 0 0 0		
20000 ppm	01	10 0 0 0 0	10 0 0 0 0		
Significant	difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
	. difference	, 1 = 0.00	. 1 = 0.01	rest of one odough	
(HCL101)					RATS 4

PAGE: 4

BAIS 4 (HCL101)

APPENDIX I 1

GROSS FINDINGS: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

rgan	Findings	Group Name NO. of Animals	Control 10 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
pleen	enlarged		0 (0)	0 (0)	0 (0)	0 (0)
restomach	ulcer		0 (0)	0 (0)	0 (0)	0 (0)
	thick		0 (0)	0 (0)	0 (0)	0 (0)
iver	herniation		0 (0)	2 (20)	0 (0)	1 (10)

(HPT080)

BAIS 4

PAGE: 1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 SEX : MALE

PAGE: 2

Organ	Findings	Group Name 8000 ppm NO. of Animals 10 (%)	20000 ppm 10 (%)	
spleen	enlarged	0 (0)	10 (100)	
forestomach	ulcer	0 (0)	1 (10)	
	thick	1 (10)	10 (100)	
liver	herniation	2 (20)	1 (10)	
(HPT080)				BAIS 4

APPENDIX I 2

GROSS FINDINGS : FEMALE

RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT REPORT TYPE : A1

SEX : FEMALE

PAGE: 3

gan	Findings	Group Name Control NO. of Animals 10 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
leen	enlarged	0 (0)	0 (0)	0 (0)	0 (0)
restomach	ulcer	0 (0)	0 (0)	0 (0)	0 (0)
	thick	0 (0)	0 (0)	0 (0)	0 (0)
er	herniation	2 (20)	4 (40)	1 (10)	1 (10)
n bladd	white zone	0 (0)	0 (0)	1 (10)	0 (0)
e	turbid	0 (0)	0 (0)	0 (0)	0 (0)

(HPT080)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : FEMALE

PAGE: 4

Organ	Findings	Group Name 8000 ppm NO. of Animals 10 (%)	20000 ppm 10 (%)	
,		0 (0)	10 (100)	
spleen	enlarged	0 (0)	10 (100)	
forestomach	ulcer	0 (0)	2 (20)	
	thick	0 (0)	10 (100)	
liver	herniation	1 (10)	1 (10)	
urin bladd	white zone	0 (0)	0 (0)	
eye	turbid	0 (0)	1 (10)	
				·
(HPT080)				BAIS

APPENDIX J 1

ORGAN WEIGHT, ABSOLUTE: MALE

STUDY NO.: 0549
ANIMAL: RAT F344/DuCrlCrlj[F344/DuCrj]

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

REPORT TYPE : A1

SEX : MALE UNIT: g

PAGE: 1

oup Name	NO. of Animals	Body	Weight	THYM	JS	ADRE	NALS	TEST	ES	HEAR	T	LUNG	S
Control	10	310±	16	0.224±	0.031	0.047±	0.003	3.058±	0. 115	0. 926 <u>+</u>	0. 034	0.964±	0.038
512 ppm	10	304±	12	0.229±	0. 028	0.048±	0.004	3.069±	0.068	0.912±	0. 044	0.976±	0.048
1280 ppm	10	313±	11	0.226±	0.023	0.048±	0.004	3.086±	0.065	0.932±	0.031	0.991±	0.052
3200 ррш	10	311±	9	0.218±	0.020	0.048±	0.003	3.077±	0. 144	0.932±	0. 035	0.975±	
8000 ppm	10	291±	17**	0.203±	0.028	0.046生	0.002	3.089±	0.051	0.908±	0. 045	0.968±	0.036
20000 ррт	10	266±	11**	0.190±	0.019*	0.042±	0.002*	3.057±	0. 089	0.858±	0. 025**	0.910±	0.040*
Significant	difference;	*: P ≤ 0.	05 **	: P ≤ 0.01			Test	of Dunnett					
CI 040)													

