1-クロロ-2-ニトロベンゼンのマウスを用いた経口投与によるがん原性試験(混餌試験)報告書

試験番号:0462

APPENDICES

APPENDICES

APPENDIX A 1	IDENTITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY
APPENDIX A 2	STABILITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY
APPENDIX A 3	CONCENTRATION OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY
APPENDIX A 4	HOMOGENEITY OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY
APPENDIX A 5	STABILITY OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS
APPENDIX B 1	CLINICAL OBSERVATION: MALE
APPENDIX B 2	CLINICAL OBSERVATION: FEMALE
APPENDIX C 1	BODY WEIGHT CHANGES: MALE
APPENDIX C 2	BODY WEIGHT CHANGES: FEMALE
APPENDIX D 1	FOOD CONSUMPTION CHANGES: MALE
APPENDIX D 2	FOOD CONSUMPTION CHANGES: FEMALE
APPENDIX E 1	CHEMICAL INTAKE CHANGES: MALE
APPENDIX E 2	CHEMICAL INTAKE CHANGES: FEMALE
APPENDIX F 1	HEMATOLOGY: MALE
APPENDIX F 2	HEMATOLOGY: FEMALE
APPENDIX G 1	BIOCHEMISTRY: MALE
APPENDIX G 2	BIOCHEMISTRY: FEMALE

APPENDICES (CONTINUED)

APPENDIX H 1	URINALYSIS: MALE
APPENDIX H 2	URINALYSIS: FEMALE
APPENDIX I 1	GROSS FINDINGS: MALE: ALL ANIMALS
APPENDIX I 2	GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
APPENDIX I 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
APPENDIX I 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
APPENDIX I 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
APPENDIX I 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
APPENDIX J 1	ORGAN WEIGHT, ABSOLUTE: MALE
APPENDIX J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
APPENDIX K 1	ORGAN WEIGHT, RELATIVE: MALE
APPENDIX K 2	ORGAN WEIGHT, RELATIVE: FEMALE
APPENDIX L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
APPENDIX L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC
	LESIONS: MALE: DEAD AND MORIBUND ANIMALS
APPENDIX L 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS
APPENDIX L 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
APPENDIX L 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
APPENDIX L 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS

APPENDICES (CONTINUED)

APPENDIX M 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
APPENDIX M 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
APPENDIX N 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
APPENDIX N 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
APPENDIX O 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
APPENDIX O 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
APPENDIX P 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE: ALL ANIMALS
APPENDIX P 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE: DEAD AND MORIBUND ANIMALS
APPENDIX P 3	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE: SACRIFICED ANIMALS
APPENDIX P 4	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE: ALL ANIMALS
APPENDIX P 5	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE: DEAD AND MORIBUND ANIMALS
APPENDIX P 6	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE: SACRIFICED ANIMALS
APPENDIX Q	METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR FEED STUDY OF 1-CHLORO-2-NITROBENZENE

APPENDIX A 1

IDENTITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY

IDENTITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY

Test Substance

: 1-Chloro-2-nitrobenzene (Wako Pure Chemical Industries, Ltd.)

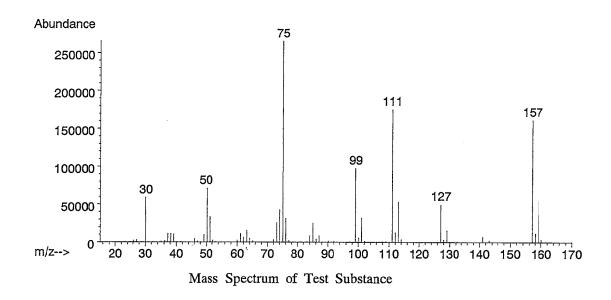
Lot No.

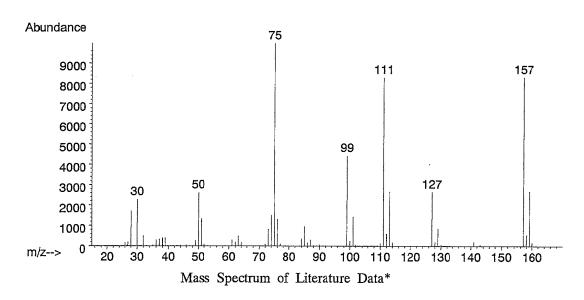
: LDE9795

1. Spectral Data

Mass Spectrometry

Instrument


: Hewlett Packard 5989B Mass Spectrometer


Ionization

: EI (Electron Ionization)

Ionization Voltage

: 70eV

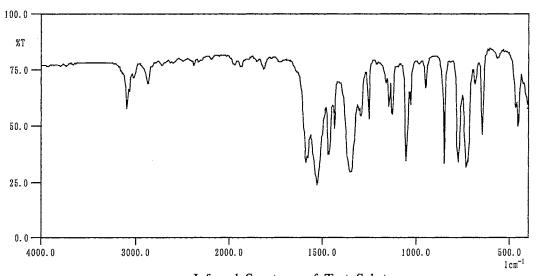
Result: The mass spectrum was consistent with literature spectrum.

(*McLafferty FW, ed. 1994. Wiley Registry of Mass Spectral Data. 6th ed.

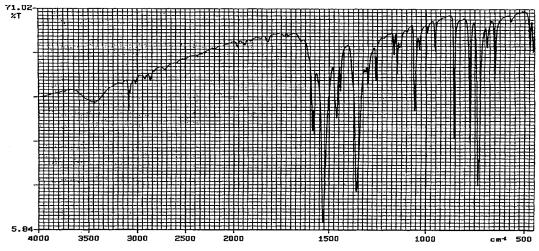
New York, NY: John Wiley and Sons.)

Infrared Spectrometry

Instrument


: Shimadzu FTIR-8200PC Infrared Spectrometer

Cell


: KBr

Resolution

: 2 cm⁻¹

Infrared Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum.

(*Performed by Wako Pure Chemical Industries, Ltd.)

2. Conclusion: The test substance was identified as 1-chloro-2-nitrobenzene by mass spectrum and infrared spectrum.

APPENDIX A 2

STABILITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY

STABILITY OF 1-CHLORO-2-NITROBENZENE IN THE 2-YEAR FEED STUDY

Test Substance

: 1-Chloro-2-nitrobenzene (Wako Pure Chemical Industries, Ltd.)

Lot No.

: LDE9795

1. Sample

: This lot was used from 2002.12.2 to 2004.12.6. The test substance was

stored in cold storage in a dark place.

2. High Performance Liquid Chromatography

Instrument

: Hewlett Packard 1090 High Performance Liquid Chromatograph

Column

: TSK-GEL ODS-80TM (4.6 mm ϕ \times 15 cm)

Column Temperature: Room Temperature

Mobile Phase

: Acetonitrile : Distilled Water = 1 : 1

Flow Rate

: 1 mL/min

Detector

: UV (254 nm)

Injection Volume

: 20 μL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
2002.10.17	1	7.551	100
2004.12.21	1	7.449	100

Result: High performance liquid chromatography indicated one major peak (peak No.1) analyzed on 2002.10.17 and one major peak (peak No.1) analyzed on 2004.12.21. No new trace impurity peak in the test substance analyzed on 2004.12.21 was detected.

3. Conclusion: The test substance was stable for about 26 months in cold storage in a dark place.

APPENDIX A 3

CONCENTRATION OF 1-CHLORO-2-NITROBENZENE

IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY

CONCENTRATION OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY

002.12.02 003.01.27 003.04.21 003.07.14 003.09.22 003.12.15 004.03.08 004.05.31 004.08.23	T	Carget Concentration	
Date Analyzed	100ª	500	2500
2002.12.02	95.3 (95.3) ^b	484 (96.8)	2380 (95.2)
2003.01.27	103 (103)	477 (95.4)	2500 (100)
2003.04.21	101 (101)	511 (102)	2670 (107)
2003.07.14	103 (103)	510 (102)	2450 (98.0)
2003.09.22	102 (102)	479 (95.8)	2310 (92.4)
2003.12.15	99.1 (99.1)	501 (100)	2510 (100)
2004.03.08	103 (103)	492 (98.4)	2500 (100)
2004.05.31	95.5 (95.5)	476 (95.2)	2430 (97.2)
2004.08.23	99.6 (99.6)	493 (98.6)	2460 (98.4)
2004.11.15	96.4 (96.4)	505 (101)	2450 (98.0)

^а ppm ь %

Analytical Method : The samples were analyzed by high performance liquid chromatography.

Instrument : Hewlett Packard 1090 High Performance Liquid Chromatograph

: TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm) Column

Column Temperature : Room Temperature

Mobile Phase : Acetonitrile : Distilled Water = 1 : 1

Flow Rate : 1 mL/min Detector : UV (254 nm)

Injection Volume : 20 μL

APPENDIX A 4

HOMOGENEITY OF 1-CHLORO-2-NITROBENZENE

IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY

HOMOGENEITY OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS IN THE 2-YEAR FEED STUDY

		Target Concentration	
	100ª	500	2500
Coefficient Variation	1.57 ^b	2.85	1.34

Analytical Method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Hewlett Packard 1090 High Performance Liquid Chromatograph

Column

: TSK-GEL ODS-80TM (4.6 mm ϕ \times 15 cm)

Column Temperature

: Room Temperature

Mobile Phase

: Acetonitrile : Distilled Water = 1 : 1

Flow Rate Detector

: 1 mL/min : UV (254 nm)

Injection Volume

: 20 μL

^a ppm
^b % (n=7)

APPENDIX A 5

STABILITY OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS

STABILITY OF 1-CHLORO-2-NITROBENZENE IN FORMULATED DIETS

		Target Concentr	ration
Date Prepared	Date Analyzed	50ª	5000
2001.10.11	2001.10.11	50.3 (100) ^b	4840 (100)
	2001.10.19°	44.2 (87.9)	3900 (80.6)
	2001.11.30 ^d	52.2 (104)	4810 (99.4)

^a ppm

Analytical Method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Hewlett Packard 1090 High Performance Liquid Chromatograph

Column

: TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature

: Room Temperature

Mobile Phase

: Acetonitrile : Distilled Water = 1 : 1

Flow Rate

: 1 mL/min

Detector

: UV (254 nm)

Injection Volume

: 20 µL

^b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

^d Cold storage samples

APPENDIX B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

JEA · MIQUE															171025 .
Clinical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
eath	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31111	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ő
	500 ppm	ů.	Ŏ	ŏ	ő	ő	ő	Ö	Ö	Ŏ	Ö	0	0	Ö	0
	2500 ppm	0	ő	Ö	0	0	0	Ö	Ō	Ô	ĭ	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0
	500 ppm 2500 ppm	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0
OILED	Control	0	0	0		0	0	0	0	0	0	0	0	0	0
. 1232	100 ppm	ŏ	Õ	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ŏ	0	0	0
	500 ppm	ő	0	Ö	Ö	o O	0	Ö	Ŏ	Ö	Ŏ	Ö	Ŏ	Ö	0
	2500 ppm	ō	ō	ō	ő	ō	ō	ō	0	ō	Ö	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	υ	U

CLINICAL OBSERVATION (SUMMARY)

[Crj:BDF1] ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	Administration Week-day												
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EATH	Central	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm			0	0			0				0	0		0
	500 ppm	0	0			0	0		0	0	0	1		0 1	
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	ī	1
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	o o	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	0	0	ō	0	ō	Ō	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0111111	100 ppm	Ö	0	Ŏ	Ô	0	0	Õ	0	Ö	Ö	Õ	0	Ŏ	ő
	500 ppm	0	0	0	0	0	0	Ů	0	0	0	Ô	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TI OPPROTION		•	•	•	•		•	•			•			•	_
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOI II III III III III III III III III I	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
															-
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
	· · · · · · · · · · · · · · · · · · ·	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
A.T		•				•	•	•	•	•	•	2			0
ATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	ō	0	ō	0	0	0	ō	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000	100 ppm	Ŏ	0	0	Ö	0	Ŏ	Õ	0	0	Ö	Ŏ	ŏ	ŏ	Ö
	500 ppm	ő	ő	0	0	ő	Ö	ŏ	0	Ö	0	0	0	ŏ	0
	2500 ppm	ŏ	Ö	0	Ö	ő	Ö	ů.	Ö	ő	ŏ	ő	Ö	ő	ő
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCKECTION	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-					-		-		•			•
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	. 0	0	Ö	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JM	C1	^	0	^	^	^	۸	0	0	0	0	0	0	0	0
ım	Control	0		0	0	0	0		0	0					-
	100 ppm	0	0	0	0	0	0	0	-	-	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration V	Veek-day						124					
Almiodi digi	oroup Rame	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ЕАТН	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
233111	100 ppm	0	Ô	Õ	0	Ô	0	Ô	Ô	0	0	ō	Ō	ô ′	Ô
	500 ppm	Ö	Ö	0	Ö	0	0	0	1	i	1	1	i	1	i
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TEOEREOTTON	100 ppm	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	I	1	1	0	0	0	0	0	0	0
	2500 ppm	0	ŏ	ō	0	ò	0	ō	0	o	ő	ő	ō	ō	0
ROG BELLY	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0	0	0	0
				-	v	Ū		v		v	U	·	v	v	v
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	500 ppm 2500 ppm	0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0
	2000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ATH	041	•		0	0	0	0		9	9			9	9	0
am	Control 100 ppm	1 0	1 0	2 0	2 0	2	2 0	3 1	3 2	3	3	3	3	3	3
					•	0				2	2	2	2	2	2
	500 ppm	1	1	1	1	1	1	2	2	2	2	2	2	2	2
	2500 ppm	1	1	1	1	1	2	2	2	2	2	2	5	6	6
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	i	1	1	1	1	1	1	1	1	1
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	Ō	Ō	ō	Ö	Ō	ō	0	Ō	Ŏ	Ö	Ö	Ö	i
	500 ppm	0	Ō	Ō	Ŏ	Ö	0	Ö	Ŏ	0	0	0	Ö	0	Ô
	2500 ррт	ō	Ö	0	0	ů.	0	0	0	0	Ö	1	0	o o	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	Ö	0	Õ	ŏ	Ö	Õ	0	0	Ö	0	0	0	0
	500 ppm	ő	0	Ö	ő	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ō	0	0	ŏ	ő	0	Ö	Ő	0	ő	1	ő	0	0
ILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
vania v	100 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COPHTHALMOS	Control	0	0	0	. 0	0	0	0	0	0	0	1	,	•	1
TOT TITTE TO THE TOTAL T	100 ppm	0	0	0	0		0	0	0		0	1	1	1	-
	100 ppm 500 ppm		-	0		0	0			0		0	0	0	0
		0	0		0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DM .	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ATH	Control	3	3	3	3	4	5	5	5	5	5	5	5	5	5
*****	100 ppm	2	2	2	3	3	3	3	4	4	4	4	4	4	4
	500 ppm	3	4	4	5	8	8	8	8	9	10	10	10	10	12
	2500 ppm	7	7	9	10	11	12	12	12	14	15	16	17	18	20
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	ı	1	1	1	1	2	3	3	3	3	3	3	3
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 1	0 0	0 0	0
	2500 ppm	0	U	U	U	U	U	U	U	U	U	i	U	U	U
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	100 ppm	0	0	0	0	0	0	0	-	0	0		0	0	0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IDODREOTION	100 ppm	1	0	0	0	0	0	ő	0	Õ	Ŏ	Ŏ	Ô	0	0
	500 ppm	0	0	0	0	0	0	Ö	0	1	1	1	1	1	1
	2500 ppm	0	0	1	1	1	o	0	0	ō	ō	1	0	Ô	ō
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPIITHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	t	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
TM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

SEA - MALE															rage .
Clinical sign	Group Name	Admini 85-7	istration Wa 86-7	eek-day 87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEATH	Control	5	5	7	8	9	10	11	11	11	11	11	11	11	11
	100 ppm	4	4	4	4	4	4	4	4	4	5	5	7	8	9
	500 ppm	12	12	14	16	17	17	18	19	21	21	22	23	24	25
	2500 ppm	22	24	25	26	28	29	31	31	32	32	32	33	35	35
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	3	3	3	3	3	3	4	4	4	4	4	4	4	4
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	500 ppm	0	0	0 0	0	0	0	2	1	1	1	0	0	0	0
	2500 ppm	0	0	U	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0
PILOERECTION	C41	^	0	^	•		•	^	^	•	•		•	•	
I ILOURECTION	Control	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
	100 ppm 500 ppm	1	1	1	1	0 1	0 3	1 2	1 1	2	3	1 0	0 0	0	1
	2500 բրա	0	0	0	0	0	0	1	0	1 0	1 0	0	0	0 1	0 2
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	Ō	Ö	Ō	Ō	0	Ö	Ō	0	Ö	Ö	Ö
	500 ppm	0	0	0	0	0	0	0	ō	Ö	Ō	Ŏ	ō	Ŏ	Ŏ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	1	2	2	1	1	1	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 1	0 1	0 1	0 0										
			-												
GUM	Control	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day _				
		99-7	100-7	101-7	102-7	103-7	104-7	
							·	
D.C. A.M.A.		40				40		
DEATH	Control	12	12	12	12	12	14	
	100 ppm	9	12	12	12	13	14	
	500 ppm	25	26	26	28	28	33	
	2500 ppm	35	35	35	36	36	38	
MORIBUND SACRIFICE	Control	1	1	1	1	1	1	
	100 ppm	1	1	1	1	1	1	
	500 ppm	ō	0	0	Õ	ō	ō	
	2500 ppm	4	4	4	4	4	4	
	досе ррш	•	•		•	•	•	
HUNCHBACK POSITION	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
SOILED	C	•	٥	^	۸	^	•	
SOLUED	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
PILOERECTION	Control	0	0	0	0	0	0	
	100 ppm	2	0	0	Ö	o 0	0	
	500 ppm	0	0	0	1	1	2	
	2500 բբա	2	2	0	0	0	0	
	acco ppu	J	•	v	v	J	Ū	
FROG BELLY	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
COTION DENT CONTENT TA	A	^	•	^	^	^		
SOILED PERI GENITALIA	Control	0	0	0	0	0	1	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
EXOPHTHALMOS	Control	1	1	1	1	1	1	
DAGI TITITUMOO	100 ppm	0	0	0	0	0	0	
	500 ppm		0					
		0		0 0	0	0	0	
	2500 ppm	0	0	U	0	0	0	
GUM	Control	0	0	0	0	0	0	
	100 ppm	Ō	0	Õ	ō	0	Ö	
	500 ppm	Ŏ	0	Ö	Ô	Ö	ō	
	2500 ppm	0	0	0	0	0	0	
							•	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

9

Clinical sign	Group Name	Admini	stration We	ek-day _											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
efect of teeth	Control	0	0	٥	0	0	0	0	0	0	0	0	0	0	0
SPECI OF IBEIN	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. DIE	100 ppm	0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0		0	0	0	0 0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	Ŏ	Õ	0	Ō	Õ	Ö	Ŏ	Ö	Ō	0	Õ
	500 ppm	Ô	0	Ö	Ö	0	Ö	0	Ö	0	0	0	0	0	Õ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
efect of teeth	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EFECT OF TEETH	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	U	U	U	U	U	U	Ü	U	U	U	U	U	U
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	1 .	1	1	1	1	1	1	2	1	1	1
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	0	ō	ŏ	0	ō	ő	Ö	ŏ	ō	ō	ō	Ö	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	ō	0	Ō	Ō	Ō	0	Ō	Ō	0	0	0	Ō
	500 ppm	0	0	0	0	Ŏ	0	0	Ö	0	0	o o	Ö	Ö	0
	2500 ppm	Ö	Ö	0	Ö	ŏ	Ö	Ö	Ŏ	0	0	0	0	Ö	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration \	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
efect of teeth	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3. 201 01 122111	100 ppm	0	Ŏ	ŏ	0	Ö	Ō	0	0	0	0	Ō	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
KTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	100 ppm	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0 0	-	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	U	0	U	U	U	U	U	v
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0
	100 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
	500 ppm 2500 ppm	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	1	1	1	1	1	1
											_	•	^	^	٥
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	•	0
	500 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	U	U	U	U	U
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	U	U	U	U
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ü

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

linical sign	Group Name	Admini	stration We	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
TELOTO OF THE TOL	0.4.1	0	0		0	0	0	0	0	0	0	0	0	0	0
FECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0			0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0 0	0	0	0	0	0	0	0	1	1	1	1
	2000 ppai	v	v	Ť	ŭ	·	•	•	·						
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL-MASS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	ŏ	0	ō	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	0	0	ő	ŏ	0	0	0	0	0	0	0	0	0
MIDDILL MACO	2		•	^	^	•	0	0	0	0	0	0	0	0	0
ITERNAL MASS	Control	0	0	0	0	0			0		0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	-	0		-		-	
	500 ppm	1	1	1	1	1	1	1	0	1	1	1	1	1	1
	2500 ppm	1	1	1	1	2	1	1	1	1	1	1	1	1	2
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	ō	Ö	0	ō	ō	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	0	ő	ő	0	0	Ö	Ö	Ô	Ö	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	Ö	0	ō	Õ	Ö	0	Ō	ō	0	0	0	0	0
ANTEDIOD DODCIN	Cam*1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm			-		0		0	0	0	0	0	0	0	0
	500 ppm	0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0	0
	2500 ppm	0	U	0	U	U	υ	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) STUDY NO. : 0462 ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
	or oup name	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
SFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Bredi or item	100 ppm	0	0	0	0	0	0	1	1	1	1	1	ī	i	1
	500 ppm	0	0	0	0	0	0	0	0	Ô	0	0	Ô	0	Ô
	2500 ppm	1	1	1	1	0	0	0	0	0	ő	0	0	0	0
BNORMAL GROWTH OF TEETH	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SNORMAL GROWIN OF ILEIN	Control	0						0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0		-						
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	1	3	3	3	3	3	2	2	2	2	2	3	3	3
	100 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	i
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	1	1	2	2	2	2	2	2	2
	500 ppm	1	1	1	1	1	1	1	1	1	1	2	2	3	3
	2500 ppm	4	10	10	12	13	11	12	14	15	17	18	20	20	21
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>515</i>	100 ppm	0	ů	Ŏ	Ö	0	Ŏ	Ŏ	0	0	0	1	i	1	1
	500 ppm	0	0	0	0	0	ů	Ö	0	0	Ö	Ô	Ô	Ō	0
	2500 ppm	0	0	0	o	0	0	0	0	0	o o	0	0	ő	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control											-	0		
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	-	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	I
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	Ö	Ő	ő	ő	0	Ŏ	0	0	ō	0	Ö	0	ŏ
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
WILDITON DOUGOM	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	U	U	U	U	U	U	U	U	U	U	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	istration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
FECT OF TEETH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bribot of Them	100 ppm	3	4	4	4	4	4	4	4	4	4	4	4	4	4
	500 ppm	i	1	1	1	0	0	Ô	0	Ô	Ô	Ō	ō	ō	ō
	2500 ppm	0	0	0	0	0	0	0	0	Ö	Ö	0	0	Ö	0
BNORMAL GROWTH OF TEETH	Control	0	1	1	i	1	0	0	0	0	0	0	0	0	0
BROWNE GROWIN OF TEETH	100 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	ő	0
				0				0	0	0	0	0	0	0	0
	500 ppm	0	0		0	0	0					-	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
XTERNAL MASS	Control	3	3	3	3	4	3	3	3	3	3	3	2	2	3
	100 ppm	1	2	2	2	2	2	2	2	2	2	2	2	2	2
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	i	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VTERNAL MASS	Control	0	0	0	0	0	0	0	1	1	1	1	0	3	3
•	100 ppm	2	2	2	2	2	3	3	3	3	3	3	3	4	3
	500 ppm	2	5	5	5	2	6	6	7	6	6	7	8	8	6
	2500 ppm	20	24	22	23	22	32	31	31	30	30	29	29	28	26
EYE	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	1
	100 ppm	1	i	1	1	1	1	1	1	1	i	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	0	0	0	0	0	ŏ	Ö	0	0	0	0	ō	0
	500 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	2500 ppm	0	Ö	0	0	0	ő	ő	0	ő	Ö	0	0	Ö	0
ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NOWORKE .	100 ppm	0	0	0	0	0	0	0	0 r	0	0	0	0	0	0
								0	0	0	0	0	0	0	0
	500 ppm	.0	0	0	0	0	0		0		0	0	0	0	0
	2500 ppm	0	0	0	0	0	υ	0	U	0	U	U	U	U	U
ANTERIOR. DORSUM	Control	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Adm: -	stration W	nole-day											
linical sign	Group Name	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
FECT OF TEETH	Control	,	1		1	1	3	4	4	4	4	4	4	4	4
rect or teem	Control 100 ppm	1 4	1 4	1 4	4	1 4	4	5	5	5	5	5	5	5	5
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Ő	0	0	ő	Ŏ	0	ŏ	ő	ő	Ô	o
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	3	3	3	3	3	4	4	3	3	3	2	2	2	2
	100 ppm	2	2	2	2	2	3	3	3	3	3	3	3	3	1
	500 ppm	1	1	1	1	1	2	2	2	2	2	2	2	2	2
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	9	6	5	5	4	3	3	3	3	2	3	3	5	2
	100 ppm	4	4	4	5	5	6	6	5	6	10	10	8	9	10
	500 ppm	9	8	7	10	9	12	11	10	10	14	13	13	12	15
	2500 ppm	24	22	21	20	18	18	15	15	14	14	14	13	11	11
EYE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	i	_
	500 ppm	0 0	0 0	0	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0
	2500 ррт	U	U	U	U	U	U	U	U	U	U	U	U	U	U
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR, DORSUM	Control	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

inical sign	Group Name	Admini	stration	Week-day _				
		99-7	100-7	101-7	102-7	103-7	104-7	
FECT OF TEETH	Control	4	4	4	4	4	3	
	100 ppm	5	5	5	5	5	5	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
TERNAL MASS	Control	2	2	2	2	2	2	
	100 ppm	1	1	1	1	1.	1	
	500 ppm	2	2	2	1	1	0	
	2500 ppm	0	0	0	0	0	0	
ERNAL MASS	Control	2	1	2	2	2	3	
	100 ppm	11	9	10	9	8	6	
	500 ppm	15	14	14	12	12	8	
	2500 ppm	11	11	11	10	10	8	
YE	Control	1	1	1	1	1	1	
	100 ppm	1	1	1	1	1	1	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
ECK	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
REAST	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
BDOMEN	Control	1	1	1	1	1	1	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ррт	0	0	0	0	0	0	
NTERIOR. DORSUM	Control	0	0	0	0	0	0	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

SEX - MALE															I AGE .
Clinical sign	Group Name		stration We		-										
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOSTERIOR DORDOR	100 ppm	0	Õ	ő	Ö	0 .	Ö	Ö	Ö	0	Ö	Ö	Ö		ŏ
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	13-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	-	0
	100 ppm	0	0	0	0	0			•		-	-	-		0
	500 ppm	0	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0									0
	500 ppm	0 .	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0 0 0 0	0
	100 ppm	0	0	0	0	0									0
	500 ppm	0	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0			•			-	-		0
	500 ppm	0	0	0	0	0			_						0
	2500 բբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0									0
	500 ppm	0	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0				-			-		0
	500 ppm	0	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0									0
	500 ppm	0	0	0	0	0				0					0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0 0	0							
	100 ppm	0	0	0	0	0									0
	500 ppm	0	0	0	0	0									0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration We	ek-day											
	· · · · · · · · · · · · · · · · · · ·	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
Coomenton Noncon	0 . 1		•	•		•	•		0	•	0	^			0
. POSTERIOR DORSUM	Control	0 0	0										0		0
	100 ppm		0										0		0
	500 ppm 2500 ppm	0 0	0	0	0	0	0	0	0	0	0	0	0		0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	. 0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	- 0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0								
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	-								-	0		0
	100 ppm	0	0						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0				
	500 ppm	0	0												0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JLCER	Control	0	0									-			0
	100 ррш	0	0									-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	500 ppm	0	0												0
	2500 ppm	0	0	U	Ü	0	U	U	U	Ü	U	U	U	U	0
RUSTA	Control	0	0									-			0
	100 ppm	0	0									-			0
	500 ppm	0	0									-			0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0				-	-				-	0		0
	100 ppm	0	0				-						0		0
	500 ppm	0	0									-	0		0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0										0	-	0
	100 ppm	0	0									-	0		0
	500 ppm	0	0										0		0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	2500 ppm	0	0	0	0,	0	0	0	0	0	0	0	0		0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	_	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	-	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0		0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORTICOLLIS	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0		0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day														
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7			
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
E I GOILRICK DONDOM	100 ppm	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0			
	500 ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0			
	2500 ppm	0	0	0	o	0	0	ō	ő	ő	ő	ő	ŏ	ő	0			
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0		-	-	-	-						0			
	500 ppm	0	. 0	0											0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
JLCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0					-		-	-	-	-	0			
	500 ppm	0	0	0											0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	Ü	0	0			
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0	0 0		0											
	500 ppm	0	0	0			0											
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
ORTICOLLIS	Control	0	0	0								-			0			
	100 ppm	0	0	0				-		-		-	-	-	0			
	500 ppm	0	0	0								-			0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
RREGULAR BREATHING	Control	1	0	. 0								-			0			
	100 ppm	0	0	0								•		-	0			
	500 ppm	0	0	0											0			
	2500 ppm	0	0	0	Ü	Ü	Ü	U	U	U	U	U	U	υ	0			
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	100 ppm	0	0	0	0	0	0	0	0	0	0	-	0	0				
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	6.222	istration '	V1- 3											
Clinical sign	Group Name	57-7	stration 58-7	меек-аау <u> </u>	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
 															
M. POSTERIOR DORSUM	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	1	1	1	1	1	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	O	0	0	0	1	1	1	1	1
IRREGULAR BREATHING	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

			 .							···········				- "	
Clinical sign	Group Name		istration W		74.7	75 7	70.7	77 7	70.7	70.7	00.7	01.7	00.7	00.7	04.7
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. POSTERIOR DORSUM	Control	1	. 1	1	1	1	1	1	1	1	1	1	0	0	0
	100 ppm	0	0	0	0	0	0	ō	0	0	ō	ō	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	I
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	1	1	1	0	0
ULCER	Control 100 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	o	o	0	0	0	0	0	0	ő	o	ő
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	٥	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	i	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	1	1	1	2	1	ı	1	1	I	1
	2500 ppm	0	0	0	0	0	1	0	1	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	istration W	eek-day											
		85-7	86-7	87-7	88-7	89~7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DOCUMENTON DODGINA	0 . 1	•										•			•
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 թթտ 2500 թթտ	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	0	0
	2500 ppm	v	v	v	Ū	v	V	Ü	U	Ū		Ū	v		
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.TAIL	Control	1	1	1	1	1	1	1	1	1	1	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	1	1	1	1	1	2	2	2	2	2	2	2	2	1
	2500 ррш	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	100 ppm	0	0	0	0	0	0	0	0	2	2	0	0	0	0
			1					0							0
	500 ppm 2500 ppm	0	0	0	0 0	0 0	0 0	0	0 0	0 0	1 0	0 0	0 0	0	0
	Booo ppu	v	Ů	J	·	·	v	·	Ū	v	·	·	v	·	·
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	100 ppm	0	ō	0	ō	1	1	1	1	1	1	1	î	1	î
	500 ppm	0	0	0	1	1	0	0	Ô	ō	ō	ō	ō	ō	ō
	2500 ppm	ō	ō	0	ō	ō	0	ō	Ö	0	ō	Õ	0	ō	ő
ORTICOLLIS	Cantus I	n	0	,	1	,		1	1	,	•	,	,	0	0
OK! TOOPPIG	Control	0	0	1	1	1	1	1	1	1	I	1	1	0	0
	100 ppm	0	0	0	1	1	1	1	1	1	1	1	i	1	0
	500 ppm	1	1	1 0	1	1	1 0	1	1	1	1	1	l o	1	1
	2500 ppm	0	0	U	0	0	U	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	t	1	1	1	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	2	2	2	0	1	1
	500 ppm	1	2	1	1	1	1	1	1	1	2	0	0	0	0
	2500 ppm	0	0	0	Ō	0	ō	ō	ō	ō	ō	ō	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POLITICIAL DOGLED UDITOR		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm		-				-		-		•		-		
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0462 ANIMAL : MOUSE BGD2F1/Cr1;[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day			
Tana Vaga	or oab tions	99-7	100-7	101-7	102-7	103-7	104-7
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
M. HINDLIMB	Control	0	0	0	0	0	0
	100 ppm	Ö	Ö	Ō	Õ	Ö	0
	500 ppm	ĺ	i	1	1	1	0
	2500 ppm	ô	ō	0	0	Ô	0
M. TAIL	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	1	1	1	0	0	0
	2500 ppm	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0
	100 ppm	Ö	Õ	0	0	0	Ö
	500 ppm	Ö	0	Ö	ő	0	0
	2500 ppm	Ō	Ō	0	0	0	0
III OPP					•	•	
ULCER	Control	0	0	0	0	0	0
	100 ppm	0	0	1	1	1	1
	500 ppm 2500 ppm	0	0 0	0 0	0 0	0 0	0
	2000 ррш	U	U	U	U	v	U
CRUSTA	Control	1	1	2	3	3	3
	100 ppm	ī	ĩ	0	1	2	2
	500 ppm	ō	0	Ō	ō	0	0
	2500 ppm	0	0	0	. 0	0	0
TORTICOLLIS	0	•	•	0	•	•	^
LOWITOOPPT9	Control	0	0 0	0 0	0 0	0 0	0 0
	100 ppm	0					
	500 ppm	1	1	1	i	1	1
	2500 ppm	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0
	100 ppm	1	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
DECDIDATIONS COURT APPAR	0	^	•	•	•	•	^
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 25

Clinical sign	Group Name	Admini	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
UPL LOW LIBYAGE	0 . 1	•	•	•	•		٥	0	0	0	•	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	100 ppm	0	0	0	0	0	0 0	0	0	. 0	0	0	0	0	0
	500 ppm 2500 ppm	50	0	50	0 50	0 50	50	50	50	50	49	49	49	49	49
	2300 ррш	50	v	50	50	50	50	30	50	30	43	40	43	43	-10
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	. 0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	100 ppm	50	50	50	50	50	50	50	50	49	50	50	50	50	50
	500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2500 ppm	0	50	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 26

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
						•									
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0
VON REMARKABLE	Control	50	50	50	50	50	. 50	50	50	50	50	50	50	50	50
	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2500 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 27

Clinical sign	Group Name	Admini	stration W	eek-day									· · · · · · · · · · · · · · · · · · ·		
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	θ	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	49	49
	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	49
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 28

Clinical sign	Group Name	Admini	stration W	eek-day _											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW UKINE	100 ppm	0	0	0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	0	0
	500 ppm	0	0	n	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	дост ррш	20			10		10		20	10	10	10	10	10	10
SMALL STOOL	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	o o	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	49	49	49	49	48	48	48	48	48	48
	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	49	49	49	49	49	49	49	49	48	48	48	48	48	48
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 29

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
AGI LOW TOXAG	0 . 1	•		•			•					•	•	•	•
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	Ü	0	U	U
	100 ppm	0	0	0	0	0	0	0 0	0	0 0	0 0	0	0	0	0
	500 ppm	0 49	49	49	49	0 48	0 47	47	0 47	47	47	47	44	43	43
	2500 ppm	49	49	49	49	40	41	41	41	41	41	41	44	43	43
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррш	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	ı
	2500 ppm	0	0	1	1	0	0	1	1	1	2	2	1	0	0
OLIGO-STOOL	Control	0	0	0	0	I	1	0	0	0	0	0	0	0	0
	100 ppm	0	0	1	0	0	0	0	0	0	0	0	0	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	1	1	0	0	1	1	3	3	3	2	2	1
NON REMARKABLE	Control	48	45	45	45	45	45	45	45	45	45	44	42	42	42
	100 ppm	50	50	49	50	50	49	47	45	45	45	44	44	42	42
	500 ppm	48	48	48	48	48	48	47	47	47	47	46	46	45	45
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 30

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	42	42	40	39	38	37	36	35	33	32	31	30	29	27
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	1	3	2	1	0	1	0
	2500 ppm	1	2	1	1	2	2	0	0	1	1	2	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	100 ppm	t	0	0	0	0	0	0	1	0	0	0	0	0	0
	500 ppm	0	1	1	2	1	1	2	3	4	4	4	2	0	0
	2500 ppm	0	2	0	1	1	2	0	0	1	1	1	0	0	0
NON REMARKABLE	Control	42	41	41	41	39	40	39	39	39	39	39	41	38	38
	100 ppm	41	39	39	38	38	37	37	35	36	36	36	36	36	37
	500 ppm	44	41	41	40	39	35	35	33	33	33	31	31	31	31
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : MALE

PAGE: 31

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DDDO" CRIND	100 ppm	Ö	0	0	Ö	Ö	0	0	0	Ö	Ö	Õ	Ö	Ö	Ö
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	25	23	22	21	19	18	15	15	14	14	14	13	11	11
SMALL STOOL	Control	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	1	1	1	1	1	1	1	0	0	0	0
	500 ppm	1	0	0	1	1	4	3	1	0	1	0	0	0	0
	2500 ppm	1	0	0	0	0	0	0	0	1	0	0	0	1	0
OLIGO-STOOL	Control	1	1	0	0	0	2	1	0	0	0	0	0	0	0
	100 ppm	0	0	0	1	1	1	1	1	2	2	1	1	1	1
	500 ppm	1	1	2	1	1	6	3	2	1	1	0	0	0	0
	2500 ppm	0	0	0	0	0	1	0	0	0	0	0	0	1	0
NON REMARKABLE	Control	33	36	34	33	33	29	28 31	29	29	30	29	28	28	29
	100 ppm	36	36	36	35	34	32		32	31	26	26	26	24	23
	500 ppm	28	29	27	22	22	20	20	20	18	14	14	13	13	9
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

STUDY NO.: 0462
ANIMAL: MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE: A1 104

ALL ANIMALS

SEX : MALE

PAGE: 32

Clinical sign	Group Name	Admin	istration N	Yeek-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
YELLOW URINE	Control	0	0	0	0	0	0		
	100 ppm	0	0	0	0	0	0		
	500 ppm	0	0	0	0	0	3		
	2500 ppm	11	11	11	10	10	8		
SMALL STOOL	Control	0	0	0	0	0	0		
	100 ppm	1	0	0	0	0	0		
	500 ppm	1	1	0	0	0	1		
	2500 ppm	0	0	0	0	0	0		
OLIGO-STOOL	Control	0	0	0	0	0	0		
	100 ppm	2	0	0	0	0	0		
	500 ppm	0	0	0	1	1	1	•	
	2500 ppm	0	0	0	0	0	0		
NON REMARKABLE	Control	28	29	28	28	28	25 21		
	100 ppm	22	22	21	21	20	21		
	500 ppm	9	9	9	9	9	8		
	2500 ppm	0	0	0	0	0	0		

(HAN190)

APPENDIX B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

712.2 1 2 .	C N	A Junto		. 1. 3											
Clinical sign	Group Name	Adminis	tration We 2-7	эек-day 3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ЕАТН	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 թթա	0	0	0	0	0	0	0	0	0	0	0	Đ	0	0
UNCHBACK POSITION	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	U	U	U	U	U
REMOR	Control	0	0	0	o o	0	0	0 0	0	0	0	0 0	0	0	0 0
	100 ppm	0	0		0	-	0 0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0 0	0	0 0	0 0	0	0	0	0	0	0	0	0	0
						•	•	•	•	•	•	•	^	0	0
ROTATING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	-		0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	2500 թբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0		
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
TLOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0 0	0	0 0							
	2500 ppm	0	0	0	U	Ü	0	U	U	U	U	U	U	U	U
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EATH :	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	100 ppm	Ö	Ö	ō	Ö	0	ō	Ö	0	ō	ō	0	0	Ō	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
REMOR	Control	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0	0
	100 ppm	0				0						-			
	500 ppm	0	0	0	0	0	0 0	0	0	0 0	0 0	0	0 0	0 0	0
	2500 ррш	0	U	U	U	U	V	U	U	U	U	U	U	U	U
OTATING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0
	2500 թթա	U	U	U	U	U	U	U	U	U	U	U	U	U	U
OILED	Control	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
	100 ppm	0	0		0	0	0								
	500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	U	U	U	U	U
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
OSS OF HAIR	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

PAGE : 3	35

Hinical sign	Group Name	29-7	stration W 30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EATH						33 7	24.1	JU 1	J0 1						76 1
ATH		_					_		•	•	•	•	•	•	
	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	ō	0	0	0	0	0	0	0	0
OTATING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	Ŏ	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	2500 բթա	o	o	ō	ő	0	ō	ő	0	0	Ō	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	ō	0	0	0	0	Ō	0	0	0	0	0	0	0	0
	2500 ppm	ő	0	Ö	ő	0	Ô	ō	ō	0	Ō	ō	ō	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	0	Ö	ŏ	0	0	0	0	0	0	0	0	0	0
	500 ppm	Ö	Ö	0	Ö	0	ŏ	Ô	0	0	Ô	0	0	0	0
	2500 ppm	Ö	0	ő	Ö	ő	ő	Ö	ő	0	ů	0	0	Ö	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCC OI IBILITY	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô
					_										
KOPHTHALMOS	Control	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0 0	0	0 0	0	0
	100 ppm			•			0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name		stration W												
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
eath	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	1
DV 1 H	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm 500 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DRIBUND SACRIFICE	Control	•	0	0	0	0	0	0	0	0	0	0	0	0	0
KIBOND SACKIFICE	Control	0		0	_		0	0	0	0	0	0	0	0	0
	100 ppm	0	0		0	0						-	0		
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TATING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1502	100 ppm	ŏ	Ŏ	ŏ	Ö	ŏ	Ö	ő	0	ő	ő	ő	Ŏ	ő	ő
	500 ppm	ŏ	ő	ō	Õ	Ŏ	ŏ	Ö	0	ŏ	Õ	Ő	Ö	0	ō
	2500 ppm	ŏ	Ö	ō	Ö	. 0	ő	ő	0	Ö	ő	0	0	ŏ	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOUNDOI IVIT	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm 500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SC OE HAID	O 1	•	^	^	^	^	^	^	^	^	^	^	•	^	^
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67–7	68-7	69-7	70-7
RAMII	Control	1	,	,	•	1	1	•	,		1	1	1	,	1
EATH	Control 100 ppm	1 0	1	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	0
	500 ppm	1	1	1	1	1	1	2	2	2	2	2	2	2	2
	2500 ppm	1	2	2	2	2	3	3	3	3	3	3	3	3	3
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	O	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	1	1	1	1	1	i	1	1
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTATING	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0 .	0	0	0	0	0	0	1
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75–7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	1	į	1	1	1	1	1	1	2	2	3	8	9	9
<i>0</i>	100 ppm	î	i	1	1	1	1	1	2	2	3	4	4	4	4
	500 ppm	2	2	2	2	3	3	3	3	4	6	8	10	10	12
	2500 ppm	4	4	5	5	5	9	9	11	12	14	14	16	17	18
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	i	1	1	3	3	3	3	3	3	3	3	3	3
UNCHBACK POSITION	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REMOR	Control	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0	0	0
OTATING	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	Õ	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	1	1	0	0	1	1
	100 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
EXOPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WHITH JOY	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0462 CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