(HCL040)

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

oup Name	NO. of Animals	KIDî	NEYS	SPLI	BEN	LIVI	GR	BRA		
Control	10	1.836±	0.066	0.579±	0. 022	7.419±	0. 467	1.959±	0. 043	
512 ppm	10	1.820±	0. 069	0.562±	0. 025	7.353±	0. 488	1.960±	0. 023	
1280 ppm	10	1.864±	0.068	0.597±	0.029	7.523±	0. 422	1.954±	0.031	
3200 ppm	10	1.927±	0.080*	0.638±	0.034	7.872±	0. 439	1.956±	0. 033	
8000 ppm	10	1.922±	0.073*	0.748±	0.058**	7.485±	0.514	1.947±	0.041	
20000 ppm	10	1.871±	0.081	1.211±	0.061**	7.892±	0. 263	1.899±	0. 027★★	

(HCL040)

APPENDIX J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 3

oup Name	NO. of Animals			ТНҮМС	MUS ADRENALS		NALS	OVARIES		HEART		LUNG	
Control	10	160±	8	0.178±	0.016	0.052±	0.002	0.104±	0. 007	0.584±	0.014	0.710±	0. 027
512 ppm	10	165±	15	0. 185±	0. 026	0.052±	0.004	0.104±	0.014	0.593±	0. 036	0.739±	0.048
1280 ppm	10	162±	10	0.172±	0.019	0.050±	0.004	0.101±	0.009	0.592±	0.038	0.718±	0.043
3200 ppm	10	159±	6	0.175±	0.016	0.048±	0.003	0.100±	0.016	0.577±	0.035	0.708±	0.022
8000 ppm	10	154士	10	0.168土	0.011	0.049±	0.003	0.097±	0.012	0.573±	0.037	0.709±	0. 033
20000 ppm	10	149±	9*	0.166±	0. 026	0.047±	0.003**	0.088±	0.006**	0.579±	0.046	0.695±	0.048

(HCL040)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (14W)

REPORT TYPE : A1 SEX : FEMALE

UNIT: g

oup Name	NO. of Animals			SPLI	SPLEEN		LIVER		IN			
Control	10	1.062土	0. 031	0.376±	0. 026	3. 739±	0. 186	1.800±	0. 028			
512 ppm	10	1.099生	0.053	0.379±	0. 032	3.813±	0. 345	1.800±	0. 039		•	
1280 ppm	10	1.069±	0.080	0.381±	0.025	3.871±	0. 432	1.804±	0. 033			
3200 ppm	10	1.055±	0.034	0.408±	0.027	3.820±	0. 162	1.792±	0. 033			
8000 ppm	10	1.060±	0.041	0.481±	Ö. 029 * *	3.880±	0. 268	1.768生	0. 029			
20000 ppm	10	1.090±	0.063	0.740±	0.064**	4.439±	0. 313**	1.765±	0. 038			

(HCL040)

APPENDIX K 1

ORGAN WEIGHT, RELATIVE : MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

oup Name	NO. of Animals			THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	310±	16	0.072± 0.008	0.015± 0.001	0.989± 0.058	0.299± 0.017	0.311± 0.016	
512 ppm	10	304±	12	0.075± 0.008	0.016± 0.001	1.011± 0.045	0.300± 0.012	0.321± 0.015	
1280 ppm	10	313±	11	0.072± 0.006	0.015± 0.001	0.988± 0.044	0.298± 0.010	0.317± 0.013	
3200 ppm	10	311±	9	0.070± 0.006	0.015± 0.001	0.991± 0.042	0.300± 0.012	0.314± 0.009	
8000 ppm	10	291土	17**	0.070± 0.007	0.016± 0.001	1.064± 0.063**	0.312± 0.007	0.333± 0.017**	
20000 ppm	10	266±	11**	0.071± 0.005	0.016± 0.001	1.152± 0.055**	0.323± 0.011**	0.343± 0.017**	
Significant	difference;	*: P ≤ 0	. 05 **	: P ≤ 0.01	Tes	t of Dunnett			