Clinical sign	Group Name	Admini	stration W	eek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
											*				
EATH	Control	10	11	11	12	12	12	12	13	14	14	15	15	16	17
	100 ppm	5	6	8	8	8	9	9	9	10	10	11	13	13	13
	500 ppm	12	13	13	13	14	15	15	16	16	16	17	18	20	21
	2500 ppm	20	20	22	22	23	25	26	29	30	31	33	33	34	34
ORIBUND SACRIFICE	Control	0	0	0	0	0 -	0	0	0	0	0	0	0	0	2
	100 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	500 ppm	0	0	0	0	0	0	1	1	1	1	1	2	2	2
	2500 ppm	3	3	3	3	3	3	4	4	4	4	4	4	4	4
UNCHBACK POSITION	0 - 1 - 1	•	•	•	•	•		•	•	•	•	•	•		•
GINCHDACK PUBLITION	Control	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0
	100 ppm 500 ppm	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0 0
	2500 ppm	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
	2000 ppui	U	v	U	U	U	v	U	U	U	U	U	U	U	U
REMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTATING	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	ī	ī	0	0	0	0	Õ	ō	ō	Õ	Ö	Ō	Ō
	500 ppm	Ŏ	ō	Õ	0	Ö	ŏ	Ö	Ŏ	0	Ŏ	ŏ	Ö	Ö	0
	2500 ppm	0	0	0	0	0	Ö	0	Ö	0	Ö	0	Ö	Ö	0
OILED	C-ntu-1	0	0	0		0	0	0	0	•	0		•		•
OIDED	Control 100 ppm	0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0		0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0
	2300 ррш	· ·	U	U	U	U	U	U	U	U	U	U	U	U	U
ILOERECTION	Control	1	0	0	0	0	0	0	0	1	1	1	2	2	0
	100 ppm	0	1	0	0	0	0	0	0	0	0	1	0	0	0
	500 ppm	0	0	0	1	0	0	1	0	1	1	2	2	I	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	1	2	i	1
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
+4/110	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	0	Ö	ő	0	0 .	ŏ	0	0	ő	Ö	0	ő	0
	-														
XOPIITIIALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	i	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admin	istration 1	Week-day			
	one age atomic	99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	17	17	18	18	19	19
	100 ppm	13	13	13	13	14	14
	500 ppm	22	22	22	22	22	22
	2500 ppm	35	37	38	38	38	41
MORIBUND SACRIFICE	Control	2	2	2	2	2	2
MONTBOND SHORTI TOD	100 ppm	2	2	2	2	2	2
	500 ppm	2	2	2	2	2	2
	2500 ppm	4	4	4	4	4	4
HUNCHBACK POSITION	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
TREMOR	Control	0	0	0	0	0	0
Tromvii.	100 ppm	0	0	0	Ö	ő	0
	500 ppm	0	0	0	0	0	0
	2500 ppm 2500 ppm	0	0	0	0	0	0
							_
ROTATING	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0
	100 ppm	0	Õ	0	ŏ	Õ	Õ
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
PILOERECTION	Control	0	1	1	1	0	0
	100 ppm	0	1	1	1	0	0
	500 ppm	0	0	0	0	0	1
	2500 ppm	1	2	4	4	4	2
LOSS OF HAIR	Control	0	0	0	0	0	0
	100 ppm	Ö	Ō	0	0	0	0
	500 ppm	Ö	0	0	0	ō	0
	2500 ppm	0	0	0	0	0	0
	2005 ppm	•	v	v	v	v	·
EXOPHTHALMOS	Control	0	0	0	0	0	0
	100 ppm	1	1	1	1	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0

STUDY NO. : 0462

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE PAGE: 41

Clinical sign	Group Name	Adminia	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
M	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SM.	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ODNEST ODSCITTA			^	•	•	•	•	•	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	-	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	-	0			
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	ı	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Õ	ő	Ö	Ö	ŏ	Ö	Õ	Õ	Õ	Ö	ŏ	Ŏ	Ŏ	i
	500 ppm	ő	Ő	0	0	0	0	0	0	0	0	0	Ö	0	Ô
	2500 ppm	0	o o	0	Ö	ŏ	ő	ő	ŏ	o o	ő	ŏ	0	ō	ŏ
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OBAL CAVITY		c	•	•	^	•	•	•	^	•	•	•	^	^	
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 թթտ	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
SM.	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JILE	100 ppm	0	Õ	0	0	ů	Ö	o O	Ö	0	0	Ō	Ŏ	ō	Ō
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	Ö	0
	2500 ppm	0	ő	0	0	0	ő	ő	0	0	Ö	Ō	0	Ö	ō
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ect of teeth	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	100 ppm	0	0	0	0	0	0	0				0	0	0	0
	500 ppm 2500 ppm	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	0	Ö	Õ	0	0	Ö	0	Ō	Ō	0	0	0	0
	500 ppm	ő	0	0	Ŏ	0	0	0	0	0	Ö	Ŏ	0	Ö	0
	2500 ppm	0	0	0	ő	o	ō	0	ō	ō	o	o	o	o	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
eye	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	istration W	eek-dav											
	0204p 1.0	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ДМ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sil	100 ppm	Ö	Ö	Ö	0	Ö	ō	Ö	0	ō	Ö	0	0	0	0
	500 ppm	ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0		0	0			
	500 ppm 2500 ppm	0 0	0	0	0	0 0	0	0 1							
								_		_				_	_
TTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	100 ppm	0	0	0	0	0	0	0	,0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day _											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·Om	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIGINAL OFFICE I	100 ppm	0	0	0	0	0	0	Ŏ	Ö	0	Õ	ŏ	Ŏ	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	o O
	500 ppm		0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2500 ppm	0	U	U	U	U	U	. 0	U	U	U	v	U	U	U
EFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	0
TTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	1	1	1	1	1	0	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	3	4	5	5	24
ЕУЕ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	Ü	0	0	0	O	Ö	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ö	Ö	0	ŏ	0	Ö	Ö	õ	Ŏ	ŏ	Ŏ	Ö	0	Ö
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	2500 ppm	0	0	0	0	0	0	ů	0	Ö	0	o 0	Õ	ő	0

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
JM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OM	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	ő	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	.0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	.0	0	0	0	0	0
KTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	1	1	1	1	1	1	2	2	2	2	2	2	. 2	2
	100 ppm	0	1	1	1	1	1	1	1	1	1	1	2	2	2
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	2500 ppm	31	30	30	31	34	34	34	35	36	36	36	37	38	38
ЕУЕ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	.0	0	0	0	0	0	0	0	0 .	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

ODA - I USERIOU															THOD -
Clinical sign	Group Name	Admin	istration W	leek-day											
		71-7	72-7	73-7	74-7	75-7	76-7 ————	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
GUM	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
rom .	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	ő	0	0	0	0	0	ő	Ö	0	Ö	Ö
	2500 ppm	Ō	0	0	ő	ő	ŏ	ŏ	0	0	o o	Ö	ō	ō	ő
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	i	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEFECT OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0	0
EXTERNAL MASS	Control	0	0	0	1	1	1	1	1	1	1	1	0	0	0
	100 ppm	ō	0	0	Ô	ō	0	0	1	1	ĩ	1	1	1	1
	500 ppm	Õ	0	0	ő	o O	0	ő	ō	ō	Ô	Õ	0	0	ō
	2500 ррт	0	ō	ő	ő	ő	0	ō	ō	ō	ō	0	Ô	Ö	0
INTERNAL MASS	Control	2	2	3	4	4	5	6	7	7	7	6	4	4	5
	100 ppm	1	1	1	1	1	1	2	4	5	6	5	5	5	5
	500 ppm	1	L	1	3	3	5	5	6	7	9	7	6	6	4
	2500 ppm	38	38	38	41	39	35	36	34	34	32	33	31	30	29
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
w. ear	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
n. Gric	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	Ô	0	0	0	0	Ő	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH	100 ppm	0	0	0	0	0	0	0	0	0	O O	0	0	0	0
	500 ppm	Ô	0	0	Ö	0	Ö	Ö	Ö	0	0	0	Ô	0	0
	2500 ppm	0	ō	ō	Ö	Ō	Ō	ō	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FECT OF TEETH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	1	1	1	1	1	1	1	1	1	l	1	1	l	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0 0	0 0	0	0 0	0								
KTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIBILITE MICO	100 ppm	i	ĭ	1	1	1	1	ĭ	1	ĭ	i	i	1	i	2
	500 ppm	0	0	0	Ô	ō	Ô	Ô	i	1	i	ī	i	Ô	0
	2500 ppm	Ö	ő	ŏ	ő	0	0	0	Ô	Ô	ō	0	ó	ŏ	ō
NTERNAL MASS	Control	4	5	5	5	5	5	5	5	5	6	5	6	5	5
	100 ppm	4	5	3	3	3	3	3	3	3	3	2	1	1	1
	500 ppm	4	4	4	7	9	8	7	7	7	8	8	9	8	8
	2500 ppm	27	27	25	25	24	22	20	17	16	15	13	13	12	12
ЕУЕ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· Marie	100 ppm	Ô	0	0	ő	0	0	Õ	0	0	ő	0	ő	0	ŏ
	500 ppm	0	0	0	ő	0	0	0	0	0	Ö	Ö	0	0	Ö
	2500 ppm	Ő	Ŏ	0	ő	Ů	Ŏ	ő	0	ő	Õ	ů	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

								
linical sign	Group Name		stration		100.7	100.7	104.7	
		99-7	100-7	101-7	102-7	103-7	104-7	
ring	Control	0	1	0	0	٥	0	
UM	Control 100 ppm	0	1	0	0	0 0	0 0	
			0					
	500 ppm	0	1	1	1	1	1	
	2500 ppm	0	0	0	0	0	0	
CORNEAL OPACITY	Control	0	0	0	0	0	0	
	100 ppm	1	1	1	1	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
DEFECT OF TEETH	Control	1	1	1	1	1	I	
	100 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	
	100 ppm	0	0	1	1	1	1	
•	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
EXTERNAL MASS	Control	0	0	0	0	0	1	
	100 ppm	2	3	3	3	2	3	
	500 ppm	0	ō	0	0	0	ō	
	2500 ppm	ō	0	ō	ő	Ö	Ō	
INTERNAL MASS	Control	5	6	5	5	5	5	
INTERNATION MINOR	100 ppm	1	2	2	2	1	2	
	500 ppm	9	10	11	11	10	12	
	2500 ppm	11	9	8	8	8	5	
M. EYE	Control	0	0	0	0	0	٥	
n. 1110		0				0	0	
	100 ppm	1	1	1	1	0	0	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
M. ORAL CAVITY	Control	0	0	0	0	0	0	
	100 ppm	1	1	1	1	1	1	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
M. EAR	Control	0	0	0	0	0	0	
	100 ppm	0	1	1	1	1	1	
	500 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	.0	

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

Clinical sign	Group Name	Adminis	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ABDOMEN	Comtra-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADDOMEN	Control 100 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm 500 ppm	0	0	0	0 0	0 0	0 0	0	0 0	0	0	0	0 0	0 0	0 0
	2500 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm		0		0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
SLLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	Ö	0	0	0	Ö	ő	0	0	ő	Ö	ō	0	0
	500 ppm	0	0	0	ō	ō	0	ő	ŏ	ō	ō	Ö	ő	0	o
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
MALL STOOL	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	6	0	Ó	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	Ô	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	Ö	0	0	0	0	Ö	0	0	ō	Ö	0
	500 ppm	0	ō	0	Ö	ō	0	Ö	0	ō	Ö	Ö	Ö	Ö	0
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
=	100 ppm	Ō	Ŏ	Ö	Õ	Ö	Ö	Ŏ	0	0	ŏ	ŏ	ŏ	Ö	0
	500 ppm	ő	0	0	o o	Ö	Ö	0	Ö	0	Ö	0	Ö	0	0
	2500 ppm	Ö	Ö	0	ŏ	Ö	0	Ŏ	ő	Ö	Õ	0	Ŏ	0	0

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

linical sign	Group Name	Admini	istration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ADDOMEN	Control	0		0	0		-	0					0	0	
	100 ppm	0	0			0	0	0	0	0 0	0	0	0		0
	500 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0
. ANTERIOR, DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	Ŏ	ů.	0	Õ	Ö	0	Ö	0	Ö	Ö	Ö	Ö	0	0
	500 ppm	Ö	0	0	0	Ö	ŏ	Ö	Ö	0	Ö	Ö	0	Ö	ő
•	2500 ррт	Ö	0	0	Ö	0	ő	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	Ō	0	Ö	0	0	0	0	0	0	Ö	0	0	0	0
	2500 ppm	0	ů	ō	ō	ō	Ö	o	0	Ö	ō	ő	ō	0	Ö
MEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	.0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX: FEMALE

Clinical sign	Group Name	Admini	stration We	ek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	istration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65–7	66-7	67-7	68-7	69-7	70-7
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADDOMEN	Control 100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	ō	Ö	Ō	Ö	Ŏ	Ö	Ö	Ö	Ō	Ö	Ŏ	Ō
	500 ppm	ŏ	0	Ö	Ö	ů	0	Ŏ	Ö	0	0	Ô	Ö	Ŏ	0
	2500 ppm	Ö	ő	ō	ő	0	0	ő	Ö	0	ő	0	ō	ő	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	ő	0	0	0	0	0	0	0	0	0	ő	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	U	U	Ü	U	U	U	U	U	U	U	U	U	U	U
RTICOLLIS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	100 ppm	0	0	0	0	0	0	Ö	0	ō	ō	0	0	Ö	0
	500 ppm	0	ő	Ö	0	0	0	Ö	ő	0	0	0	0	0	0
	2500 ppm	49	48	48	48	48	47	46	46	46	46	46	46	46	46
ALL STOOL	Control	0	0	0	0	0	0	0	1	1	1	i	0	0	0
	100 ppm	0	0	0	0	0	ő	Ŏ	Ô	Ô	Ō	Ô	0	0	0
	500 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	ooo phu	0	0	0	0	0	0	0	0	v	0	0	0	0	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

SEX - PEMALE															INGE - 3
Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a. Todomen	100 ppm	0	0	0	0	0	Ô	0	0	0	0	Ö	0	Ö	o ·
	500 ppm	0	0	0	0	ō	0	0	Ō	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	1	1	1	1	1	1	.1	1	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	1	0	0	1	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	1	1	1	1	1	1	1	1	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	1	1	1	1	1	2	2	2	2	2	2	2	2	2
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	,0	0	0
	2500 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	2	1	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	1	2	1	1	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	45	45	44	44	42	38	38	36	35	33	33	31	30	29
SMALL STOOL	Control	0	0	1	0	0	0	0	0	0	0	1	1	0	0
	100 ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	500 ppm	0	0	0 0	0	0	1	0	0 0	0	2 0	3 0	1 0	1 0	0
	2500 ppm	0	0	U	υ	0	0	0	U	U	U	U	U	U	U

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

STUDY NO. : 0462

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
. ABDOMEN	Combine 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDUMEN	Control 100 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm 2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERTOR DORGINA		•	0	•	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0						-				0			
	500 ppm	0	0	0	0	0	0	0	0	0	0		i	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	1	1	l	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	· 100 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	i	0	0
	2500 ppm	0	0	0	0	0	0	0	Ō	0	0	1	1	1	1
USTA	Control	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	100 ppm	ō	0	0	0	ō	0	0	0	0	1	1	1	1	1
	500 ppm	ŏ	ŏ	0	Ö	ŏ	0	0	0	0	Ô	ō	ō	Ô	î
	2500 ppm	ő	ő	0	ō	ő	ŏ	Ö	ő	Ö	ő	ő	ŏ	ŏ	Ô
DRTICOLLIS	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	1
MII COEDIO	100 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ррш 2500 ррш	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
DDCGIII AD DDCGGGGGGG	0 . 1	•	•	•	•	•	•			•		•		•	
RREGULAR BREATHING	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	1	0	0	1	0	0	0
	500 ppm	0	1	1	1	0	0	1	0	0	1	1	2	i	0
	2500 ppm	0	0	0	0	0	0	2	1	1	1	1	2	1	1
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	27	27	25	25	24	22	20	17	16	15	13	13	12	12
MALL STOOL	Control	0	0	0	0	0	0	0	1	0	0	0	2	2	0
	100 ppm	Ö	i	Õ	Ö	0	ō	0	0	0	i	0	0	0	0
	500 ppm	ō	0	Ŏ	0	ő	0	ō	0	Ŏ	ì	2	1	0	0
	2500 ppm	Ö	Ö	Ö	Ö	ő	ĭ	1	0	ŏ	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0462 ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 56

Clinical sign	Group Name	Admini	istration	Week-day			
		99-7	100-7	101-7	102-7	103-7	104-7
				-			
M. ABDOMEN	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	1
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	1
M. H. I D. LOK. DOKOON	100 ppm	ŏ	ō	ō	0	Ō	ō
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0
UNEWIV	100 ppm	0	0	0	0	0	0
				0	0	0	0
	500 ppm	0	0				
	2500 ppm	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0
	100 ppm	1	0	0	0	0	0
	500 ppm	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0
TORTICOLLIS	Control	1	1	1	1	1	1
TOWITOOPPID	100 ppm	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	1
	500 ppm	ō	0	0	0	0	ī
	2500 ppm	í	Ĺ	1	1	1	ō
AUTO LONG TIPTATE		•	•	•	•	•	^
YELLOW URINE	Control	0	0	0	0	0	0
	100 ppm	0	0	0	0	0	0
	500 ppm	0	0	0	0	4	4
	2500 ppm	11	9	8	8	8	5
SMALL STOOL	Control	0	1	0	0	0	1
5.2.55 5100B	100 ppm	ŏ	Ō	0	0	0	$\hat{\mathbf{z}}$
	500 ppm	o O	0	0	0	0	2
	2500 ppm	0	0	0	0	0	0
	2000 իիա	U	U	v	J	J	v

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 57

Clinical sign	Group Name	Admini	istration We	eek-day			,								
		1-7	· 2-7	3-7	4-7	5-7	6-7	7-7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
					,										
LIGO-STOOL	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	o	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	50	50	50	50	50	50	50	50	50	50	50	50	50
ON REMARKADLE	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	49
	500 ppm	50	50	50	50	50	50	50	50	50	49	49	49	49	49
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

BATS 4

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 58

Clinical sign	Group Name	Admini	stration W	eek-day _											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm	0	0	0	ō	0	0	0	0	0	ō	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
AV KOREMA BOD	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 59

Clinical sign	Group Name	Admini	stration W	eek-day _											
-	·	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
DIOC DIOCE	100 ppm	o	o	0	Ö	Ö	ŏ	Ö	0	Ö	ō	Ŏ	Ö	Ö	ō
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	49	50	49	49	49
	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	49
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 60

Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51−7	52-7	53-7	54-7	55-7	56-7
DLIGO-STOOL	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
DIGO CIOOD	100 ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	ō	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0
ION REMARKABLE	Control	49	49	49	49	49	49	48	48	48	48	48	48	48	48
	100 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	500 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

STUDY NO. : 0462
ANIMAL : MOUSE BED2F1/Crlj[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 61

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
OLIGO-STOOL	Control	1	1	1	1	0	0	0	0	0	O	0	0	0	0
DIGO STOOD	100 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	2
ON REMARKABLE	Control	47	47	47	47	47	47	46	46	46	46	46	46	46	46
A KEMININADEE	100 ppm	50	49	49	49	49	49	49	49	49	48	48	47	47	47
	500 ppm	49	49	49	49	49	48	48	48	48	47	47	47	47	47
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 62

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
OLIGO-STOOL	Control	0	0	0	0	Q	1	1	1	0	O	0	0	0	0
22,00 51,005	100 ppm	Ö	ō	0	0	ō	Ō	1	3	3	ō	0	0	0	0
	500 ppm	0	1	1	1	0	1	0	3	3	1	0	1	0	0
	2500 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
NON REMARKABLE	Control	46	46	44	43	43	41	40	39	38	38	38	36	34	33
A ROBERT DE	100 ppm	47	47	47	47	47	47	45	42	40	39	39	39	39	39
	500 ppm	47	46	46	45	44	42	42	40	38	35	35	34	34	34
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 63

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
OLIGO-STOOL	Control	n	0	0	0	0	0	0	1	0	0	0		,	•
DIGO GIOOD	100 ppm	1	1	n	0	0	0	0	0	0	1	2	Ü	0	U
	500 ppm	Ō	0	Ö	Ö	Ö	Ö	i	1	1	1	2	1	Ö	0
	2500 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	33	31	31	31	31	31	31	29	29	28	28	27	26	24
	100 ppm	38	36	36	36	36	35	35	35	35	33	32	32	32	31
	500 ррш	33	32	32	29	27	27	26	24	24	23	21	20	20	19
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 64

Clinical sign	Group Name	Admin	istration '	Week-day _			
		99-7	100-7	101-7	102-7	103-7	104-7
OLIGO-STOOL	Control	0	1	1	1	1	0
	100 ppm	0	0	0	0	0	1
	500 ppm	0	1	0	0	0	2
	2500 ppm	0	0	0	0	0	0
NON REMARKABLE	Control	24	22	22	22 29	21	20
	100 ppm	31	30	29	29	29	27
	500 ppm	17	16	15	15	15	12
	2500 ppm	0	0	0	0	0	0
(HAN190)			,				

APPENDIX C 1

BODY WEIGHT CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

oup Name	Administration	n week						
	0	1	2	3	4	5	6	·
Control	23.0± 0.9	24.2± 1.1	25.3± 1.1	25.8± 1.1	26.5± 1.1	27.5± 1.4	28.1± 1.5	
100 ppm	23.0± 0.9	23.9± 1.0	24.9± 1.0	25.6± 1.1	26.4± 1.2	27.3± 1.4	27.8± 1.5	
500 ppm	23.0± 0.9	24.0± 1.1	24.9± 1.1	25.7± 1.1	26.6± 1.2	27.4± 1.3	28.1± 1.5	
2500 ррт	23.0± 0.9	23.4± 1.5**	25.1± 1.1	26. 1± 1. 1	27.1± 1.1	27.7± 1.2	28.1± 1.2	
Significant difference	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				

(HAN260)

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Control 29.0± 1.7 29.4± 1.8 30.3± 2.0 31.1± 2.1 31.8± 2.3 32.3± 2.4 33.3± 2.4 100 ppm 28.6± 1.8 29.2± 1.9 29.7± 1.9 30.5± 2.1 31.4± 2.1 31.8± 2.3 32.4± 2.3 500 ppm 29.1± 1.6 29.6± 1.6 30.1± 1.9 31.1± 1.9 31.8± 2.3 32.2± 2.2 33.1± 2.3 2500 ppm 28.6± 1.2 29.1± 1.3 29.4± 1.4 30.2± 1.4 31.0± 1.4 31.1± 1.5* 31.8± 1.5**	Name	Administration	n week					
100 ppm 28.6± 1.8 29.2± 1.9 29.7± 1.9 30.5± 2.1 31.4± 2.1 31.8± 2.3 32.4± 2.3 500 ppm 29.1± 1.6 29.6± 1.6 30.1± 1.9 31.1± 1.9 31.8± 2.3 32.2± 2.2 33.1± 2.3		7	8	9	10	11	12	13
500 ppm 29.1± 1.6 29.6± 1.6 30.1± 1.9 31.1± 1.9 31.8± 2.3 32.2± 2.2 33.1± 2.3	Control	29.0± 1.7	29.4± 1.8	30.3± 2.0	31.1± 2.1	31.8± 2.3	32.3± 2.4	33.3± 2.4
	100 ppm	28.6± 1.8	29. 2± 1. 9	29.7± 1.9	30.5± 2.1	31.4± 2.1	31.8± 2.3	32.4± 2.3
2500 ppm 28.6± 1.2 29.1± 1.3 29.4± 1.4 30.2± 1.4 31.0± 1.4 31.1± 1.5* 31.8± 1.5**	500 ppm	29.1± 1.6	29.6± 1.6	30.1± 1.9	31.1± 1.9	31.8± 2.3	32.2± 2.2	33.1± 2.3
	2500 ррш	28.6± 1.2	29.1± 1.3	29.4± 1.4	30.2± 1.4	31.0± 1.4	31.1± 1.5*	31.8± 1.5**
Significant difference: *: P ≤ 0.05 **: P ≤ 0.01 Test of Dunnett	gnificant difference	: *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