(HCL042)

STUDY NO. : 0549
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

SEX : MALE UNIT: %

PAGE: 2

oup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.593± 0.014	0.187± 0.006	2.394± 0.093	0.633 ± 0.030	
512 ppm	10	0.599± 0.015	0.185± 0.006	2. 418± 0. 077	0.646± 0.022	
1280 ppm	10	0.596± 0.018	0.191± 0.008	2.404± 0.074	0.626± 0.026	
3200 ppm	10	0.620± 0.025*	0.205± 0.010	2.532± 0.083**	0.630± 0.016	
8000 ppm	10	0.661± 0.027**	0.257± 0.009**	2.570± 0.077**	0.671土 0.042*	
20000 ppm	10	0.704± 0.022**	0.456± 0.024**	2.972± 0.109**	0.716± 0.029★	
Significant	difference;	* : P ≤ 0.05 **:	P ≤ 0.01	Test	of Dunnott	
ICL042)						

APPENDIX K 2

ORGAN WEIGHT, RELATIVE : FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX: FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (14W)

PAGE: 3

oup Name	NO. of Animals		Veight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	160±	8	0.111± 0.010	0.032± 0.002	0.065± 0.003	0.366± 0.016	0.444± 0.023	
512 ppm	10	165±	15	0.112± 0.011	0.032± 0.002	0.063± 0.008	0.361± 0.017	0.450± 0.027	
1280 ppm	10	162±	10	0.106± 0.007	0.031± 0.002	0.062± 0.004	0.367± 0.018	0.445± 0.025	
3200 ppm	10	159±	6	0.111± 0.011	0.030± 0.002	0.063± 0.011	0.363± 0.015	0.446± 0.025	
8000 ppm	10	154土	10	0.110± 0.008	0.032± 0.003	0.063 ± 0.005	0.372 ± 0.014	0.461± 0.024	
20000 ppm	10	149士	9*	0.111± 0.013	0.032± 0.003	0.060± 0.005	0.390± 0.023*	0.468± 0.023	

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

oup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.664± 0.028	0.235± 0.012	2.335± 0.086	1.127± 0.072	
512 ppm	10	0.670± 0.040	0.231± 0.009	2.315± 0.080	1.100± 0.089	
1280 ppm	10	0.661± 0.026	0.236± 0.011	2.390± 0.147	1.120± 0.062	
3200 ррш	10	0.665± 0.027	0.257± 0.019	2.407± 0.083	1.130± 0.051	
8000 ppm	10	0.689生 0.040	0.299± 0.009**	2.517± 0.093**	1.150± 0.067	
20000 ppm	10	0.734± 0.016**	0.498± 0.020★★	2.990± 0.132**	1.192± 0.065	

(HCL042)

BAIS 4

APPENDIX L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

ANIMAL

SEX

: MALE

ALL ANIMALS (0- 14W)

Group Name Control 512 ppm 1280 ppm 3200 ppm No. of Animals on Study 10 10 10 10 Grade 3 3 (%) Findings_ (%) (%) (%) (%) (%) (%) (%) (%) {Respiratory system} nasal cavit <10> <10> <10> <10> 0 0 inflammation: foreign body 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) respiratory metaplasia:gland 3 0 0 0 0 0 0 0 5 0 0 0 3 0 0 0 (30) (0) (0) (0) (0)(0)(0)(0) (50) (0) (0) (0) (30) (0) (0) (0) lung <10> <10> <10> <10> 0 0 hemorrhage 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) accumulation of foamy cells 0 0 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Hematopoietic system} spleen <10> <10> <10> <10> 0 0 deposit of hemosiderin 0 0 0 0 0 0 0 0 10 0 0 0 ** (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (100) (0) (0) (0) extramedullary hematopoiesis 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 ** (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (100) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX : MALE

Organ	No	oup Name 8000 ppm of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Respiratory	system}			
nasal cavit	inflammation:foreign body	<10> 2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	respiratory metaplasia:gland	2 0 0 0 (20) (20) (0) (0)	4 0 0 0 (40) (0) (0) (0)	
lung	hemorrhage	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	accumulation of foamy cells	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	
{Hematopoieti	ic system)			
spleen	deposit of hemosiderin	10 0 0 0 ** (100) (0) (0) (0)	10 0 0 0 ** (100) (0) (0) (0)	
	extramedullary hematopoiesis	10 0 0 0 *** (100) (0) (0) (0)	10 0 0 0 *** (100) (0) (0) (0)	
Grade <u>> b (c) Significant</u>	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0$			

(HPT150)

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

512 ppm Group Name Control 1280 ppm 3200 ppm No. of Animals on Study 10 10 10 10 Grade Findings_ (%) (%) (%) (%) (%) (Hematopoietic system) spleen <10> <10> <10> engorgement of erythrocyte 0 0 0 0 0 0 0 0 0 10 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (100) (0) (0) (0) {Circulatory system} heart <10> inflammatory infiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) {Digestive system} stomach <10> <10> <10> ulcer:forestomach 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) hyperplasia: forestomach 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) liver <10> <10> <10> <10> hermiation 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (0).(0)(0)(0) (20) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site ь b: Number of animals with lesion (c) c:b/a * 100 Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

(HPT150)

: RAT F344/DuCrlCrlj[F344/DuCrj]

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

Group Name 20000 ppm 8000 ppm No. of Animals on Study 10 10 Grade Organ_ Findings_ (%) (%) (%) (%) (Hematopoietic system) spleen <10> engorgement of erythrocyte 0 0 0 ** (100) (0) (0) (0) (0)(100)(0)(0) {Circulatory system} heart inflammatory infiltration 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) {Digestive system} stomach <10> ulcer:forestomach 0 0 0 (0)(0)(0)(0) (0)(10)(0)(0) hyperplasia: forestomach 0 ** (30) (70) (0) (0) (0)(0)(100)(0) liver <10> <10> herniation 0 0 0 1 0 0 0 (20) (0) (0) (0) (10) (0) (0) (0) Grade l : Slight 2 : Moderate 3 : Marked 4 : Severe くぉ> a : Number of animals examined at the site b b: Number of animals with lesion (c) c : b / a * 100

(HPT150)

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

ANIMAL

SEX : MALE

Group Name Control 512 ppm 1280 ppm 3200 ppm No. of Animals on Study 10 10 10 10 Grade 3 Organ_ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Digestive system) liver <10> <10> <10> deposit of hemosiderin 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) granulation 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (Urinary system) kidney <10> <10> <10> <10> deposit of hemosiderin 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) eosinophilic body 10 0 0 0 10 0 0 0 10 10 0 (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) urin bladd <10> <10> <10> <10> squamous cell metaplasia 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) transitional cell hyperplasia 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site b: Number of animals with lesion b (c) c:b/a * 100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCr1Cr1j[F344/DuCrj]

Significant difference; $*: P \le 0.05$ $*: P \le 0.01$ Test of Chi Square

ALL ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : MALE

Group Name mqq 0008 20000 ppm No. of Animals on Study 10 10 Grade Organ_ Findings_ (%) (%) (%) (%) (%) (%) (Digestive system) liver <10> deposit of hemosiderin 0 0 0 10 0 0 0 ** (0)(0)(0)(0) (100) (0) (0) (0) granulation 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) {Urinary system} kidnev <10>> <10> deposit of hemosiderin 0 0 ** 10 0 0 0 ** (100) (0) (0) (0) (70) (0) (0) (0) eosinophilic body 0 0 10 0 0 0 (100) (0) (0) (0) (100) (0) (0) (0) urin bladd <10> <10> squamous cell metaplasia 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) transitional cell hyperplasia 0 0 0 0 4 5 0 0 ** (0)(0)(0)(0) (40) (50) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100