BODY WEIGHT CHANGES

(SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

n Name	Administ	tration	week					
	14		18	22	26	30	34	38
Control	34.1± 2.	. 5	36.6± 3.0	38.8± 3.4	41.2± 3.7	43.6± 3.7	45.7± 3.7	47.0± 3.5
100 ppm	33.3± 2.	. 4	35.8± 2.9	38.1± 3.5	40.4± 3.8	42.9± 4.2	45.3± 4.3	46.8± 4.0
500 ppm	34.0± 2.	. 3	36.5± 2.8	38.8± 3.3	40.9± 3.7	43.1± 4.0	45.2± 4.5	47.1± 4.4
2500 ррш	32.6± 1.	. 6 **	34.2± 1.7**	35.4± 1.9**	36.5± 2.0≠*	37.4± 2.2**	38.4± 2.2**	39.5± 2.4**
Significant differen	ice; *:P≦0.0	05 *	o*: P ≤ 0.01		Test of Dunnett			

(HAN260)

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

40	Administration week						
42	46	50	54	58	62	66	
48.3± 4.5	50.2± 3.1	51.2± 2.8	51.8± 2.9	52.5± 2.5	53.7± 2.3	53.8± 2.4	
48.5± 3.8	49.6± 4.1	51.1± 3.8	52.0± 3.6	52.8± 3.5	54.3± 3.3	54.5± 3.1	
48.3± 4.9	50.1± 5.0	51.7± 4.1	53.2± 4.0	53.6± 4.0	54.7± 4.3	55.6± 4.8	
40.0± 2.7★★	40.7± 2.8**	41.1± 3.0≠≠	41.4± 3.3**	40.6± 4.0**	40.5± 3.4**	39.5± 3.5**	
; *: P ≤ 0.05 *	**: P ≤ 0.01	·- ·- ·-	Test of Dunnett				
•	48.5± 3.8 48.3± 4.9 40.0± 2.7**	48.5± 3.8 49.6± 4.1 48.3± 4.9 50.1± 5.0 40.0± 2.7** 40.7± 2.8**	48.5± 3.8 49.6± 4.1 51.1± 3.8 48.3± 4.9 50.1± 5.0 51.7± 4.1 40.0± 2.7** 40.7± 2.8** 41.1± 3.0**	48.5± 3.8 49.6± 4.1 51.1± 3.8 52.0± 3.6 48.3± 4.9 50.1± 5.0 51.7± 4.1 53.2± 4.0 40.0± 2.7** 40.7± 2.8** 41.1± 3.0** 41.4± 3.3**	48.5± 3.8 49.6± 4.1 51.1± 3.8 52.0± 3.6 52.8± 3.5 48.3± 4.9 50.1± 5.0 51.7± 4.1 53.2± 4.0 53.6± 4.0 40.0± 2.7** 40.7± 2.8** 41.1± 3.0** 41.4± 3.3** 40.6± 4.0**	48.5± 3.8 49.6± 4.1 51.1± 3.8 52.0± 3.6 52.8± 3.5 54.3± 3.3 48.3± 4.9 50.1± 5.0 51.7± 4.1 53.2± 4.0 53.6± 4.0 54.7± 4.3 40.0± 2.7** 40.7± 2.8** 41.1± 3.0** 41.4± 3.3** 40.6± 4.0** 40.5± 3.4**	48.5± 3.8 49.6± 4.1 51.1± 3.8 52.0± 3.6 52.8± 3.5 54.3± 3.3 54.5± 3.1 48.3± 4.9 50.1± 5.0 51.7± 4.1 53.2± 4.0 53.6± 4.0 54.7± 4.3 55.6± 4.8 40.0± 2.7** 40.7± 2.8** 41.1± 3.0** 41.4± 3.3** 40.6± 4.0** 40.5± 3.4** 39.5± 3.5**

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g

REPORT TYPE : A1 104

SEX : MALE

up Name	Administration	Administration week								
	70	74	78	82	86	90	94			
Control	53.6± 3.5	54.1± 4.3	54.3± 4.8	54.4± 6.1	53.0± 6.5	52.4± 7.4	52.8± 7.7			
100 ppm	54.7± 5.1	55. 2± 5. 6	54.9± 6.6	55.4± 6.1	54.8± 5.8	53.1± 7.2	51.8± 9.2			
500 ppm	55.3± 5.0	55. 2± 5. 7	54.0± 6.4	52.5± 6.5	50.9± 7.0	47.6± 8.4	45.0± 7.2**			
2500 ррш	37.6± 3.6★	36.1± 3.3**	35.8± 3.6★	33.5± 2.5**	33.7± 2.8**	32.0± 2.5**	32.1± 3.2**			
Significant difference	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett						

(SUMMARY)

BODY WEIGHT CHANGES

ALL ANIMALS

(HAN260)

BAIS 4

PAGE: 5

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

UNIT : g

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

roup Name	Administration	week		
	98	102	104	
Control	51.6± 8.2	51.2± 8.5	51.0± 8.4	
100 ppm	50.6± 10.1	50.2± 9.2	49.2± 9.9	
500 ppm	42.2± 6.5**	40.6± 6.5**	40.0± 6.0**	
2500 ррт	30.6± 2.7★	30.7± 2.7**	30.6± 2.2**	
Significant differenc	ce; *:P≦0.05	Hot: P ≤ 0.01	Test of Dunnett	
UAN260)				PATS

(HAN260)

APPENDIX C 2

BODY WEIGHT CHANGES: FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

j:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 7

ip Name	Administration week							
	0	1	2	3	4	5	6	
Control	18.6± 0.8	19.0± 1.5	19.5± 0.9	20.1± 0.9	20.5± 1.0	21.4± 1.1	21.9± 1.1	
100 ppm	18.6± 0.8	19.1± 0.9	19.6± 0.8	20.3± 0.9	20.8± 0.9	21.4± 1.0	21.8± 1.0	
500 ppm	18.6± 0.8	19.3± 0.9	19.9± 1.0*	20.6± 1.1**	21.3± 1.1**	22.1± 1.2**	22.7± 1.5**	
2500 ppm	18.6± 0.8	19.6± 0.8**	20.3± 0.7 **	21.0± 0.9**	21.7± 0.8**	22.5± 0.9**	23.1± 0.9**	
Significant difference	ce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett				

(SUMMARY)

(HAN260)

BODY WEIGHT CHANGES

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 8

Name	Administration	week					
	7	8	9	10	11	12	13
Control	22.4± 1.1	23.0± 1.2	23.3± 1.3	23.9± 1.3	24.4± 1.5	24.5± 1.6	24.8± 1.8
100 ppm	22.7± 1.1	22.9± 1.2	23.1± 1.2	24.2± 1.7	24.3± 1.6	24.4生 1.5	25.1± 1.7
500 ppm	23.2± 1.5*	23.7± 1.5*	24.0± 1.8	24.8± 2.2	25.4± 2.3	25.3± 2.4	25.8± 2.4
2500 ррт	24.0± 1.0**	24.0± 1.1**	24.7± 1.1**	25.3± 1.1**	25.7± 1.1**	25.7± 1.3**	25.9± 1.3**
							· · · · · · · · · · · · · · · · · · ·
Significant difference ;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BODY WEIGHT CHANGES

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g

ALL ANIMALS

(SUMMARY)

REPORT TYPE : A1 104

SEX: FEMALE

PAGE: 9

up Name	Administration	on week					
	14	18	22	26	30	34	38
Control	25.7± 2.0	27.4± 2.6	28.8± 2.8	30.4± 3.3	32.0± 3.6	33.0± 3.7	34.2± 3.6
100 ppm	25.8± 1.9	27.5± 2.5	29.2± 3.2	30.1± 3.5	31.8± 3.6	33.3± 3.6	33.9± 3.9
500 ppm	26.7± 2.7	28.1± 3.3	30.0± 3.9	31.2± 4.0	32.9± 4.3	34.0± 4.8	34.9± 4.7
2500 ррш	26.3± 1.4	27.6± 1.6	29.2± 1.8	29.7± 2.1	30.8± 2.3	31.7± 2.6	31.8± 2.3**
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
N260)							:

BODY WEIGHT CHANGES

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

(SUMMARY)

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

ip Name	Administration	week					
-	42	46	50	54	58	62	66
Control	35.4± 3.9	36.3± 4.1	36.9± 4.3	37.9 ± 4.3	38.6± 4.7	38.5± 5.1	39.4± 5.0
100 ppm	35.1± 4.1	36.3± 3.9	36.7± 4.5	38. 2± 4. 3	38.9± 4.9	39. 2± 4. 3	40.0± 4.4
500 ppm	36.4± 5.0	37.4± 5.3	38.1± 5.6	38.8± 5.8	39.4± 5.4	39.6± 5.6	40.3± 5.7
2500 ррт	32.3± 2.5 * *	32.2± 2.6**	31.8± 2.9**	31.3± 2.6**	30.6± 2.3★	30.2± 2.3**	29.4± 2.4**
Significant differend	ce; *: P ≤ 0.05 *	t*: P ≤ 0.01		Test of Dunnett			
N260)							

BODY WEIGHT CHANGES

(SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Name	Administration	week					
	70	74	78	82	86	90	94
Control	40.1± 5.0	39.8± 5.2	39.8± 5.4	39.7± 5.4	39.2± 5.3	38.8± 5.0	38.9± 5.1
100 ppm	40.2± 4.5	40.0± 4.3	39.5± 4.5	39.9± 4.6	39.3± 4.7	39.2± 4.4	39.1± 5.1
500 ppm	40.8± 5.4	40.0± 5.0	38.7± 5.2	38.2± 4.3	37.4± 5.1	36.8± 4.7	35.3± 4.3*
2500 ррт	28.7± 2.4**	27.7± 2.4**	27.5± 2.1**	27.2± 2.0**	26.7± 2.3★★	26.2± 1.8**	26.0± 1.7**
Significant differen	ce; *: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			
N260)							

BODY WEIGHT CHANGES

(SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 12

oup Name	Administration	week		
	98	102	104	
Control	38.3± 5.2	38.2± 5.4	37.4± 5.8	
100 ppm	39.1± 4.6	38.4± 4.5	37.9± 4.4	
500 ppm	34.8± 3.8*	33.8± 3.4**	33.0± 3.5**	
2500 ррт	26.1± 1.7≠≠	25.8± 1.2**	26.5± 1.9**	
Significant differen	ce; *:P≦0.05	**: P ≤ 0.01	Test of Dunnett	
AN260)				BAIS

APPENDIX D 1

FOOD CONSUMPTION CHANGES: MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

ip Name	Administration	week					
	1	2	3	4	5	6	7
Control	3.9 ± 0.3	3.7± 0.2	3.6± 0.3	3.8± 0.3	3.8± 0.3	3.7生 0.4	3.9± 0.4
100 ppm	3.8± 0.3	3.7± 0.2	3.7± 0.2	3.7± 0.2	3.8± 0.3	3.6± 0.2	3.8± 0.3
500 ppm	3.9± 0.3	3.8± 0.3	3.7± 0.3	3.7± 0.3	3.8± 0.3	3.7± 0.3	3.9± 0.3
2500 ppm	4.0± 0.8	4.3± 0.6**	3.8± 0.5	3.9± 0.4	3.9± 0.4	3.7± 0.3	3.9± 0.4
Significant difference	ce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
N260)							

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

p Name	Administration	week					
	8	9	10	11	12	13	14
Control	3.9± 0.3	4.0± 0.4	4.1± 0.4	4.0± 0.4	4.0± 0.3	4.0± 0.4	4.0± 0.3
100 ppm	3.8± 0.3	3.8± 0.3	3.9± 0.3*	3.9± 0.4	4.0± 0.2	3.9± 0.3	3.9± 0.2
500 ppm	3.9± 0.3	3.9± 0.3	3.9± 0.3*	3.9± 0.3	4.0± 0.3	3.9± 0.2	4.0± 0.2
2500 ppm	3.8± 0.3	3.9± 0.3	3.9± 0.2*	3.9± 0.3	3.9± 0.3	3.9± 0.3	4.0± 0.3
Significant differenc	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
1260)	···						

(HAN260)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

p Name	Administration week								
	18	22	26	30	34	38	42		
Control	4.0± 0.4	4.2± 0.3	4.3± 0.3	4.4± 0.3	4.4± 0.4	4.3± 0.3	4.4± 0.6		
100 ppm	3.9± 0.3	4.1± 0.3	4.2± 0.4	4.2± 0.3*	4.2± 0.3	4.1± 0.4*	4.4± 0.3		
500 ppm	3.8± 0.3	4.0± 0.3*	4.1± 0.3	4.3± 0.4	4.3± 0.5	4.2± 0.4	4.3± 0.4		
2500 ррт	3.8± 0.3**	3.9± 0.3**	4.1± 0.4	4.1± 0.4**	4.2生 0.4**	4.2± 0.6**	4.2± 0.5**		

(HAN260)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

p Name	Administration	week					
·	46	50	54	58	62	66	70
Control	4.5± 0.4	4.5± 0.3	4.5± 0.5	4.5± 0.4	4.5± 0.4	4.7± 0.5	4.7± 0.7
100 ppm	4.3± 0.5	4.5± 0.2	4.5± 0.3	4.5± 0.3	4.4± 0.4	4.5± 0.5	4.5± 0.7
500 ppm	4.4± 0.3	4.5± 0.4	4.6± 0.3	4.4± 0.5	4.6± 0.4	4.6± 0.5	4.5± 0.8
2500 ррш	4.2± 0.5*	4.4± 0.5*	4.5± 0.8	4.2生 0.8**	4.5± 0.8	4.8± 0.8	4.7± 0.8
Significant difference	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

PAGE: 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Administration	Administration week								
	74	78	82	86	90	94	98			
Control	4.8± 0.5	5.1± 0.8	5.0± 0.7	4.7± 0.7	4.7± 0.8	4.7± 0.7	4.7± 0.6			
100 ppm	4.7± 0.5	4.9± 0.7	4.8± 0.5	5.0± 0.6	4.6± 0.7	4.6± 0.8	4.7± 0.8			
500 ppm	4.7± 0.7	4.7± 0.9	4.6± 0.8	4.9± 0.8	4.3± 1.2	4.3± 0.8	4.2± 0.9*			
2500 ррт	4.8± 0.8	5.2± 0.9	5.3± 0.8	5.8± 0.9**	4.9± 0.7	4.6± 0.4	4.7± 0.5			
Sii Gi 3i 66		D < 0.01		To the Company	·	····				
NSGO)	ce; *: P ≦ 0.05	**: P ≦ 0.01		Test of Dunnett						

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 6 Group Name Administration week_ 102 104 4.8± 0.9 Control 4.7± 0.6 4.8± 0.9 100 ppm 4.7± 1.0 4.6± 1.2 4.8± 1.0 500 ppm 2500 ppm 5.6± 1.4 5.0± 0.8 Significant difference; $*:P \leq 0.05$ **: P ≤ 0.01 Test of Dunnett

BAIS 4

APPENDIX D 2

FOOD CONSUMPTION CHANGES: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 7

p Name	Administration	week					
	1	2	3	4	5	6	7
Control	3.5± 0.4	3.2± 0.3	3.4± 0.2	3.3± 0.2	3.5± 0.2	3.5± 0.2	3.7± 0.3
100 ppm	3.8± 0.4**	3.5± 0.4**	3.5± 0.4	3.4± 0.3	3.6± 0.4	3.5± 0.3	3.9± 0.4
500 ppm	3.7± 0.3	3.6± 0.4**	3.4± 0.2	3.5± 0.3*	3.7± 0.4	3.6± 0.4	3.9± 0.5
2500 ррш	3.7± 0.5	3.6± 0.4**	3.4± 0.3	3.4± 0.3	3.6± 0.3	3.6± 0.4	4.0± 0.5*
Significant difference	ce; *:P≦0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 8

oup Name	Administration	week						
	8	9	10	11	12	13	14	
Control	3.6± 0.2	3.7± 0.3	3.8± 0.3	3.7± 0.3	3.8± 0.3	3.7± 0.3	3.9± 0.4	
100 ppm	3.6± 0.4	3.6± 0.3*	3.9± 0.4	3.9± 0.5	3.9± 0.4	3.9± 0.4	3.9± 0.5	
500 ppm	3.7± 0.4	3.9± 0.6	3.9± 0.6	3.9± 0.6	3.9± 0.5	3.7± 0.5	3.9± 0.5	
2500 ppm	3.8± 0.5	3.9± 0.4	3.8± 0.4	3.9± 0.4	4.0± 0.5	3.7± 0.5	3.8± 0.5	
								· · · · · · · · · · · · · · · · · · ·
Significant difference;	*: $P \leq 0.05$	** : P ≤ 0.01		Test of Dunnett				
Macu)								מ

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

up Name	Administration	week					
	18	22	26	30	34	38	42
Control	3.7± 0.4	3.8± 0.4	4.0± 0.5	4.2± 0.6	4.2± 0.6	4.1± 0.6	4.3± 0.5
100 ppm	3.8± 0.5	4.0± 0.5**	4.1± 0.5	4.2± 0.6	4.4± 0.6	4.2± 0.7	4.3± 0.8
500 ррт	3.8± 0.6	4.0± 0.6	4.1± 0.7	4.2± 0.7	4.1± 0.7	4.1± 0.6	4.3± 0.6
2500 ppm	3.8± 0.5	4.1± 0.7*	4.1± 0.6	4.2± 0.6	4.3± 0.8	4.1± 0.7	4.3± 0.8
Significant difference	e; *:P≦0.05	**: P ≦ 0.01		Test of Dunnett			.=
260)							

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 10

oup Name	Administration	week						
	46	50	54	58	62	66	70	
				,				
Control	4.3 ± 0.6	4.4± 0.7	4.4± 0.6	4.5± 0.7	4.3± 0.6	4.5± 0.7	4.4± 0.4	
100 ppm	4.5± 0.7	4.4± 0.8	4.6± 0.8	4.6± 0.8	4.5± 0.9	4.6± 0.7	4.5± 0.8	
500 ppm	4.4± 0.8	4.5± 0.8	4.5± 0.7	4.5± 0.9	4.5± 0.9	4.5± 0.7	4.5± 0.6	
2500 ppm	4.4± 0.8	4.4± 0.7	4.6± 0.7	4.8± 0.9	4.8± 1.1	4.6± 0.8	4.5± 0.8	
Significant difference	; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				
AN260)					· · · · · · · · · · · · · · · · · · ·			

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Control 4.5± 0.7 4.7± 0.8 4.8± 0.8 4.7± 0.9 4.5± 0.8 4.4± 0.8 4.8± 0.9 100 ppm 4.6± 0.9 4.5± 0.9 4.6± 0.7 5.0± 1.2 4.5± 0.8 4.4± 0.8 4.7± 0.6 500 ppm 4.5± 0.9 4.5± 0.9 4.6± 0.9 4.9± 0.9 4.6± 0.9 4.2± 0.9 4.8± 0.7 2500 ppm 4.7± 1.2 4.6± 0.9 4.6± 1.0 4.9± 1.0 4.6± 0.7 4.8± 0.9 5.0± 0.9 Significant difference ; * : P ≤ 0.05 ** : P ≤ 0.01 Test of Dunnett	me	Administration	week						
100 ppm 4.6± 0.9 4.5± 0.9 4.6± 0.7 5.0± 1.2 4.5± 0.8 4.4± 0.8 4.7± 0.6 500 ppm 4.5± 0.9 4.5± 0.9 4.6± 0.9 4.9± 0.9 4.6± 0.9 4.2± 0.9 4.8± 0.7 2500 ppm 4.7± 1.2 4.6± 0.9 4.6± 1.0 4.9± 1.0 4.6± 0.7 4.8± 0.9 5.0± 0.9	· · · · · · · · · · · · · · · · · · ·	74	78	82	86	90	94	98	
500 ppm 4.5± 0.9 4.5± 0.9 4.6± 0.9 4.9± 0.9 4.6± 0.9 4.2± 0.9 4.8± 0.7 2500 ppm 4.7± 1.2 4.6± 0.9 4.6± 1.0 4.9± 1.0 4.6± 0.7 4.8± 0.9 5.0± 0.9	Control	4.5± 0.7	4.7± 0.8	4.8± 0.8	4.7± 0.9	4.5± 0.8	4.4± 0.8	4.8± 0.9	
2500 ppm 4.7± 1.2 4.6± 0.9 4.6± 1.0 4.9± 1.0 4.6± 0.7 4.8± 0.9 5.0± 0.9	100 ррт	4.6± 0.9	4.5± 0.9	4.6± 0.7	5.0± 1.2	4.5± 0.8	4.4± 0.8	4.7± 0.6	
	500 ррш	4.5± 0.9	4.5± 0.9	4.6± 0.9	4.9± 0.9	4.6± 0.9	4.2± 0.9	4.8± 0.7	
	2500 ppm	4.7± 1.2	4.6± 0.9		4.9± 1.0	4.6± 0.7	4.8± 0.9	5.0± 0.9	
Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett				·					
NS60)		*: P ≤ 0.05	**: P ≦ 0.01		Test of Dunnett				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 12 Administration week_ Group Name 104 Control 4.8± 1.0 4.4± 1.1 100 ppm 4.6± 0.8 4.4± 0.9 4.9± 1.0 500 ppm 4.7± 0.7 2500 ppm 5.5± 1.0 4.3 ? Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett ? : Significant test is not applied, because No. of data in this group is less than 3. (HAN260)

APPENDIX E 1

CHEMICAL INTAKE CHANGES: MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]
UNIT : g /kg/day
REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

oup Name	Administration	(weeks)					
	1	. 2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000
100 ppm	0.016± 0.001	0.015± 0.001	0.014± 0.001	0.014± 0.001	0.014± 0.001	0.013± 0.001	0.013± 0.001
500 ppm	0.081 ± 0.006	0.076± 0.006	0.072± 0.005	0.070± 0.005	0.070± 0.004	0.066± 0.004	0.067± 0.004
2500 ррш	0.422± 0.073	0.424± 0.055	0.362± 0.046	0.357± 0.032	0.348± 0.031	0.326± 0.025	0.343± 0.029

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g/kg/day

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

roup Name	Administration	(weeks)	···	· · · · · · · · · · · · · · · · · · ·			
	8	9	10	11	12	13	14
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.013± 0.001	0.013± 0.001	0.013± 0.001	0.013± 0.001	0.013± 0.001	0.012± 0.001	0.012± 0.001
500 ppm	0.065± 0.003	0.064± 0.003	0.063± 0.003	0.061± 0.003	0.062± 0.004	0.060± 0.003	0.059± 0.003
2500 ppm	0.325± 0.024	0.330± 0.027	0.320± 0.023	0.313± 0.025	0.315± 0.022	0.307± 0.026	0.305± 0.022

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

UNIT : g/kg/day REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

oup Name	Administration	(weeks)				·······	
	18	22	26	30	34	38	42
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000	0.000± 0.000
100 ррт	0.011± 0.001	0.011± 0.001	0.010± 0.001	0.010± 0.001	0.009± 0.001	0.009± 0.001	0.009± 0.001
500 ppm	0.052± 0.003	0.052± 0.003	0.051± 0.003	0.050± 0.005	0.047± 0.004	0.045± 0.003	0.044± 0.003
2500 ррт	0.274± 0.020	0.277± 0.019	0.279± 0.026	0.275± 0.027	0.271± 0.028	0.264± 0.037	0.264± 0.035

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g/kg/day

REPORT TYPE : A1 104 SEX : MALE

PAGE: 4

oup Name	Administration	(weeks)	·				
	46	50	54	58	62	66	70
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.009± 0.001	0.009± 0.001	0.009± 0.001	0.009± 0.001	0.008± 0.001	0.008± 0.001	0.008± 0.001
500 ppm	0.045± 0.006	0.043± 0.003	0.044± 0.003	0.041± 0.004	0.042± 0.004	0.042± 0.005	0.040± 0,006
2500 ррт	0.261± 0.028	0.266± 0.034	0.272± 0.043	0.260± 0.039	0.281± 0.048	0.303± 0.055	0.311± 0.058

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] AL

UNIT : g/kg/day REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

oup Name	Administration	(weeks)					
	74	78	82	86	90 	94	98
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.009± 0.001	0.009± 0.001	0.009± 0.001	0.009± 0.001	0.009± 0.002	0.009± 0.002	0.010± 0.003
500 ppm	0.042± 0.007	0.043± 0.009	0.044± 0.008	0.048± 0.007	0.045± 0.015	0.048± 0.012	0.050± 0.010
2500 ppm	0.337± 0.067	0.360± 0.074	0.397± 0.072	0.433± 0.084	0.390± 0.070	0.355± 0.055	0.370± 0.039

(HAN300)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g / kg / d a y
REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration 102	(weeks) 104
Control	0.000± 0.000	0.000± 0.000
100 ppm	0.010± 0.003	0.010± 0.003
500 ppm	0.057± 0.013	0.061± 0.014
2500 ppm	0.479± 0.148	0.400± 0.066
(HAN300)		

PAGE: 6

APPENDIX E 2

CHEMICAL INTAKE CHANGES: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g/kg/day

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 7

oup Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.020± 0.002	0.018± 0.002	0.017± 0.002	0.017± 0.001	0.017± 0.002	0.016± 0.001	0.017± 0.002
500 ppm	0.095± 0.008	0.090± 0.009	0.083± 0.006	0.081± 0.007	0.083± 0.008	0.079± 0.008	0.083± 0.010
2500 ррш	0.477± 0.059	0.446± 0.044	0.407± 0.035	0.398± 0.040	0.400± 0.037	0.385± 0.040	0.412± 0.043

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crj; BDF1]
UNIT : g / kg / d a y
REPORT TYPE : A1 104

ALL ANIMALS

SEX : FEMALE

PAGE: 8

oup Name	Administration	(weeks)					
	8	9	10	11	12	13	14
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.016± 0.002	0.016± 0.002	0.016± 0.002	0.016± 0.002	0.016± 0.002	0.015± 0.002	0.015± 0.002
500 ppm	0.077± 0.008	0.080± 0.010	0.078± 0.008	0.078± 0.010	0.077± 0.009	0.073± 0.009	0.074± 0.009
2500 ppm	0.390± 0.049	0.396± 0.038	0.378± 0.038	0.378± 0.038	0.385± 0.046	0.361± 0.044	0.360± 0.044

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANTMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]
UNIT : g /kg / d a y
REPORT TYPE : A1 104

ALL ANIMALS

SEX : FEMALE

PAGE: 9

up Name	Administration	(weeks)				····	
- ·	18	22	26	30	34	38	42
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.014± 0.002	0.014± 0.002	0.014± 0.002	0.013± 0.002	0.013± 0.002	0.013± 0.002	0.013± 0.002
500 ppm	0.068± 0.008	0.067± 0.009	0.066± 0.010	0.065± 0.010	0.061± 0.009	0.059± 0.009	0.060± 0.010
2500 ppm	0.343± 0.046	0.352± 0.059	0.348± 0.053	0.342± 0.055	0.342± 0.057	0.327± 0.055	0.337± 0.059

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]
UNIT : g /kg / d a y
REPORT TYPE : A1 104

ALL ANIMALS

SEX : FEMALE

PAGE: 10

oup Name	Administration	(weeks)					
	46	50	54	58	62	66	70
Control	0.000 ± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.013± 0.002	0.012± 0.002	0.012± 0.002	0.012± 0.002	0.012± 0.002	0.011± 0.002	0.011 ± 0.002
500 ppm	0.059± 0.011	0.059± 0.011	0.059± 0.009	0.058± 0.013	0.057± 0.012	0.056± 0.008	0.056± 0.009
2500 ррш	0.340± 0.060	0.350± 0.068	0.366± 0.064	0.388± 0.075	0.401± 0.089	0.391± 0.070	0.396± 0.076

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
UNIT : g /kg / d a y
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

oup Name	Administration	(weeks)					
	74	78	82	86	90	94	98
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
100 ppm	0.012± 0.002	0.012± 0.002	0.012± 0.002	0.013± 0.003	0.012± 0.002	0.012± 0.002	0.012± 0.002
500 ppm	0.056± 0.011	0.058± 0.011	0.061± 0.013	0.067± 0.014	0.064± 0.015	0.060± 0.015	0.069± 0.015
2500 ppm	0.429± 0.111	0.417± 0.088	0.423± 0.088	0.465± 0.090	0.436± 0.069	0.467± 0.086	0.474± 0.098

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g/kg/day

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Name	Administration		 	
	102	104		
Control	0.000± 0.000	0.000± 0.000		
100 ppm	0.012± 0.002	0.011± 0.002		
F00	0.079.4. 0.000	0.070 ± 0.014		
500 ppm	0.073± 0.020	0.072± 0.014		
2500 ppm	0.524± 0.106	0. 427		
• •				
)A)			 	

(HAN300)

BAIS 4

PAGE: 12

APPENDIX F 1

HEMATOLOGY: MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

STUDY NO. : 0462 ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

p Name	NO. of Animals	RED BLO	OOD CELL	HEMOGLO. g/dl	BIN	HEMATOC %	RIT	MCV f &		MCH pg		MCHC g/dl		PLATELE 1 0³/μ	
Control	33	9.62±	1. 13	13.8±	1.4	43.7±	4. 5	45.5±	2. 2	14.4±	0.6	31.6±	1.1	1751±	430
100 ppm	33	9.56±	1. 30	13.5±	1.7	43.1±	5. 0	45.3±	2.4	14.2±	0.7	31.3±	1.2	1723±	295
500 ppm	14	8.34±	2. 75	11.6±	3.5	37.9±	9.8	47.5±	7.4	14.2±	1.2	30.2±	2. 3	1549±	540
2500 ppm	8	8.92±	2. 02	13.0±	2. 7	41.7±	6.8	47.6±	4. 2	14.6±	0.6	30.8±	1. 9	1658±	711

(HCL070)

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]
MEASURE. TIME : 1

REPORT TYPE : A1 SEX : MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

roup Name	NO. of Animals	RETICULOCYTE %		
Control	33	2.4± 1.6		
100 ppm	33	2.8± 2.3		
500 ррт	14	9.4± 12.7**		
2500 ppm	8	8.0± 5.4**		
Significant	difference ;	* : P ≤ 0.05	≤ 0.01 Test of Dunnett	
ICL070)				BAI

PAGE: 2

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

p Name	NO. of Animals	₩BC 1 0³/:		Dif N-BAND	ferentia	1 WBC (% N-SEG	5)	EOSINO		BAS0		MONO		LYMPIIO		OTHER	
Control	33	3.02±	2. 16	1±	1	26±	9	2±	2	0±	0	4±	2	67±	10	1호	2
100 ppm	33	2.64±	1.40	1±	1	28±	12	1±	1	0±	0	4±	2	64±	17	2±	ç
500 ppm	14	2.63±	1.07	1±	2	33±	12	1±	1*	0±	0	3±	2	61±	14	2±	ţ
2500 ppm	8	3.31±	1. 20	3±	3	57±	12**	0±	0 **	0±	0	3±	2	35±	14**	2±	2

PAGE: 3

BAIS 4 (HCL070)

APPENDIX F 2

HEMATOLOGY: FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

oup Name	NO. of Animals	RED BLOOD CEI 1 0⁵∕µℓ	L HEMOGLO	BIN	HEMATOC %	RIT	MCV f l		MCH pg		MCHC g/dl		PLATELE 1 O³/µ	
Control	29	9. 24± 1. 29	13.6±	1. 7	42.9±	4. 3	46.9±	3.8	14.8±	0.6	31.6±	1.5	1097土	293
100 ppm	34	9.32± 1.18	13.7±	1. 7	43.2±	4. 7	46.5±	2. 4	14.7±	0. 5	31.7±	1. 1	1058±	301
500 ррт	25	9.30± 1.57	13.4±	2. 1	43.2±	6.5	46.8±	2.7	14.4±	0.6*	30.9±	1. 3	1168±	354
2500 ppm	4	10.00± 1.00	15.3±	1. 2	47.8±	4.9	47.9±	2. 1	15.3±	0.5	32.0±	0. 9	923±	522

PAGE: 4

(HCL070) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

oup Name	NO. of Animals	RETICULOCYTE %		
Control	29	4.7± 8.0		
100 ppm	34	3.1± 2.7		
500 ppm	25	5. 2± 3. 9**		
2500 ppm	4	5.3± 1.0*		
Significant	difference;	*: P ≤ 0.05	Test of Dunnett	
CL070)				BAIS

(HCL070)

BAIS 4

PAGE: 5

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

p Name	NO. of Animals	WBC 1 0 ³ /1		Dif N-BAND	ferential	WBC (% N-SEG	5)	EOSINO		BAS0		MONO		LYMPHO		OTHER	
Control	29	3.31±	3. 44	0±	1	27±	14	3±	3	0±	0	4±	2	62±	18	3 <u>+</u>	
100 ррш	34	3.33±	4. 78	0±	0	22±	11	2±	2	0±	0	4±	2	69±	16	4±	1
500 ppm	25	3.08±	1.56	1±	1	28±	14	2±	6*	0±	0	3±	2	61±	19	4±	
2500 ppm	4	1.12±	0.41*	2±	1	69±	9**	0±	i*	0±	0	2±	2	25±	6**	2±	

PAGE: 6

(HCL070) BAIS 4

APPENDIX G 1

BIOCHEMISTRY: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

oup Name	NO. of Animals	TOTAL F g/dl		ALBUMIN g/dl		A/G RAT	10	T-BILII mg/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYCI mg/dl	ERIDE
Control	34	5.6±	0. 9	3.0±	0.5	1.2±	0.2	0.15±	0.07	197±	48	128±	59	34±	16
100 ppm	34	5.5±	0.8	2.9±	0.6	1.1±	0.2	0.14±	0.03	199±	54	151±	64	44±	24
500 ppm	14	5.6±	0. 3	3.1±	0. 2	1.2±	0.2	0.29±	0.26*	167±	58	200±	79**	27±	15
2500 ppm	8	5.8±	0.9	3.3±	0.6	1.3±	0.2	0.38±	0. 20**	138±	22*	339±	78**	29±	15

(HCL074) BAIS 4

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2

Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST I U/	e	ALT IU/	e	LDH I U/	· L	ALP IU/.	e	G-GTP I U/A	!	CK IU/J	2
Control	34	217±	86	306±	787	234±	579	929±	2145	145±	52	2±	1	54±	32
100 ppm	34	247±	79	156土	209	120±	173	495±	693	215±	186	1±	ı	58±	34
500 ррш	14	354±	140**	549±	590 **	610±	759 **	7530±	10481**	1013±	715**	3±	2*	202±	395**
2500 ppm	8	576±	120**	3136±	3412**	2400±	2502**	10515±	10479**	2448±	1025**	74±	29**	139±	38**

(HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

up Name	NO. of Animals	UREA NI mg∕dl	TOROGEN	sodium m Eq / l		POTASSI mEq/1		CHLORIDE m Eq / 2		CALCIUM mg/dl		INORGAN mg/dl	IIC PHOSPHORUS
Control	34	20.6±	3. 0	153±	2	4.1±	0.4	121±	3	9.2±	0.6	6.3±	0.8
100 ppm	34	21.3±	3.8	153±	2	4.1±	0.5	122±	4	9.3±	0.5	6.4±	0. 9
500 ppm	14	27.5±	22.7	154±	3	4.2±	0.9	123±	4	9.8±	1.3*	6.2±	1. 3
2500 ppm	8	21.0±	4. 3	153±	2	5.0生	0.8**	121±	2	10.2±	0.4**	7.4±	0.8**

APPENDIX G 2

BIOCHEMISTRY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 4 TOTAL PROTEIN ALBUMIN Group Name NO. of A/G RATIO T-BILIRUBIN GLUCOSE T-CHOLESTEROL TRIGLYCERIDE Animals g/dl g/dl mg/dl mg/dl mg/dl mg/dl Control 29 5.1± 0.9 $2.7 \pm$ 0.3 1.2± 0.3 0.14± 0.03 170± 35 76± 21 $28 \pm$ 18 100 ppm 34 4.9± 0.4 2.8± 0.2 1.3± 0.2 0.16± 0.07 160± 40 89± 23 $34\pm$ 30 500 ppm 26 $6.0 \pm$ 1.1** 3.0± 0.2** 1.1± 0.3 165土 27± 0.24± 0.16*** 46 166土 73** 29 2500 ppm 6.6± 4 0.2** $3.7\pm$ 0.2** 1.3± 0.1 0.58± 0.12** 61± 44** 558± 245** 45± 34

Significant difference : * : P ≤ 0.05

**: P ≤ 0.01

Test of Dunnett

(HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

up Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST IU/s	<u></u>	ALT IU/	e	LDH IU/	l	ALP I U/	e	G-GTP I U/A		I U/J	2
Control	29	137±	32	94±	45	36±	27	409±	395	170±	56	1±	1	91±	98
100 ppm	34	164±	35	105±	122	51±	62	393±	528	200±	95	1±	1	64±	44
500 ppm	26	312±	154**	449±	824**	480±	816**	2078±	4212**	805±	738**	5±	8**	106生	96
2500 ppm	4	867±	307**	1432±	796**	2115±	779**	6228±	2802**	4432±	1221**	250±	30**	241±	229

(HCL074) BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

NO. of UREA NITOROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Group Name mg/dl Animals mEq/1 mEq/l mEq/l mg/dl mg/dl Control 29 17.5± 5.2 $152 \pm$ 2 4.2± 0.3 123± $9.0 \pm$ 0.5 5.7± 0.8 100 ppm 34 15.2± 3.0 152± 2 4.2± 123± 9.0± 0.4 5.7± 0.9 0.6 500 ppm 26 21.3± 152± 6.1± 1.2 9.8 4.2± 0.6 121± 9.8± 0.7** 2500 ppm 4 35.5± 15.1* 155± 4 6.2± 1.8* 125± 10.3 \pm 0.6** 7.9± 1.3**

Significant difference : $*: P \leq 0.05$

**: $P \leq 0.01$

Test of Dunnett

(HCL074)

BAIS 4

PAGE: 6

APPENDIX H 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

p Name	NO. of	pHHq							Protein	Glucose	Ketone body	Occult blood
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5 CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ CHI
Control	36	0	6	10	12	7	1	0	0 3 21 11 1 0	36 0 0 0 0 0	9 25 2 0 0 0	31 0 1 1 3
100 ppm	36	0	8	4	7	13	4	0	0 2 18 14 2 0	36 0 0 0 0 0	5 29 2 0 0 0	33 0 0 0 3
500 ppm	20	0	5	3	5	5	2	0	0 5 9 6 0 0	20 0 0 0 0 0	10 9 1 0 0 0	18 2 0 0 0
2500 ppm	10	0	2	3	0	5	0	0	1 4 5 0 0 0 *	10 0 0 0 0	0 8 2 0 0 0	10 0 0 0 0

(HCL101)

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2 Group Name NO. of Urobilinogen ± + 2+ 3+ 4+ CHI Animals Control 36 36 0 0 0 0 100 ppm 36 36 0 0 0 0 500 ppm 20 20 0 0 0 0 2500 ppm 10 10 0 0 0 0 $**: P \leq 0.01$ Test of CHI SQUARE Significant difference : $*: P \leq 0.05$

(HCL101)

APPENDIX H 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

up Name	NO. of	pll_							Protein	Glucose	Ketone body	Occult blood
·····	Animals	5. 0	6.0	6.5	7.0	7.5	8.0	8.5 CHI	- ± + 2+ 3+ 4+ CH	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ CHI
Control	29	0	3	8	9	6	3	0	0 7 15 7 0 0	29 0 0 0 0 0	3 21 3 2 0 0	25 0 0 0 4
100 ppm	34		5		10	3	3	0	0 4 19 11 0 0	34 0 0 0 0 0	0 25 8 1 0 0	28 0 1 1 4
500 ppm	26	0	2	5	9	6	4	0	5 7 13 1 0 0 *	26 0 0 0 0 0	4 17 4 1 0 0	25 0 0 1 0
2500 ppm	8	0	3	3	0	2	0	0	1 4 2 1 0 0	8 0 0 0 0 0	0 2 4 2 0 0 *	8 0 0 0 0

(HCL101)

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

Control 2	29	29 0 0 0 0
100 ppm 3	34	34 0 0 0 0
500 ppm 2	26	26 0 0 0 0
2500 ppm	8	8 0 0 0 0

BAIS 4

PAGE: 4

(HCL101)

APPENDIX I 1

GROSS FINDINGS: MALE

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/CrIj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

gan	Findings	Group Name NO. of Animals	Control 50 (%)	100 ppm 50 (%)	500 ppm 50 (%)	2500 ppm 50 (%)
tin/app	пodule		1 (2)	0 (0)	0 (0)	0 (0)
сти, арр	erosion		0 (0)	1 (2)	0 (0)	0 (0)
	scab		3 (6)	1 (2)	0 (0)	0 (0)
bcutis	edema		1 (2)	1 (2)	1 (2)	0 (0)
	mass		1 (2)	1 (2)	2 (4)	0 (0)
ng	red zone		1 (2)	0 (0)	0 (0)	1 (2)
	nodule		10 (20)	13 (26)	8 (16)	11 (22)
mph node	enlarged		3 (6)	7 (14)	5 (10)	1 (2)
leen	enlarged		2 (4)	3 (6)	7 (14)	3 (6)
	white zone		1 (2)	0 (0)	0 (0)	0 (0)
	black zone		0 (0)	1 (2)	0 (0)	0 (0)
	nodule		0 (0)	2 (4)	2 (4)	1 (2)
	accentuation of white pulp		0 (0)	2 (4)	0 (0)	0 (0)
ngue	white zone		1 (2)	0 (0)	0 (0)	0 (0)
alivary gl	nodule		1 (2)	0 (0)	0 (0)	0 (0)
mall intes	nodule		0 (0)	0 (0)	0 (0)	1 (2)
rge intes	white zone		1 (2)	0 (0)	0 (0)	0 (0)
ver-	enlarged		3 (6)	0 (0)	0 (0)	0 (0)
	pale		1 (2)	0 (0)	0 (0)	0 (0)
	white zone		3 (6)	4 (8)	0 (0)	0 (0)
	red zone		1 (2)	4 (8)	3 (6)	0 (0)
	nodule		27 (54)	33 (66)	47 (94)	48 (96)

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name NO. of Animals	Control 50 (%)	100 ppm 50 (%)	500 ppm 50 (%)	2500 ppm 50 (%)
pancreas	nodule		0 (0)	1 (2)	0 (0)	0 (0)
	adhesion		0 (0)	1 (2)	0 (0)	0 (0)
cidney	nodule		0 (0)	0 (0)	1 (2)	0 (0)
	cyst		0 (0)	1 (2)	0 (0)	0 (0)
	hydronephrosis		1 (2)	4 (8)	2 (4)	1 (2)
rin bladd	nodule		0 (0)	1 (2)	0 (0)	0 (0)
	urine:marked retention		3 (6)	4 (8)	1 (2)	0 (0)
drenal	enlarged		1 (2)	0 (0)	0 (0)	0 (0)
estis	nodule		0 (0)	1 (2)	0 (0)	0 (0)
pididymis	nodule		1 (2)	0 (0)	0 (0)	3 (6)
	adhesion		0 (0)	1 (2)	0 (0)	0 (0)
emin ves	red zone		3 (6)	0 (0)	0 (0)	0 (0)
rostate	red zone		1 (2)	0 (0)	0 (0)	0 (0)
orep/cli gl	nodule		0 (0)	0 (0)	1 (2)	0 (0)
rain	hemorrhage		1 (2)	0 (0)	0 (0)	0 (0)
	nodule		0 (0)	0 (0)	0 (0)	1 (2)
larder gl	enlarged		1 (2)	1 (2)	0 (0)	0 (0)
	nodule		0 (0)	0 (0)	0 (0)	1 (2)
one	nodule		0 (0)	0 (0)	1 (2)	0 (0)
. 14 4.4	• •					

1 (2)

1 (2)

0 (0)

0 (0)

0 (0)

1 (2)

0 (0)

0 (0)

2 (4)

mediastinum

peritoneum

nodule

mass

nodule

0 (0) 0 (0)

1 (2)

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 3

Organ	Findings	Group Name NO. of Animals 50	Control (%)	100 ppm 50 (%)	500 ppm 50 (%)	2500 ppm 50 (%)
retroperit	red zone	0	(0)	0 (0)	1 (2)	0 (0)
	mass	1	(2)	0 (0)	0 (0)	0 (0)
bdominal c	hemorrhage	1	(2)	0 (0)	1 (2)	4 (8)
	mass	0	(0)	0 (0)	0 (0)	1 (2)
	ascites	0	(0)	1 (2)	9 (18)	4 (8)
esenterium	nodule	1	(2)	0 (0)	0 (0)	0 (0)
horacic ca	hemorrhage	0	(0)	0 (0)	1 (2)	0 (0)
	pleural fluid	1	(2)	2 (4)	1 (2)	2 (4)
ther	tail:nodule	1	(2)	0 (0)	2 (4)	0 (0)
hole body	anemic	2	(4)	0 (0)	2 (4)	0 (0)