(HPT150)

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

Group Name Control 512 ppm 3200 ppm 1280 ppm No. of Animals on Study 10 10 10 10 Grade Findings_ (%) (%) (%) (%) (%) (Urinary system) urin bladd <10> <10> <10> swelling:transitional epithelium 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Endocrine system} pituitary <10> <10> Rathke pouch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) adrenal <10> <10> <10> <10> hyperplasia:cortical cell 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(10)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (Reproductive system) prostate <10> <10> <10> inflammatory infiltration 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b : Number of animals with lesion c:b/a*100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

Organ		Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Urinary sys	stem}			
urin bladd	swelling:transitional epithelium	(0) (0) (0) (0)	3 6 0 0 *** (30) (60) (0) (0)	
{Endocrine s	system)			
pituitary	Rathke pouch	<10> 2 0 0 0 (20) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
adrenal	hyperplasia:cortical cell	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	
{Reproductive	ve system)			
prostate	inflammatory infiltration	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	
Grade <a>a> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b/a*100 difference; *: P ≤ 0.05 **: P ≤			
(HPT150)				RATSA

APPENDIX L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS (0- 14W)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

REPORT TYPE : A1

SEX : FEMALE

Odinithin dan

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	512 ppm 10 1 2 3 4 (%) (%) (%) (%)	1280 ppm 10 1 2 3 4 (%) (%) (%)	3200 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Respiratory	system)				
nasal cavit	inflammatory infiltration	(10) 1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
	respiratory metaplasia:gland	4 0 0 0 (40) (0) (0) (0)	4 0 0 0 (40) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
lung	inflammatory infiltration	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
{Hematopoieti	c system)				
bone marrow	granulation	1 0 0 0 0 (10) (10) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	0 I 0 0 0 (0) (0)
spleen	deposit of hemosiderin	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 10 0 0 0 *** (100) (0) (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

ALL ANIMALS (0- 14W)

INDI OILI	1111	٠	nı
SEX		:	FEMALE

Organ	No	oup Name 8000 ppm of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
(Respiratory	system)			
nasal cavit	inflammatory infiltration	1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	respiratory metaplasia:gland	2 0 0 0 0 (20) (20) (0) (0)	2 0 0 0 (20) (0) (0) (0)	
lung	inflammatory infiltration	(0) (0) (0) (0) 0 0 0 0 <10>	1 0 0 0 (10) (0) (0) (0)	
{Hematopoiet	ic system)			
bone marrow	granulation	<10> 2 0 0 0 (20) (0) (0) (0)	\(\lambda 10 \) \(\lambda 0 \) \(\lambda 10 \) \(\lambda 10 \) \(\lambda 10 \) \(\lambda 0 \) \(\lambda	
spleen	deposit of hemosiderin	\(\lambda 10 \rangle \) \(10 0 0 \rightarrow ** \) \((100) (0) (0) (0) (0) \)	10 0 0 0 *** (100) (0) (0) (0)	
	extramedullary hematopoiesis	10 0 0 0 *** (100) (0) (0) (0)	10 0 0 0 ** (100) (0) (0) (0)	
Grade <a> b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a * 100	Marked 4 : Severe		

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX

: FEMALE

Organ	No	Oup Name Control of Animals on Study 10 ade 1 2 3 (%) (%) (%)	512 ppm 10 4 1 2 3 4 (%) (%) (%) (%)	1280 ppm 10 1 2 3 4 (%) (%) (%) (%)	3200 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Hematopoieti	c system)				
spleen	engorgement of erythrocyte	(10) 0 0 0 (0) (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 10 0 0 0 *** (100) (0) (0) (0)
{Digestive sy	stem)				
stomach	erosion:forestomach	(10) 0 0 0 (0) (0) (0) (0 0 0 0 0 0 0) (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	ulcer:forestomach	0 0 0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 (0) (0)
	hyperplasia:forestomach	0 0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
large intes	mineralization	\(\lambda 10 > \) \(1 \) \(0 \) \(10 \) \(0 \) \(0 \) \(0 \)	0 0 0 0 0 0) (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
liver	herniation	2 0 0 (20) (0) (0) (0 4 0 0 0 0) (40) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
Grade <a> b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	Marked 4: Severe			