(HPT080)

BAIS 4

APPENDIX I 2

GROSS FINDINGS : MALE

DEAD AND MORIBUND ANIMALS

GROSS FINDINGS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

Organ	Findings	Group Name NO. of Animals	15 (%	Control %)	15	100 ppm (%)	33	500 ppm (%)	42	2500 ppm (%)
subcutis	edema		1 (7)	1	(7)	1	(3)	0	(0)
	mass		0 (0)	0	(0)	2	(6)	0	(0)
lung	red zone		0 (0)	0	(0)	0	(0)	1	(2)
	nodule		3 (20)	4	(27)	5	(15)	9	(21)
lymph node	enlarged		2 (13)	3	(20)	3	(9)	1	(2)
spleen	enlarged		2 (13)	1	(7)	5	(15)	3	(7)
	white zone		1 (7)	0	(0)	0	(0)	0	(0)
	black zone		0 (0)	1	(7)	0	(0)	0	(0)
	nodule		0 (0)	1	(7)	1	(3)	1	(2)
	accentuation of white pulp		0 (0)	1	(7)	0	(0)	0	(0)
salivary gl	nodule		1 (7)	0	(0)	0	(0)	0	(0)
large intes	white zone		1 (7)	0	(0)	0	(0)	0	(0)
liver	enlarged		3 (20)	0	(0)	0	(0)	0	(0)
	pale		1 (7)	0	(0)	0	(0)	0	(0)
	white zone		2 (13)	0	(0)	0	(0)	0	(0)
	red zone		0 (0)	1	(7)	2	(6)	0	(0)
	nodule		6 (40)	8	(53)	30	(91)	40	(95)
рансгеаз	nodule		0 (0)	1	(7)	0	(0)	0	(0)
	adhesion		0 (0)	1	(7)	0	(0)	0	(0)
kidney	nodule		0 (0)	0	(0)	1	(3)	0	(0)
	hydronephrosis		0 (0)	2	(13)	2	(6)	1	(2)
urin bladd	urine:marked retention		2 (13)	4	(27)	1	(3)	0	(0)

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

rgan	Findings	Group Name Control NO. of Animals 15 (%)	100 ppm 15 (%)	500 ppm 33 (%)	2500 ppm 42 (%)
drenal	enlarged	1 (7)	0 (0)	0 (0)	0 (0)
pididymis	nodule	1 (7)	0 (0)	0 (0)	3 (7)
	adhesion	0 (0)	1 (7)	0 (0)	0 (0)
emin ves	red zone	2 (13)	0 (0)	0 (0)	0 (0)
rostate	red zone	1 (7)	0 (0)	0 (0)	0 (0)
rain	hemorrhage	1 (7)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	0 (0)	0 (0)	1 (2)
arder gl	nodule	0 (0)	0 (0)	0 (0)	1 (2)
one	nodule	0 (0)	0 (0)	1 (3)	0 (0)
diastinum	nodule	1 (7)	0 (0)	0 (0)	0 (0)
	mass	1 (7)	0 (0)	0 (0)	0 (0)
eritoneum	nodule	0 (0)	1 (7)	2 (6)	[(2)
etroperit	red zone	0 (0)	0 (0)	1 (3)	0 (0)
bdominal c	hemorrhage	1 (7)	0 (0)	1 (3)	4 (10)
	mass	0 (0)	0 (0)	0 (0)	1 (2)
	ascites	0 (0)	1 (7)	7 (21)	4 (10)
noracic ca	hemorrhage	0 (0)	0 (0)	1 (3)	0 (0)
	pleural fluid	1 (7)	2 (13)	1 (3)	2 (5)
her	tail:nodule	1 (7)	0 (0)	2 (6)	0 (0)
ole body	anemic	2 (13)	0 (0)	2 (6)	0 (0)

APPENDIX I 3

GROSS FINDINGS : MALE

SACRIFICED ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

rgan		Group Name NO. of Animals 35	5 (Control %)	35	100 ppm (%)	17	500 ppm (%)	8	2500 ppm (%)
kin/app	nodule	1	1 (3)	0	(0)	0	(0)	0	(0)
	erosion	0	0 (0)	1	(3)	0	(0)	0	(0)
	scab	3	3 (9)	1	(3)	0	(0)	0	(0)
ubcutis	mass	1	1 (3)	1	(3)	0	(0)	0	(0)
ing	red zone	1	1 (3)	0	(0)	0	(0)	0	(0)
	nodule	7	7 (20)	9	(26)	3	(18)	2	(25)
ymph node	enlarged	1	1 (3)	4	(11)	2	(12)	0	(0)
pleen	enlarged	C	0 (0)	2	(6)	2	(12)	0	(0)
	nodule	C	0 ((0)	1	(3)	1	(6)	0	(0)
	accentuation of white pulp	(0 (0)	1	(3)	0	(0)	0	(0)
ongue	white zone	1	1 (3)	0	(0)	0	(0)	0	(0)
mall intes	nodule	(0 ((0)	0	(0)	0	(0)	1	(13)
iver	white zone	1	1	3)	4	(11)	0	(0)	0	(0)
	red zone	1	1	(3)	3	(9)	1	(6)	0	(0)
	nodule	21	1 ((60)	25	(71)	17	(100)	8	(100)
idney	cyst	C	0	(0)	1	(3)	0	(0)	0	(0)
	hydronephrosis	:	1	(3)	2	(6)	0	(0)	0	(0)
rin bladd	nodule	(0	(0)	1	(3)	0	(0)	0	(0)
	urine:marked retention	;	1	(3)	0	(0)	0	(0)	0	(0)
estis	nodule	1	0	(0)	1	(3)	0	(0)	0	(0)
emin ves	red zone		1	(3)	0	(0)	0	(0)	0	(0)
ep/cli gl	nodule	1	0	(0)	0	(0)	1	(6)	0	(0)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 2

Organ	Findings	Group Name NO. of Animals	Control 35 (%)	100 ppm 35 (%)	500 ppm 17 (%)	2500 pps 8 (%)
arder gl	enlarged		1 (3)	1 (3)	0 (0)	0 (0)
etroperit	mass		1 (3)	0 (0)	0 (0)	0 (0)
dominal c	ascites		0 (0)	0 (0)	2 (12)	0 (0)
esenterium	nodule		1 (3)	0 (0)	0 (0)	0 (0)

(HPT080)

BAIS 4

APPENDIX I 4

GROSS FINDINGS : FEMALE

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name NO. of Animals 50	Control 0 (%)	100 ppm 50 (%)	500 ppm 50 (%)	2500 ppm 50 (%)
kin/app	nodule	(0 (0)	3 (6)	0 (0)	0 (0)
	scab	:	2 (4)	0 (0)	1 (2)	0 (0)
ubcutis	edema	Į.	5 (10)	3 (6)	1 (2)	2 (4)
	mass	:	2 (4)	1 (2)	2 (4)	1 (2)
ung	white zone	:	1 (2)	1 (2)	0 (0)	0 (0)
	red zone	1	0 (0)	0 (0)	0 (0)	1 (2)
	brown zone		i (2)	0 (0)	0 (0)	0 (0)
	nodule	:	5 (10)	6 (12)	4 (8)	18 (36)
ymph node	enlarged	:	8 (16)	3 (6)	12 (24)	2 (4)
pleen	enlarged		7 (14)	11 (22)	8 (16)	4 (8)
	white zone	ı	0 (0)	1 (2)	0 (0)	0 (0)
	black zone		0 (0)	1 (2)	1 (2)	0 (0)
	nodule		0 (0)	1 (2)	2 (4)	2 (4)
	accentuation of white pulp		1 (2)	1 (2)	0 (0)	0 (0)
ongue	nodule		1 (2)	0 (0)	0 (0)	0 (0)
orestomach	nodule		0 (0)	1 (2)	0 (0)	1 (2)
l stomach	black zone		0 (0)	0 (0)	1 (2)	0 (0)
	thick		1 (2)	0 (0)	0 (0)	0 (0)
small intes	white zone		0 (0)	0 (0)	1 (2)	0 (0)
	nodule		0 (0)	1 (2)	1 (2)	0 (0)
	ulcer		1 (2)	0 (0)	0 (0)	0 (0)
iver	enlarged		7 (14)	2 (4)	3 (6)	0 (0)

. 0462

nodule

cyst

: MOUSE BGD2F1/Cr1j[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE

Group Name Control 100 ppm 500 ppm 2500 ppm NO. of Animals 50 (%) 50 (%) 50 (%) 50 (%) Organ___ Findings___ 1 (2) 0 (0) 0 (0) 0 (0) liver pale 3 (6) white zone 7 (14) 10 (20) 4 (8) 5 (10) 10 (20) 2 (4) 0 (0) red zone

9 (18)

0 (0)

0 (0)

20 (40)

0 (0)

1 (2)

47 (94)

0 (0)

0 (0)

0 (0)

PAGE: 5

50 (100)

1 (2)

black zone

STUDY NO. : 0462 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 6

rgan	Findings	Group Name NO. of Animals 5	Control 0 (%)	100 ppm 50 (%)	500 ppm 50 (%)	50	2500 ppm (%)
terus	nodu]e	1	2 (24)	9 (18)	12 (24)	5	(10)
	dilated lumen		1 (2)	1 (2)	2 (4)	0	(0)
rain	red zone		0 (0)	1 (2)	0 (0)	0	(0)
	nodule		1 (2)	0 (0)	0 (0)	0	(0)
eriph nerv	nodule		1 (2)	0 (0)	0 (0)	0	(0)
arder gl	enlarged		0 (0)	1 (2)	0 (0)	0	(0)
ıscle	mass		1 (2)	0 (0)	0 (0)	0	(0)
one	nodule		0 (0)	0 (0)	1 (2)	0	(0)
ediastinum	nodule		1 (2)	0 (0)	0 (0)	0	(0)
	mass		3 (6)	2 (4)	2 (4)	0	(0)
eritoneum	nodule		0 (0)	3 (6)	0 (0)	0	(0)
	mass		1 (2)	1 (2)	0 (0)	0	(0)
etroperit	mass		0 (0)	1 (2)	0 (0)	0	(0)
bdominal c	hemorrhage		0 (0)	2 (4)	3 (6)	12	(24)
	ascites		8 (16)	7 (14)	9 (18)	5	(10)
horacic ca	hemorrhage		1 (2)	0 (0)	0 (0)	3	(6)
	pleural fluid		9 (18)	5 (10)	5 (10)	4	(8)

(HPT080)

APPENDIX I 5

GROSS FINDINGS : FEMALE

DEAD AND MORIBUND ANIMALS

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

rgan	Findings	Group Name NO. of Animals 2	21	Control (%)	16	6	100 ppm (%)	24	500 ppm 1 (%)	45	2500 ppm (%)
kin/app	scab		2	(10)	()	(0)	() (0)	0	(0)
ubcutis	edema		5	(24)	3	3	(19)	1	(4)	2	(4)
	mass		1	(5)	1	I	(6)	1	(4)	1	. (2)
Ing	white zone		1	(5)	()	(0)	() (0)	0	(0)
	red zone		0	(0)	()	(0)	(0 (0)	1	. (2)
	nodule		3	(14)	1	ı	(6)	5	2 (8)	15	33)
ymph node	enlarged		6	(29)	:	2	(13)	į	5 (21)	2	2 (4)
pleen	enlarged		6	(29)	1	7	(44)	(6 (25)	4	į (9)
	white zone		0	(0)	-	1	(6)	(0 (0)	C	(0)
	nodule		0	(0)	ŧ	0	(0)	:	1 (4)	2	3 (4)
	accentuation of white pulp		0	(0)	:	1	(6)	(0 (0)	C	(0)
orestomach	nodule		0	(0)	(0	(0)	(0 (0)		(2)
l stomach	black zone		0	(0)	(0	(0)		1 (4)	C	(0)
	thick		1	(5)		0	(0)	(0 (0)	((0)
mall intes	nodule		0	(0)		1	(6)	1	0 (0)	C	(0)
	ulcer		1	(5)	1	0	(0)	1	0 (0)	((0)
iver	enlarged		7	(33)	;	2	(13)	;	3 (13)	((0)
	pale		1	(5)	ı	0	(0)	ı	0 (0)	(0)
	white zone		7	(33)	1	6	(38)		4 (17)	\$	3 (7)
	red zone		0	(0)	:	3	(19)	1	0 (0)	(0)
	nodule		3	(14)		5	(31)	2	1 (88)	45	5 (100)
	cyst		0	(0)		0	(0)		0 (0)	:	1 (2)

GROSS FINDINGS (SUMMARY)

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1

DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

gan	Findings	Group Name NO. of Animals 21 (Control %)	100 ppm 16 (%)	500 ppm 24 (%)	45 (%)	00 ppm)
ncreas	nodule	0 ((0)	1 (6)	0 (0)	3 (1	7)
	nodular	0 ((0)	0 (0)	1 (4)	0 ((0)
dney	pale	0 (0)	2 (13)	0 (0)	0 ((0)
	white zone	3 (14)	0 (0)	0 (0)	1 (:	2)
	black zone	1 (5)	0 (0)	0 (0)	0 (0)
	nodule	0 ((0)	0 (0)	2 (8)	2 (4)
in bladd	urine:marked retention	0 ((0)	1 (6)	0 (0)	0 (0)
tuitary	red zone	0 ((0)	0 (0)	1 (4)	0 (0)
	nodule	1 ((5)	1 (6)	0 (0)	0 (0)
renal	enlarged	0 ((0)	1 (6)	0 (0)	0 (0)
ary	enlarged	4 ((19)	4 (25)	4 (17)	2 (4)
	cyst	1 ((5)	2 (13)	0 (0)	ι (:	2)
erus	enlarged	1 ((5)	0 (0)	0 (0)	0 (0)
	nodule	8 ((38)	5 (31)	8 (33)	5 (1	1)
ain	red zone	0 ((0)	1 (6)	0 (0)	0 (0)
	nodule	1 ((5)	0 (0)	0 (0)	0 (0)
riph nerv	nodule	1 ((5)	0 (0)	0 (0)	0 (0)
rder gl	enlarged	0 ((0)	1 (6)	0 (0)	0 (0)
diastinum	nodule	1 ((5)	0 (0)	0 (0)	0 (0)
	mass	2 ((10)	1 (6)	2 (8)	0 (0)
ritoneum	mass	0 ((0)	1 (6)	0 (0)	0 (0)
troperit	mass	0 ((0)	1 (6)	0 (0)	0 (0)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

PAGE: 5

Organ	Findings	Group Name NO. of Animals	21	Control (%)	16	100 ppm (%)	24	500 ppm (%)	45	2500 ppm (%)
abdominal c	hemorrhage		0	(0)	2	(13)	3	(13)	12	(27)
	ascites		7	(33)	4	(25)	8	(33)	5	(11)
thoracic ca	hemorrhage		1	(5)	0	(0)	0	(0)	3	(7)
	pleural fluid		8	(38)	4	(25)	5	(21)	4	(9)

APPENDIX I 6

GROSS FINDINGS : FEMALE

SACRIFICED ANIMALS

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name Control NO. of Animals 29 (%)	100 ppm 34 (%)	500 ppm 26 (%)	2500 ppm 5 (%)
kin/app	nodule	0 (0)	3 (9)	0 (0)	0 (0)
	scab	0 (0)	0 (0)	1 (4)	0 (0)
ubcutis	mass	1 (3)	0 (0)	1 (4)	0 (0)
ung	white zone	0 (0)	1 (3)	0 (0)	0 (0)
	brown zone	1 (3)	0 (0)	0 (0)	0 (0)
	nodule	2 (7)	5 (15)	2 (8)	3 (60)
ymph node	enlarged	2 (7)	1 (3)	7 (27)	0 (0)
pleen	enlarged	1 (3)	4 (12)	2 (8)	0 (0)
	black zone	0 (0)	1 (3)	1 (4)	0 (0)
	nodule	0 (0)	1 (3)	1 (4)	0 (0)
	accentuation of white pulp	1 (3)	0 (0)	0 (0)	0 (0)
ongue	nodule	1 (3)	0 (0)	0 (0)	0 (0)
orestomach	nodule	0 (0)	1 (3)	0 (0)	0 (0)
mall intes	white zone	0 (0)	0 (0)	1 (4)	0 (0)
	nodule	0 (0)	0 (0)	1 (4)	0 (0)
iver	white zone	0 (0)	4 (12)	0 (0)	0 (0)
	red zone	5 (17)	7 (21)	2 (8)	0 (0)
	nodule	6 (21)	15 (44)	26 (100)	5 (100)
idney	enlarged	0 (0)	1 (3)	0 (0)	0 (0)
	white zone	1 (3)	0 (0)	2 (8)	0 (0)
	hydronephrosis	0 (0)	0 (0)	1 (4)	0 (0)
ituitary	enlarged	1 (3)	1 (3)	0 (0)	0 (0)

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE SEX

rgan	Findings	Group Name Control NO. of Animals 29 (%)	100 ppm 34 (%)	500 ppm 26 (%)	2500 ppm 5 (%)
ituitary	nodule	0 (0)	2 (6)	1 (4)	0 (0)
drenal	enlarged	0 (0)	1 (3)	0 (0)	0 (0)
vary	enlarged	0 (0)	0 (0)	1 (4)	0 (0)
	cyst	8 (28)	12 (35)	4 (15)	0 (0)
terus	black zone	0 (0)	1 (3)	0 (0)	0 (0)
	nodule	4 (14)	4 (12)	4 (15)	0 (0)
	dilated lumen	1 (3)	1 (3)	2 (8)	0 (0)
uscle	mass	1 (3)	0 (0)	0 (0)	0 (0)
one	nodule	0 (0)	0 (0)	1 (4)	0 (0)
ediastinum	mass	1 (3)	1 (3)	0 (0)	0 (0)
eritoneum	nodule	0 (0)	3 (9)	0 (0)	0 (0)
	mass	1 (3)	0 (0)	0 (0)	0 (0)
bdominal c	ascites	1 (3)	3 (9)	1 (4)	0 (0)
horacic ca	pleural fluid	1 (3)	1 (3)	0 (0)	0 (0)

(IIPT080)

BAIS 4

APPENDIX J 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

p Name	NO. of Animals	Body Weight	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS	
Control	35	47.7± 8.5	0.011± 0.002	0.227± 0.021	0.219± 0.024	0.211± 0.087	0.595± 0.056	
100 ppm	35	46.1± 9.8	0.011± 0.002	0.255± 0.130	0.215± 0.027	0.220± 0.106	0.659± 0.270	
500 ppm	17	37.2± 5.6**	0.013± 0.003	0.224± 0.021	0.205± 0.028	0.190± 0.020	0.606± 0.060	
2500 ррт	8	28.2± 1.9**	0.011± 0.002	0.199± 0.019*	0.179± 0.021**	0.175± 0.014	0.545± 0.059	

(HCL040)

BAIS 4

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

SEX : MALE UNIT: g

PAGE: 2 Group Name NO. of SPLEEN LIVER BRAIN Animals Control 35 0.110± 0.083 2.055± 1.074 0.449± 0.012 35 100 ppm 0.129± 0.123 2.195± 0.623 0.449± 0.017 500 ppm 17 0.270± 0.336 4.652± 2.197** 0.448± 0.013 8 0.421± 0.019** 2500 ppm 0.110± 0.042 7.974± 1.338** Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett (HCL040) BAIS 4

APPENDIX J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

p Name	NO. of Animals	Body Weight	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS	
Control	29	34.9± 5.5	0.015± 0.003	0.072± 0.078	0.164± 0.019	0.186± 0.063	0.417± 0.065	
100 ppm	34	35.5± 4.5	0.017± 0.019	0.069± 0.051	0.164± 0.024	0.208± 0.126	0.425± 0.074	
500 ppm	26	30.3± 3.5**	0.014± 0.003	0.069± 0.066	0.158± 0.015	0.215± 0.168	0.467± 0.136	
2500 ppm	5	24.4± 2.4**	0.012± 0.002	0.022± 0.013*	0.166± 0.055	0.197± 0.027	0.422± 0.068	

(HCL040) BAIS 4

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

roup Name	NO. of Animals	SPLEI	EN	LIVE	ER	BRA	IN	
Control	29	0.157±	0. 108	1.413±	0. 294	0.461±	0.011	
100 ppm	34	0.216±	0.310	1.599±	0. 745	0.464±	0.014	
500 ppm	26	0.260±	0. 253	3.601±	2. 252**	0.450±	0. 018**	
2500 ррт	5	0.139±	0.073	8.152±	1.387 **	0.409±	0. 006**	
Significant	difference;	*: P ≤ 0.0)5 **	: P ≤ 0.01			Test of Dunnett	
ICI 040)								BAI

(HCL040)

BAIS 4

APPENDIX K 1

ORGAN WEIGHT, RELATIVE : MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

up Name	NO. of Animals	Body Weight (g)	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	35	47.7± 8.5	0.024± 0.008	0.491± 0.102	0.473± 0.107	0.459± 0.212	1.281± 0.222
100 ppm	35	46.1± 9.8	0.026± 0.010	0.584± 0.374	0.487± 0.119	0.528± 0.387	1.510± 0.841
500 ppm	17	37.2± 5.6**	0.035± 0.007**	0.614± 0.106★	0.557± 0.079*	0.521± 0.084*	1.650± 0.180**
2500 ppm	8	28.2± 1.9**	0.037± 0.008**	0.706± 0.046**	0.637± 0.073**	0.624± 0.068**	1.936± 0.160≉

(HCL042)

BAIS 4

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

oup Name	NO. of Animals	SPLEEN	LIVER	BRAIN ·	
Control	35	0.247± 0.205	4.682± 3.366	0.975± 0.201	
100 ppm	35	0.308± 0.299	5. 101± 2. 348	1.025± 0.260	
500 ppm	17	0.737± 0.888**	12.890± 6.586**	1.230± 0.182**	
2500 ррш	8	0.393± 0.158*	28.286± 4.120**	1.500± 0.127**	

(HCL042)

BAIS 4

APPENDIX K 2

ORGAN WEIGHT, RELATIVE : FEMALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS	
Control	29	34.9± 5.5	0.043± 0.011	0.205± 0.220	0.480± 0.099	0.562± 0.316	1. 220± 0. 279	
100 ppm	34	35.5± 4.5	0.047± 0.047	0.197± 0.140	0.471± 0.093	0.611± 0.446	1.221± 0.291	
500 ppm	26	30.3± 3.5**	0.046± 0.010	0.223± 0.203	0.529± 0.076	0.773± 0.891**	1.569± 0.533***	
2500 ррт	5	24.4± 2.4**	0.049± 0.005	0.092± 0.053	0.670± 0.148**	0.807± 0.104**	1.721± 0.142**	

(HCL042)

BAIS 4

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE: A1
SEX: FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

roup Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	29	0.477± 0.386	4.147± 1.235	1.353± 0.228	
100 ppm	34	0.616± 0.883	4.614± 2.557	1.329± 0.180	
500 ppm	26	0.874± 0.901*	12.174± 7.567**	1.505± 0.183*	
2500 ppm	5	0.550± 0.226	33. 269± 3. 223**	1.688± 0.153**	

(HCL042)

BAIS 4

APPENDIX L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX

REPORT TYPE : A1 PAGE: 1 : MALE

Organ		o Name	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
or gaii	1 Indings		(10) (10) (10)	(6) (10) (10)	
{Integumentar	y system/appandage}				
skin/app	inflaumation	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) (0) (0) (0) (0)
	scab	3 0 0 0 0 (6) (6) (7) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	epidermal cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0)
subcutis	inflammation	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 1 0 (0) (0) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
{Respiratory	system}				
nasal cavit	eosinophilic change:olfactory epithelium	<50> 14 0 0 0 (28) (0) (0) (0)	<pre></pre>	(50) 12 1 0 0 (24) (2) (0) (0)	<pre></pre>
	eosinophilic change:respiratory epithelium	15 0 0 0 0 (30) (30) (0) (0)	18 3 0 0 (36) (6) (0) (0)	15 2 0 0 (30) (4) (0) (0)	16 2 0 0 (32) (4) (0) (0)
Grade <a>> b (c) Significant of	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0.05$				· · · · · · · · · · · · · · · · · · ·

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 2

Organ		Group Name No. of Animals on Study Grade 1 (%)	Control 50 2 3 4 (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Respiratory	system)					
nasal cavit	respiratory metaplasia:olfactory epith		<50> 0 0 0 0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)
	respiratory metaplasia:gland	14 (28) (3 0 0 6) (0) (0)	11 2 0 0 (22) (4) (0) (0)	10 0 0 0 0 (20) (0) (0)	18 3 0 0 (36) (6) (0) (0)
nasopharynx	eosinophilic change	(0) (<50> 0 0 0 0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)
lung	deposit of hemosiderin	1 (2) (<50> 0 0 0 0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 (0) (2) (0) (0)	6 0 0 0 * (12) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)
	lymphocytic infiltration	1 (2) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	pneumonia:NOS	(0) (0 1 0 0 0) (2) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)
Grade <a>a> b (c) Significant of	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 lifference; *: $P \le 0.05$ **: $P \le$					

(HPT150)

BAIS4

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

No. of Ani Grade	mals on Study 50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
lveolar cell hyperplasia	< 5 0>			
lveolar cell hyperplasia	<50>			
	0 0 0 0 0 (0) (0)	(50) 4 0 0 0 (8) (0) (0) (0)	\(\frac{50}{15} \) (30) (0) (0) (0)	<pre></pre>
s:increased	<50> 6 0 0 0 (12) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	<50> 20 8 0 0 ++ (40) (16) (0) (0)	(50) 24 14 0 0 ** (48) (28) (0) (0)
ast cell	\(\langle 50 \rangle \) \[1 0 0 \\ (2) (0) (0) (0) \]	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) (0) (0) (0) (0)
	\(\lambda 50 \rangle \) 1	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
yloid	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
mosiderin	7 2 0 0 (14) (4) (0) (0)	20 0 0 0 *** (40) (0) (0) (0)	18 3 0 0 * (36) (6) (0) (0)	34 6 0 0 *** (68) (12) (0) (0)
m	is:increased mast cell myloid emosiderin 2: Moderate 3: Marked animals examined at the site	### (12) (0) (0) (0) (12) (0) (0) (0) (0) (0) (0) (0) (## (12) (0) (0) (0) (6) (0) (0) (0) (12) (0) (0) (0) (0) (6) (0) (0) (0	6 0 0 0 0 3 0 0 0 20 8 0 0 ** (12) (0) (0) (0) (6) (0) (0) (0) (40) (16) (0) (0) (50) (50) (50) (50) (50) (2) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 4

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Hematopoieti	ic system)				
spleen	deposit of melanin	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	fibrosis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	2 1 0 0 (4) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (4) (0) (0)
	extramedullary hematopoiesis	12 6 0 0 (24) (12) (0) (0)	8 4 2 0 (16) (8) (4) (0)	6 22 9 0 *** (12) (44) (18) (0)	10 25 4 0 *** (20) (50) (8) (0)
	hyperplasia:vascular	0 0 1 0 (0) (2) (0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	follicular hyperplasia	2 2 0 0 (4) (4) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	4 1 0 0 (8) (2) (0) (0)	0 0 0 0 0 (0) (0)
{Circulatory	system}				
heart	mineralization	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 1 2 0 0 (2) (4) (0) (0)	(50) 2 2 0 0 (4) (4) (0) (0)
Grade (a) b (c)	1: Slight 2: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b/a * 100	3: Marked 4: Severe he site			

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	· N	roup Name Control to of Animals on Study 50 trade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Circulatory	system}				
heart	myocardial fibrosis	<50> 0 0 0 0 0 0 0 0 0 0 0	(50) 0 0 1 0 (0) (0) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 (0)	3 0 0 0 0	0 1 0 0 (0) (0) (0)
{Digestive sy	rstem)				
tooth	dysplasia	<50> 2 2 0 0 (4) (4) (0) (0)	(50) 1 3 1 0 (2) (6) (2) (0)	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
tongue	arteritis	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<pre></pre>
salivary gl	lymphocytic infiltration	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 0 0 0 0 *** (0) (0) (0) (0)	<50> 1 0 0 0 * (2) (0) (0) (0)
Grade <a>> b (c) Significant d	 a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 				

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

SEX

: MALE

Organ	Group No. o Grade Findings	f Animals on Study 50	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive s	system)				
stomach	inflammation	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	<50> 0 0 1 0 (0) (0) (2) (0)
	hyperkeratosis:forestomach	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (6)	1 0 0 0 0 (2) (0) (0) (0)
	erosion:glandular stomach	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:glandular stomach	19 25 5 0 (38) (50) (10) (0)	14 30 1 0 (28) (60) (2) (0)	21 28 1 0 (42) (56) (2) (0)	24 20 1 0 (48) (40) (2) (0)
liver	angiectasis	(50) 1 1 0 0 (2) (2) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	fatty change	0 0 0 0 0 (0) (0)	3 2 1 0 (6) (4) (2) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:central	2 0 0 0 0 (4) (0) (0) (0)	2 3 1 0 (4) (6) (2) (0)	2 5 1 0 (4) (10) (2) (0)	0 1 0 0 (0) (2) (0) (0)
	fatty change peripheral	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: Max a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01				

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

PAGE: 7

Organ	Findings	No. of Animals on Study S0 Grade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive :	system}				
liver	hydropic change:central	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	granulation	26 1 0 0 (52) (2) (0) (0)	11 0 0 0 *** (22) (0) (0) (0)	4 5 0 0 *** (8) (10) (0) (0)	2 0 0 0 *** (4) (0) (0) (0)
	mastcell hyperplasia	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	3 0 0 0
	clear cell focus	4 1 0 0 (8) (2) (0) (0)	6 0 0 0 (12) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	2 0 0 0 0 (4) (0) (0) (0)	4 0 0 0 0 (8) (0) (0) (0)	4 0 0 0 0 (8) (0) (0) (0)	3 0 0 0
	vacuolated cell focus	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade

1 : Slight 2 : Moderate

3 : Marked

4 : Severe

(a)

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX PAGE: 8

Organ	No	oup Name Control of Animals on Study 50 ade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%)
{Digestive s	ystem)				
liver	mixed cell focus	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	bile ductular proliferation	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	biliary cyst	1 0 0 0 0 (2) (3) (6)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	hepatocellular hypertrophy:central	0 0 0 0 0 (0) (0)	29 3 0 0 *** (58) (6) (0) (0)	2 39 1 0 *** (4) (78) (2) (0)	1 22 19 0 ** (2) (44) (38) (0)
	nuclear enlargement:central	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	18 0 0 0 *** (36) (0) (0) (0)	6 0 0 0 * (12) (0) (0) (0)
pancreas	lymphocytic infiltration	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Urinary sys	stem)				
kidney	hyaline droplet	<50> 2 1 0 0 (4) (2) (0) (0)	<50> 0 1 1 0 (0) (2) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

		Group Name Control No. of Animals on Study 50 Grade		100 ppm 50 1 2 3 4	500 ppm 50 1 2 3 4	2500 ppm 50 1 2 3 4	
Organ	Findings	(%)	(%) (%) (9	(%) (%) (%) (%)	(%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	
{Urinary sys	stem)						
kidney	basophilic change	3 (6)	<50> 0 0 0 (0) (0) (0	\$50> 3 0 0 0 (6) (0) (0) (0)	<pre></pre>	(50> 1 0 0 0 (2) (0) (0) (0)	
	deposit of hemosiderin	0 (0)	1 0 (1 0 2 0 (2) (0) (4) (0)	0 9 17 0 *** (0) (18) (34) (0)	4 1 27 0 *** (8) (2) (54) (0)	
	lymphocytic infiltration	0 (0)	0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	
	inflammatory polyp	0 (0)	1 0 (0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	
	biliary cyst	0 (0)	0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	hydronephrosis	. (0)	0 1 (0) (2) (0 0 3 1	0 1 1 0 (0) (2) (2) (0)	0 0 1 0 (0) (2) (0)	
	retention cyst	0 (0)	0 0 (0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	
	dilatation:tubular lumen	0 (0)	0 0 (1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	

Grade

1 : Slight 2 : Moderate

3 : Marked 4 : Severe

a: Number of animals examined at the site < a >

b b: Number of animals with lesion (c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control			2500 ppm	
Organ		No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	
{Endocrine sy	vstem)					
pituitary	cyst	<50> 2 0 0 0 (4) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	
adrenal	spindle-cell hyperplasia	<50> 31 0 0 0 (62) (0) (0) (0)	<50> 29 2 0 0 (58) (4) (0) (0)	<50> 34 0 0 0 (68) (0) (0) (0)	<50> 20	
	hyperplasia:medulla	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	focal hypertrophy:cortex	0 1 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
{Reproductive	e system)					
testis	mineralization	<50> 8 1 0 0 (16) (2) (0) (0)	(50) 10 1 2 0 (20) (2) (4) (0)	9 0 0 0 (18) (0) (0) (0)	2 1 0 0 (4) (2) (0) (0)	
epididymis	xanthogranuloma	<50> 0 0 0 0 (0) (0) (0) (0)	<49> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 1 2 0 (0) (2) (4) (0)	
Grade <a>> b (c) Significant	l: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤					

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

I P

		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
Organ	Findings	Grade 1 (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Reproductive	system}					
semin ves	hemorrhage	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammation	0 (0)	1 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0	0 0 0 0 0
	hyperplasia	1 (2)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
prostate	hemorrhage	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
prep/cli gl	inflammation	(0)	<50> 0 0 0 (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
{Nervous syst	em)					
brain	hemorrhage	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant d	1: Slight 2: Moderate a: Number of animals examined b: Number of animals with less c: b / a * 100 ifference; *: P ≤ 0.05	ion				

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

ANIMAL

		oup Name Control			2500 ppm
Organ		of Animals on Study 50 ade 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Nervous syst	tem)				
brain	mineralization	<50> 27 0 0 0 (54) (0) (0) (0)	<pre></pre>	<50> 24 0 0 0 (48) (0) (0) (0)	29 0 0 0 (58) (0) (0) (0)
	gliosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
{Special sens	se organs/appendage}	·			
eye	keratitis	(50) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	degeneration:cornea	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
Harder gl	lymphocytic infiltration	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)
{Musculoskele	etal system]				
bone	thickening of bone	(50) 0 0 0 0 (0)(0)(0)(0)	<pre></pre>	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0)(0)(0)(0)
Grade <a>> b (c) Significant	 a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 				

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] ALL ANIM

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

nesenterium <50> <50> <50> <50> <50> <50> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 50 2 3 4 (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
hemorrhage	Body cavities)						
hemorrhage	etroperit	hemorrhage		0 0 0	0 0 0 0	0 0 1 0	0 0 0 0
a > a : Number of animals examined at the site b b : Number of animals with lesion c) c : b / a * 100	∍senterium	hemorrhage	1 (2)	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	(a) ; b ! (c) ;	a: Number of animals examined at the b: Number of animals with lesion $c:b/a*100$	site				

APPENDIX L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

DEAD AND MORIBUND ANIMALS

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

	No	oup Name of Animals on Study rade 1	1 2	Contr 5 3	ro1 4	1	2	100 15) ppm	4		I	33 2	500 p	pm 4		1	2	2500 42 3) ppm	1 4
Organ	Findings	(%)	(%)	(%)	(%)	(%)	(%) (9	6)	(%)	<u>(</u>	%)	(%)	(%)	(%)		(%)	(%)	(%	,)	(%)
Integumentar	y system/appandage}																				
skin/app	epidermal cyst	0 (0)	(1 0 (0)	0	0 (0)	0 (0)	0	<15> (0 0)		0 0) (<33 1 3)		0 (0)	(0 0)	0	(42> 0 (0		0 0)
subcutis	inflammation	0 (0)		5> 0 (0)	0 (0)	0 (0)	0))) (0 0)		0 0) ((3; 0 0			(0	0	(42> 0 (0		0 0)
{Respiratory	system}																				
asal cavit	eosinophilic change:olfactory epithelium			.5> 0 (0)	0 (0)	2 (13)	0			0 0)		6 8) (<3: 1 3)		0 (0)	(6 14)	0	(42> 0 (0))) (0 0)
	eosinophilic change:respiratory epithel		0 (0)	0 (0)	0 (0)	4 (27)	1 (7			0		5 5) (1	0 (0)	0 (0)	(13 31)	2 (5)	. 0		0 0)
	respiratory metaplasia:olfactory epithe	lium 1 (7)	0 (0)	0 (0)	0 (0)	1 (7)	(0) (0 0)		0 0) (0 0)	0 (0)	0 (0)	(5 12)	0 (0)	((0
	respiratory metaplasia:gland	7 (47)	1 (7)	0 (0)	0 (0)	2 (13)	1 (7) ()	0		5 5) (0 0)	0 (0)	0 *	(12 29)	3 (7)	((0 0)
Grade (a> b (c) Significant d	a: Number of animals examined at the sitb: Number of animals with lesionc: b/a * 100																<u>.</u>				

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

Organ	Findings	Group Name No. of Animals on Study Grade $\frac{1}{(\%)}$	Con 15 2 3 (%) (%		1 (%)	15 2 (%)	3 4 (%) (%)	1 (%)	2 (%)	500 33 (%)	999m 4 (%)	1 (%)	<u>2</u> (%)	2500 42 3 (%)	4
Respiratory s	evetam)		-			-									
asopharynx	eosinophilic change	0 (0)	<15> 0 ((0) (0		0 (0) (<15 0 (0) (> 0 0 0) (0)	0 (0)	(0)	33> 0 (0)	0 (0)	1 (2)	0	<42> 0) (0)	0 (0)
ung	inflammatory infiltration	0 (0)	<15> 0 ((0) ((<15 l (7) (6 (18)	0	33> 0 (0)	0 (0)	l (2)	0		0 (0)
	bronchiolar-alveolar cell hyperplasia	(0)	0 (1 (7)	0 (0) (0 0	8 (24)	0 (0)	0 (0)	0 (0)	12 (29)	0 (0)	0 (0)	0 ·) (0)
Hematopoietic	c system)														
one marrow	erythropoiesis:increased	4 (27)	<15> 0 ((0) (0	0 0) (0)	3 (20)	<15 0 (0) (0 0 0 0 0 0 0 0 0 0 0	18 (55)	7 (21)			20 (48)	13		0 (0)
ymph node	hyperplasia:mast cell	1 (7)	<15> 0 ((0) (0		0 (0)	<15 0 (0) (0 0 0 0 0 (0)	0 (0)	0	33> 0 (0)	0 (0)	0 (0)	0		0 (0)
pleen	atrophy	1 (7)	<15> 0 ((0) (1 (7)	<15 0 (0) (0 (0)	0	33> 0 (0)		1 (2)	0		0 (0)
(a) b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤														

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1 SEX

: MALE

DEAD AND MORIBUND ANIMALS (0-105W)

Organ	No	oup Name Control 15 of Animals on Study 15 ade 1 2 3 4 (%) (%) (%) (%)	100 ppm 15 1 2 3 4 (%) (%) (%) (%)	500 ppm 33 1 2 3 4 (%) (%) (%) (%)	2500 ppm 42 1 2 3 4 (%) (%) (%) (%)
{Hematopoie	etic system)				
spleen	deposit of hemosiderin	<pre></pre>	<pre></pre>	(33) 14 1 0 0 (42) (3) (0) (0)	<pre></pre>
	deposit of melanin	0 0 0 0 0	0 1 0 0 (0) (7) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	fibrosis:focal	0 0 0 0 0	1 1 0 0 (7) (7) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)
	extramedullary hematopoiesis	4 5 0 0 (27) (33) (0) (0)	0 3 2 0 (0) (20) (13) (0)	3 19 8 0 *** (9) (58) (24) (0)	6 24 4 0 (14) (57) (10) (0)
	hyperplasia:vascular	0 0 1 0 (0) (7) (0)	1 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Circulator	ry system)				
heart	mineralization	(15) 0 0 0 0 (0) (0) (0) (0)	<15> 0 0 0 0 0 0 0 0 0 0 0 0	(33) 0 2 0 0 (0) (6) (0) (0)	<pre></pre>
	myocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (7) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
Grade <a>> b (c)	a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	Marked 4: Severe			

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : MALE

DEAD AND MORIBUND ANIMALS (0-105W)

)rgan	No	roup Name Control of Animals on Study 15 rade 1 2 3 4 (%) (%) (%) (%)	100 ppm 15 1 2 3 4 (%) (%) (%) (%)	500 ppm 33 1 2 3 4 (%) (%) (%) (%)	2500 ppm 42 1 2 3 4 (%) (%) (%) (%)
(Circulator	ry system}				
neart	arteritis	<15> 0 0 0 0 0 0 0 0 0) 0 0	<15> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	0 1 0 0 (0) (2) (0) (0)
{Digestive	system}				
tooth	dysplasia	<15> 1 1 0 0 (7) (7) (0) (0)	<15> 1 0 0 0 (7) (0) (0) (0)	(33>) 0 1 0 0 (0) (3) (0) (0)	<pre></pre>
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
ongue	arteritis	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(33> 0 1 0 0 (0)(3)(0)(0)	. <42> 0 1 0 0 (0) (2) (0) (0)
tomach	inflammation	<15> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0)	<pre></pre>
	hyperkeratosis:forestomach	1 0 0 0 0 (7) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
Grade (a) b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a * 100	Marked 4 : Severe			

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

PAGE: 5

Organ	Findings	Group Name Control No. of Animals on Study 15 Grade 1 2 3 4 (%) (%) (%) (%)	100 ppm 15 1 2 3 4 (%) (%) (%) (%)	500 ppm 33 1 2 3 4 (%) (%) (%) (%)	2500 ppm 42 1 2 3 4 (%) (%) (%) (%)
{Digestive s	system)				
stomach	hyperplasia:glandular stomach	7 6 1 0 (47) (40) (7) (0)	<15> 6 4 1 0 (40) (27) (7) (0)	<33> 18 15 0 0 (55) (45) (0) (0)	<pre></pre>
liver	angiectasis	0 1 0 0 (0) (7) (0) (0)	<15> 0 0 0 0 0 0 0 0 0 0 0	<33> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	fatty change	0 0 0 0 0 (0) (0) (0)	0 1 1 0 (0) (7) (7) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:central	1 0 0 0 0 (7) (0) (0) (0)	0 2 1 0 (0) (13) (7) (0)	2 5 1 0 (6) (15) (3) (0)	0 1 0 0 (0) (2) (0) (0)
	fatty change:peripheral	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0
	hydropic change:central	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
	granulation	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (7) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1
SEX : MALE

DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name No. of Animals on Study	15	ntrol	_	100 : 15		_	33	mqq 005			42	00 ppm
Organ	Findings	Grade <u>1</u> (%)		3 4 %) (%)	<u>1</u> (%) (2 3 %) (%)	(%)	(%)	(%)	3 4 (%)	-	(%)		3 4 (%)
{Digestive	system)													
liver	extramedullary hematopoiesis	0 (0)	<15> 0 (0) (0 0	0 (0) (<15> 0 0 0) (0)	0 (0)	0 (o) (<33 0 (0) () 0 0 0) (0)		3 (7) (0 0
	clear cell focus	0 (0)	0 (0) (0 0 0) (0)	1 (7) (0 0 0) (0)	0 (0)	0 (0) (0 (0) (0 0		0 (0 0
	basophilic cell focus	0 (0)	0 (0) (0 0 0) (0)	0 (0) (0 0 0) (0)	0 (0)	3 (9) (0 (0) (0 0		3 (7) (0 0) (0 0 0) (0)
	vacuolated cell focus	0 (0)	0 (0) (0 0 0) (0)	1 (7) (0 0 0) (0)	0 (0)	0 (0) (0 (0) (0 0		0 (0) (0 0) (0 0 0) (0)
	hepatocellular hypertrophy:central	0 (0)	0 (0) (0 0	4 (27) (1 0 7) (0)	0 *	2 (6)	23 (70) (1 0 3) (0)	**			(3) (0)
	nuclear enlargement:central	0 (0)	0 (0) (0 0	0 (0) (0 0	0 (0)	8 (24)	0 (0) (0 0	ı	4 (10) (0 0) (0 0
{Urinary sy	ystem)													
kidney	hyaline droplet	2 (13)	<15> 1 (7) (0 0 0) (0)	0 (0) (<15> 1 1 7) (7)	0 (0)	0 (0)	<33 0 (0) (0 0		0 (0) (<42> 0 0) (0 0:
Grade (a) b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P													