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

SEX : FEMALE

PAGE: 12

Organ		oup Name 8000 ppm of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Hematopoieti	ic system)			
spleen	engorgement of erythrocyte	<10> 10 0 0 0 *** (100) (0) (0) (0)	<10> 0 10 0 0 ** (0) (100) (0) (0)	
{Digestive sy	ystem)			
stomach	erosion:forestomach	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 2 0 0 0 (20) (0) (0) (0)	
	ulcer:forestomach	0 0 0 0 0 (0) (0)	1 1 0 0 (10) (10) (0) (0)	
	hyperplasia:forestomach	3 7 0 0 *** (30) (70) (0) (0)	0 0 10 0 *** (0) (0) (100) (0)	
large intes	mineralization	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0	
liver	herniation	<10> 1 0 0 0 (10) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	
Grade <a> b (c) Significant	1 : Slight 2 : Moderate 3 : a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 difference ; * : $P \le 0.05$ ** : $P \le 0$	Marked 4: Severe 01 Test of Chi Square		
(HPT150)	·			

(Digestive system)

{Urinary system}

kidney

liver

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 : FEMALE SEX

Findings_

granulation

hyaline cast

3200 ppm Group Name Control 512 ppm 1280 ppm No. of Animals on Study 10 10 10 10 Grade (%) (%) (%) (%) (%) (%) <10> <10> <10> 0 0 0 0 0 0 0 0 0 0 0 0 0 deposit of hemosiderin (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 1 0 0 0 1 0 0 0 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) (10) (0) (0) (0) (20) (0) (0) (0) <10> <10> <10> 0 0 0 0 0 0 0 0 0 0 deposit of hemosiderin (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 2 0 0 0 0 0 0 0 1 0 0 0 mineralization:cortico-medullary junction 2 0 0 0 (20) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) (20) (0) (0) (0) <10> <10> <10> <10> 0 0 0 0

0 0 0

(0)(0)(0)(0)

0 0 0 0

(0)(0)(0)(0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

a : Number of animals examined at the site < a >

swelling:transitional epithelium

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

0 0 0

(0)(0)(0)(0)

(HPT150)

b

urin bladd

(0)(0)(0)(0)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 14

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

ALL ANIMALS (0- 14W)

SEX : FEMALE

Organ	Group Nome No. of Anim Grade Findings	8000 ppm nals on Study 10 10 1 2 3 4 (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Digestive sy	vstem)			
liver	deposit of hemosiderin	(0) (0) (0) (0)	(10) 10	
	granulation	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	
{Urinary syst	tem)			
kidney	deposit of hemosiderin	9 0 0 0 ** (90) (0) (0) (0)	\(\lambda \) 10 \(0 \) 0 \(0 \) \(\text{100} \) \(\text{100} \) \(\text{0} \) \(\text{0} \) \(\text{0} \) \(\text{0} \)	
	hyaline cast	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	
	mineralization:cortico-medullary junction	2 0 0 0 0 (20) (0) (0)	0 0 0 0 0 (0) (0) (0)	
urin bladd	swelling:transitional epithelium	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 4 1 0 0 * (40) (10) (0) (0)	
Grade <a> b (c) Significant of	I: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01	4 : Severe		

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1
SEX : FEMALE

ALL ANIMALS (0- 14W)

rganFindings	Group Name No. of Anim Grade	Control als on Study 10 1 2 3 (%) (%) (%)	4 <u>1</u> (%)	512 ppm 10 2 3 4 (%) (%) (%)	1280 ppm 10 1 2 3 4 (%) (%) (%) (%)	3200 ppn 10 1 2 3 4 (%) (%) (%) (%)
pecial sense organs/appe	ndage)					
ve degenerati	on:cornea	<10> 0 0 0 (0) (0) (0) (0 0	<10> 0 0 0 (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0
order gl granulatio	n	0 0 0 (0) (0) (0) (0 0	<10> 0 0 0 (0) (0) (0)	(10) i 0 0 0 (10) (0) (0) (0)	(10) (0) (0) (0)
b b: Number c c : b / a *		4 : Severe				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 16

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

: FEMALE

Organ		Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
(Special ser	nse organs/appendage}			
eye	degeneration:cornea	0 0 0 0 (0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	
Harder gl	granulation	2 0 0 0 (20) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 (0) (0) (
Grade <a>> b (c) Significant	I: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; * : P ≤ 0.05 **: P ≤			
(HPT150)				

APPENDIX M

METHODS, UNITS AND DECIMAL PLACE FOR
HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK
FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13- WEEK FEED STUDY OF 2-AMINO-4-CHLOROPHENOL

Item	Method	Unit	Decimal place
Hematology			
Red blood cell (RBC)	Light scattering method ¹⁾	$ imes 10^6/\mu\mathrm{L}$	2
Hemoglobin(Hgb)	Cyanmethemoglobin method 1)	g/dL	1
Methemoglobin	Multiple-wavelength Spectrophotometric method 4)	%	1
Hematocrit(Hct)	Calculated as RBC×MCV/10 10	%	1
Mean corpuscular volume(MCV)	Light scattering method 1)	fL	1
Mean corpuscular hemoglobin(MCH)	Calculated as Hgb/RBC×10 ¹⁾	pg	1
Mean corpuscular hemoglobin concentration	Calculated as Hgb/Hct×100 1)	g/dL	1
(MCHC)			
Platelet	Light scattering method 1)	$ imes 10^3 / \mu ext{L}$	0
Reticulocyte	Light scattering method 1)	%	1
White blood cell(WBC)	Light scattering method 1)	$ imes 10^3 / \mu\mathrm{L}$	2
Differential WBC	Pattern recognition method 2)	%	0
	(Wright staining)		
Biochemistry			
Total protein(TP)	Biuret method 3)	g/dL	1
Albumin (Alb)	BCG method 3)	g/dL	1
A/G ratio	Calculated as Alb/(TP-Alb) 3)		1
T-bilirubin	Alkaline azobilirubin method 3)	mg/dL	2
Glucose	GlcK·G-6-PDH method 3)	mg/dL	0
T-cholesterol	CE·COD·POD method 3)	mg/dL	0
Triglyceride	LPL·GK·GPO·POD method 3)	mg/dL	0
Phospholipid	PLD·ChOD·POD method 3)	mg/dL	0
Aspartate aminotransferase (AST)	JSCC method 3)	IU/L	0
Alanine aminotransferase (ALT)	JSCC method 3)	IU/L	0
Lactate dehydrogenase (LDH)	SFBC method 3)	IU/L	0
Alkaline phosphatase (ALP)	GSCC method 3)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	JSCC method 3)	IU/L	0
Creatine kinase (CK)	JSCC method 3)	IU/L	0
Urea nitrogen	Urease GLDH method 3)	mg/dL	1
Creatinine	Jaffe method ³⁾	mg/dL	1
Sodium	Ion selective electrode method ³⁾	mEq/L	0
Potassium	Ion selective electrode method ³⁾	mEq/L	1
Chloride	Ion selective electrode method 3)	mEq/L	0
Calcium	OCPC method 3)	mg/dL	1
Inorganic phosphorus	PNP·XOD·POD method 3)	mg/dL	1

- 1) Automatic blood cell analyzer (ADVIA120: Bayer Corporation)
- 2) Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)
- 3) Automatic analyzer (Hitachi 7080 : Hitachi, Ltd.)
- 4) CO-oximeter (CIBA · CORNING 270 : Bayer Corporation)