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		coup Name Control of Animals on Study 15	100 ррт 15	500 ppm 33	2500 թթm 42
Organ		ade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
Urinary sy	stem)				
kidney	deposit of hemosiderin	<15> 0 0 0 0 (0) (0) (0) (0)	(15) 1 0 2 0 (7) (0) (13) (0)	<pre></pre>	<pre></pre>
	lymphocytic infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)
	inflammatory polyp	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)
	hydronephrosis	0 0 0 0 0 (0) (0)	0 0 1 1 (0) (0) (7) (7)	0 1 1 0 (0) (3) (3) (0)	0 0 1 0 (0) (2) (0)
	dilatation:tubular lumen	0 0 0 0 0	0 2 0 0 (0) (13) (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)
{Endocrine	system)				
adrenal	spindle-cell hyperplasia	6 0 0 0 (40) (0) (0) (0)	<15> 6 0 0 0 (40) (0) (0) (0)	<pre></pre>	\(\lambda 42 \rangle \) 15 0 0 0 (36) (0) (0) (0)
{Reproducti	ve system)				
testis	mineralization	2 0 0 0 (13) (0) (0) (0)	(15) 1 0 0 0 (7) (0) (0) (0)	3000 (9)(0)(0)(0)	42> 1 1 0 0 (2) (2) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	Marked 4: Severe			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 8

		Group Name No. of Animals on Study	Control 15	100 ррш 15	500 ppm 33	2500 թթա 42		
Organ		Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)		
Reproductive	system)							
pididymis	xanthogranuloma	0 (0) (<15> 0 0 0 0) (0) (0)	<15> 0 0 0 0 0 0 0 0 0 0 0	<333> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>		
emin ves	liemorrhage	(7) (<15> 0 0 0 0) (0) (0)	(15> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<42> 0 0 0 0 0 0 0 0 0 0 0		
rostate	hemorrhage	(7) (<15> 0 0 0 0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)	<42> 0 0 0 0 0 0 0 0 0 0 0		
Nervous syst	em)							
rain	hemorrhage	(7) (<15> 0 0 0 0) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(42) 0 0 0 0 (0) (0) (0) (0)		
	mineralization	7 (47) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 (60) (0) (0)	15 0 0 0 (45) (0) (0) (0)	23 0 0 0 (55) (0) (0) (0)		
	gliosis	0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)		

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

T. P.

		Animals on Study 15	100 ppm 15	500 ppm 33	2500 ppm 42
rgan	Findings	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
Special sense	organs/appendage)				
ye	degeneration:cornea	<15> 0 0 0 0 0 0 0 0 0 0 0	<15> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	(42> 0 0 0 0 (0) (0) (0) (0)
Musculoskeleta					
one	thickening of bone	<15> 0 0 0 0 0 0 0 0 0 0 0	<15> 0 0 0 0 (0) (0) (0) (0)	<33> 1 0 0 0 (3) (0) (0) (0)	<42> 0 0 0 0 (0) (0) (0) (0)
Body cavities					
etroperit	hemorrhage	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(33) 0 0 1 0 (0) (0) (3) (0)	0 0 0 0 (0) (0) (0) (0)
(a) ; b ! (c) ;	1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion b: b / a * 100 2ference; *: P ≤ 0.05 **: P ≤ 0.01				

APPENDIX L 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

PAGE: 1

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 35 2 3 4 (%) (%) (%)	100 ppm 35 1 2 3 4 (%) (%) (%) (%)	500 ppm 17 1 2 3 4 (%) (%) (%) (%)	2500 ppm 8 1 2 3 4 (%) (%) (%)
{Integumentar	y system/appandage)					
skin/app	inflammation	0 (0) (<35> 0 0 0 0) (0) (0)	(35) 0 1 0 0 (0) (3) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0	(8) 0 0 0 0 (0) (0) (0) (0)
	scab	(9) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0)
{Respiratory	system)					
nasal cavit	eosinophilic change:olfactory epithel		<35> 0 0 0 0) (0) (0)	35> 9 0 0 0 (26) (0) (0) (0)	6 0 0 0 (35) (0) (0) (0)	<pre></pre>
	eosinophilic change:respiratory epith		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 2 0 0 (40) (6) (0) (0)	10 1 0 0 * (59) (6) (0) (0)	3 0 0 0
	respiratory metaplasia:olfactory epit	delium 3 (9) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)
	respiratory metaplasia:gland	7 (20) (2 0 0 6) (0) (0)	9 1 0 0 (26) (3) (0) (0)	5 0 0 0 (29) (0) (0) (0)	6 0 0 0 *** (75) (0) (0) (0)
nasopharynx	eosinophilic change	0 (0) (<35> 0 0 0 0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 (0) (0) (0)	< 8> 1 0 0 0 (13) (0) (0) (0)

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference; $*: P \le 0.05$ $*: P \le 0.01$ Test of Chi Square

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

		roup Name o. of Animals on Study	Control 35		100 ppm 35	500 ррт 17	2500 ррт 8
)rgan	Grade Findings		2 3 4	<u>1</u> (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
(Respiratory	system)						
ung	deposit of hemosiderin	1 (3)	<35> 0 0 0 (0) (0) (0)	0 (0) (<35> 0 0 0 0) (0) (0)	<17> 0 0 0 0 0 (0) (0) (0) (0)	(8) 0
	lymphocytic infiltration	1 (3)	0 0 0	0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	pneumonia:NOS	(0)	0 1 0	(0) (1 0 0 3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
	bronchiolar-alveolar cell hyperplasia	(0)	0 0 0	3 (9) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 *** (41) (0) (0) (0)	2 1 0 0 *** (25) (13) (0) (0)
{Hematopoieti	ic system)						
oone marrow	erythropoiesis; increased	2 (6)	<35> 0 0 0 (0) (0) (0	0 (0) (<35> 0 0 0 0) (0) (0)	<17> 2 1 0 0 (12) (6) (0) (0)	<pre></pre>
spleen	deposit of amyloid	0 (0)	<35> 0 0 0 (0) (0) (0		<35> 1 0 0 3) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0) (0) (0) (0)	<pre></pre>
Grade (u > b (c) Significant o	a : Number of animals examined at the sitb : Number of animals with lesionc : b / a * 100						

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 3

Organ	Findings	Group Name Control No. of Animals on Study 35 Grade 1 2 3 4 (%) (%) (%) (%)	100 ppm 35 1 2 3 4 (%) (%) (%)	500 ppm 17 1 2 3 4 (%) (%) (%) (%)	2500 ppm 8 1 2 3 4 (%) (%) (%)
{Hematopoiet	ic system)				
spleen	deposit of hemosiderin	35> 5 1 0 0 (14) (3) (0) (0)	\(\langle 35 \rangle \) \(\cdot 12 0 0 \\ (34) (0) (0) (0) \)	(17) 4 2 0 0 (24) (12) (0) (0)	<pre></pre>
	deposit of melanin	0 0 0 0 0 (0) (0)	2 0 0 0 0 (6) (6) (7) (7)	2 0 0 0 0 (12) (0) (0) (0)	1 0 0 0 0 (13) (0) (0)
	fibrosis	0 0 0 0 0 (0)	0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (13) (0) (0)
	extramedullary hematopoiesis	8 1 0 0 (23) (3) (0) (0)	8 1 0 0 (23) (3) (0) (0)	3 3 1 0 (18) (18) (6) (0)	4 1 0 0 (50) (13) (0) (0)
	hyperplasia:vascular	0 0 0 0 0 (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	follicular hyperplasia	2 2 0 0 (6) (6) (0) (0)	2 0 0 0 0 (6) (6) (7) (7)	4 1 0 0 (24) (6) (0) (0)	0 0 0 0 0 (0) (0) (0)
{Circulator	y system}				
heart	mineralization	(35) 0 0 0 0 (0) (0) (0) (0)	(35) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (6) (0) (0) (0)	(0) (0) (0) (0)

4 : Severe

Grade 1: Slight 2: Moderate 3: Marked

<a>> a : Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

OIJ-BB: I] OHOMI TOBB MAIMABS (

			,,,,es			
		Group Name	Control 35	100 ррж 35	500 ррm 17	2500 թբm 8
_		No. of Animals on Study Grade $\frac{1}{2}$	3 4	1 2 3 4	1 2 3 4	1 2 3 4
Organ	Findings	(%) (%	(%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)
{Circulatory s	ystem}					
heart	arteritis		<35> 0 0	<35> 0 0 0 0	<17> 1 0 0 0	< 8>
	arteritis	0 0	0 0	0 0 0 0 0 (0) (0)	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0)
{Digestive sys	item)					
tooth	,		<35>	<35>	<17>	< 8>
	dysplasia	1 1 (3) (3	0 0	0 3 1 0 (0) (9) (3) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0)
salivary gl			<35>	<35>	<17>	< 8>
	lymphocytic infiltration	8 0 (23) (0	0 0	3 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)
stomach			<35>	<35>	<17>	< 8>
	hyperkeratosis:forestomach	0 0	0 0	0 0 0 0 0 (0)	i 0 0 0 (6) (0) (0) (0)	0 0 0 0 0
	erosion:glandular stomach	1 0		0 0 0 0	0 0 0 0	0 0 0 0
		(3)(0) (0) (0)	(0) (0) (0) (0)	(0) (0) (0) (0)	(0) (0) (0) (0)
	hyperplasia:glandular stomach	12 19	4 0	8 26 0 0 (23) (74) (0) (0)	3 13 1 0	2 5 1 0
		(34) (54	., (11) (0)	(23) (14) (0) (0)	(18) (76) (6) (0)	(25) (63) (13) (0)

Grade 1 : Slight

^{2 :} Moderate

^{3 :} Marked

^{4 :} Severe

<a> a : Number of animals examined at the site

b : Number of animals with lesion

⁽c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

PAGE: 5

REPORT TYPE : A1 SEX : MALE

		Group Name No. of Animals on Study	Control 35		100 ppm 35				500 ppm 17						2500 ppm 8								
Organ	Findings	Grade <u>1</u> (%)	(%)	(%)	(%)	(%)	(%)	(9	3 %)	(%)	(<u>1</u> %)	(%)	(3 %)	(%)		(%)	(%	<u>3</u> (6)	(%))	(%)
{Digestive sy	stem)																						
liver	angiectasis	(3)	(3 (0)	0	0 (0)	0 (0)	0		0 0) (0		0 0) (0		0 0) (0 0)	(0 0)		< 8 0 0) (0		0
	fatty change	0 (0)	0 (0)	0 (0)	0 (0)	3 (9)	1 (3)	((0 0) (0	(0 0) (0 (0)	(0 0) (0 0)	(0 0)	((0 0) (0) (0 (0)
	fatty change:central	1 (3)	0 (0)	0 (0)	0 (0)	2 (6)	1 (3)	()	0 0) (0	(0 0) (0 (0)	(0 0) (0 0)	(0 0)	((0 0) (0 (0)		0 (0)
	granulation	26 (74)	1 (3)	0 (0)	0 (0)	10 (29)	0 (0)) (0 0) (0 ** 0)	(2	4 (4) (5 (29)	(0 0) (0 ** 0)	(2 25)		0 0) (0		0 * (0)
	mastcell hyperplasia	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)) (0 0) (0	(1 6) (0	(0 0) (0	(0 0)	()	0 0) (0) (0 (0)
	extramedullary hematopoiesis	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)) (0 0) (0	(1 6) (0	(0 0) (0 0)	(0 0)	()	0 0)	0) (0 (0)
	clear cell focus	4 (11)	1 (3)	0 (0)	0 (0)	5 (14)	0 (0)) (0 0) (0 0)	(1 6) (0 (0)	(0 0) (0 0)	(0 0)	()	0 0)	0) (0 (0)
	basophilic cell focus	2 (6)	0 (0)	0 (0)	0 (0)	4 (11)	0 (0)) (0 0) (0 0)	(1 6) (0	(0 0) (0 0)	(0 0)	(0 0)	0	,)) (0 (0)

Grade 1 : Slight

^{2 :} Moderate

^{3 :} Marked

^{4 :} Severe

<a>> a: Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : AI

SEX : MALE

777722200 177722200

rgalı	Findings	Group Name	35 2	ontrol 3 (%)	<u>4</u> (%)	1 (%)	35 2 (%)	100 pp 3 (%)	om 4 (%)	<u>1</u> (%)		17 3	3 (%)	4 (%)	1 (%)		2; 8 <u>2</u> %)	3 (%)	opm 4 (%
																•		· · · · · · · · ·	
)igestive sys	tem)																		
ver	vacuolated cell focus	1 (3)	<35> 0 (0) (0	0 (0 0) (<35 0 0) () 0 0) (0 (0)	(0)	(<17>)) (0	0 (0)	0 (0)		< 8: 0 0) (0	(0
	mixed cell focus	0 (0)	0 (0) (0 (0 0) (0	0	0 (0)	1 (6)) (0	0	0 (0)		0 0) (0 0)	(0
	bile ductular proliferation	0 (0)	0 (0) (0 (2 6) (0	0	0 (0)	2 (12)		o) (0 0)	0 (0)	0 (0)		o o) (0 0)	((
	biliary cyst	1 (3)	0 (0) (0 (0 0) (0	0 0)	0 (0)	1 (6)		0 0) (0 0)	0 (0)	0 (0)		0 0) (0 0)	((
	hepatocellular hypertrophy:central	0 (0)	0 (0) (0 (25 71) (2 6> (0	0 ** (0)	0 (0)	19		0	0 ** (0)	(0)		5 3) (1 13)	((
	nuclear enlargement:central	0 (0)	0 (0) (0 0) (0 (0 0) (0	0 ()	0 (0)	10 (59)		0 0) (0 0)	0 ** (0)	2 (25)) (0 0) (0	((
ancreas	lymphocytic infiltration	(3)	<35) 0 (0) (0	0 (0	<35 0 0) (0 (0)	0 (0)	0 (0)		<17> 0 0) (0	0 (0)	0 (0)		< 8 0 0) (0	((
Urinary syst	em)																		
idney	basophilic change	3 (9)	<350 0 (0) (0	0 (3 9) (<35 0 0) (0 (0)	0 (0)	3 (18)		<17> 0 0) (0	0	1 (13)		< 8 0 0) (0	((

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1
SEX : MALE

SACRIFICED ANIMALS (105W)

	No.	p Name Control of Animals on Study 35	100 ppm 35	500 ppm 17	2500 ppm 8					
Organ	Findings	e <u>1 2 3 4</u> (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)					
{Urinary sys	stem)									
kidney	deposit of hemosiderin	35> 0 1 0 0 (0) (3) (0) (0)	(35> 0 0 0 0 (0) (0) (0) (0)	(17) 0 0 3 0 * (0) (0) (18) (0)	< 8> 2 0 3 0 *** (25) (0) (38) (0)					
	lymphocytic infiltration	0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0	0 0 0 0 0 (0) (0)					
	inflammatory polyp	0 1 0 0 (0) (0)	0 0 1 0 (0) (3) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0)					
	biliary cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)					
	hydronephrosis	0 0 1 0 (0) (3) (0)	0 0 2 0 (0) (6) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)					
	retention cyst	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)					
{Endocrine :	system)									
pituitary	cyst	<pre></pre>	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	<pre></pre>					
Grade < a > b (c)	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b/a*100	rked 4: Severe								

(HPT150)

ANIMAL

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

Group Name Control 100 ppm 500 ppm 2500 ppm No. of Animals on Study 35 35 17 8 Grade Organ_ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Endocrine system) adrenal <35> <17> < 8> spindle-cell hyperplasia 25 0 0 0 23 2 0 0 14 0 0 0 5 0 0 0 (71) (0) (0) (0) (66) (6) (0) (0) (82) (0) (0) (0) (63) (0) (0) (0) hyperplasia:medulla 0 0 0 . 0 (3)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) focal hypertrophy:cortex 0 0 0 0 (0)(3)(0)(0) (3)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Reproductive system} testis < 8> mineralization 6 1 0 0 9 1 2 0 0 0 0 1 0 0 0 (17) (3) (0) (0) (26) (3) (6) (0) (35) (0) (0) (0) (13) (0) (0) (0) semin ves <35> <17> < 8> inflammation 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(3)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) hyperplasia 1 0 0 0 0 0 0 0 0 0 0 0 0 (3)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion (c) c : b / a * 100

Significant difference : *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square (HPT150)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

Organ	N	roup Name Control o. of Animals on Study 35 rade 1 2 3 4 (%) (%) (%) (%)	100 ррт 35 1 2 3 4 (%) (%) (%) (%)	500 ppm 17 1 2 3 4 (%) (%) (%) (%)	2500 ppm 8 1 2 3 4 (%) (%) (%) (%)
{Reproductive	e system)				
prep/cli gl	inflammation	(0) (0) (0) (0)	35> 0 1 0 0 (0) (3) (0) (0)	<17> 0 0 0 0 0 0 0 0 0	<pre></pre>
{Nervous syst	tem}				
brain	mineralization	<35> 20 0 0 0 (57) (0) (0) (0)	<35> 16 0 0 0 (46) (0) (0) (0)	<17> 9 0 0 0 (53) (0) (0) (0)	< 8> 6 0 0 0 (75) (0) (0) (0)
{Special sens	se organs/appendage)				
eye	keratitis	<35> 1 0 0 0 (3) (0) (0) (0)	<pre></pre>	<17> 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	degeneration:cornea	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Harder gl	lymphocytic infiltration	(35> 1 0 0 0 (3) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (25) (0) (0) (0)
Grade < a > b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sinb: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$				

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings		Group Name No. of Animals Grade	on Study	. 2	35	3 (%)	4 (%)		<u>1</u> (%)	35 2 (%)	3 (%)	m 	 <u>1</u> (%)	2 (%))	<u>4</u> (%)		1 (%)	2(%	8	0 ppm 3 %)	<u>4</u> (%)
{Body cavities	s}																							
mesenterium	hemorrhage			1 (8	. 0		0 0) (0	(0 0) (<35) 0 0) (, 0 0) (0 (0)	0 0) (<1 0 0)	7> 0 (0)		0 0)	(0 0)	0		0 0) (0 0)
Grade <a> b (c) Significant d	b: Number of ani c:b/a * 100	mals examined at the		4 : Seve																				
(HPT150)													· ·	 										BAIS

APPENDIX L 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1] REPORT TYPE : .A1

SEX

: FEMALE

Group Name Control 100 ppm 500 ppm 2500 ppm No. of Animals on Study 50 50 50 50 Grade Findings_ (%) {Integumentary system/appandage} skin/app <50> <50> 0 0 0 scab 0 0 0 (4)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) {Respiratory system} nasal cavit <50> <50> 0 eosinophilic change:olfactory epithelium 1 0 0 0 2 0 3 0 0 ** (16) (2) (0) (0) (14) (0) (0) (0) (18) (4) (0) (0) (48) (6) (0) (0) eosinophilic change:respiratory epithelium 19 10 0 9 0 17 0 0 * 21 15 1 0 (38) (20) (0) (0) (44) (18) (0) (0) (46) (34) (0) (0) (42) (30) (2) (0) inflammation:respiratory epithelium 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) respiratory metaplasia:olfactory epithelium 0 2 20 () ** (6)(0)(0)(0) (4)(0)(0)(0) (16) (0) (0) (0) (40) (0) (0) (0) respiratory metaplasia:gland (34) (0) (0) (0) (24) (2) (0) (0) (38) (4) (0) (0) (56) (18) (0) (0) nasopharynx <50> <50> <50> <50> eosinophilic change 0 0 0 0 0 0 1 0 2 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(2)(0)(0) (4)(0)(0)(0)

Grade

1 : Slight

2 : Moderate

3 : Marked

· 4 : Severe

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

ANIMAL

SEX

: FEMALE

ALL ANIMALS (0-105W)

Group Name 100 ppm 500 ppm 2500 ррт Control No. of Animals on Study 50 50 50 50 Grade 3 (%) (%) (%) (%) Organ_ Findings_ (%) (%) {Respiratory system} <50> lung <50> <50> inflammatory infiltration 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) lymphocytic infiltration 0 0 0 0 1 0 0 0 0 (0)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) bronchiolar-alveolar cell hyperplasia 0 0 0 17 (16) (0) (0) (0) (22) (0) (0) (0) (42) (0) (0) (0) (34) (0) (0) (0) {Hematopoietic system} bone marrow <50> <50> ⟨50⟩ decreased hematopoiesis 0 0 0 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (0)(0)(0)(2) (0)(0)(0)(0) (0)(0)(0)(0) erythropoiesis: increased 0 15 0 ** 29 9 (6)(0)(0)(0) (30) (2) (0) (0) (58) (18) (0) (0) (8)(0)(0)(0) spleen <50> <50> <50> <50> 5 deposit of hemosiderin 4 0 4 0 0 41 4 0 0 ** 0 (24) (10) (0) (0) (38) (8) (0) (0) (46) (8) (0) (0) (82) (8) (0) (0) Grade 2 : Moderate 4 : Severe <a>> a : Number of animals examined at the site b b: Number of animals with lesion (c) c : b / a * 100Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX

: FEMALE

__

2500 ppm Group Name Control 100 ppm 500 ppm 50 50 50 No. of Animals on Study 50 Grade (%) Organ_ Findings_ {Hematopoietic system} <50> <50> <50> spleen <50> 0 deposit of melanin 0 0 0 0 (0)(0)(0)(0) (6)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) fibrosis:focal 0 1 0 0 0 0 1 0 0 0 (0)(0)(2)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) extramedullary hematopoiesis 3 10 0 3 13 (26) (26) (16) (0) (18) (52) (16) (0) (20) (6) (20) (0) (14) (6) (6) (0) follicular hyperplasia 3 2 0 0 0 0 3 0 0 0 0 0 (8)(0)(0)(0) (6)(0)(0)(0) (0)(0)(0)(0) (6)(4)(0)(0) {Circulatory system} heart <50> <50> <50> <50> mineralization 0 0 5 1 0 0 0 1 0 0 0 (4)(0)(0)(0) (2)(0)(0)(0) (10) (2) (0) (0) (2)(0)(2)(0) arteritis 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) (0)(2)(0)(0) {Digestive system} tooth dysplasia 1 0 0 0 0 0 0 1 0 (0)(2)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) 1 : Slight Grade 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site

b

(c)

b: Number of animals with lesion

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

c:b/a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

Organ	No	roup Name Control b. of Animals on Study 50 rade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 1 2 3 4 (%) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Digestive sy	stem)				
tooth	xanthogranuloma	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 0 0 0 0	(50) 0 1 0 0 (0) (2) (0) (0)	(50) 0 0 0 0 0 0 0 0
tongue	arteritis	(50) 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
salivary gl	lymphocytic infiltration	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
stomach	hyperplasia:glandular stomach	<50> 11 26 9 0 (22) (52) (18) (0)	(50) 17 25 7 0 (34) (50) (14) (0)	<50> 16 24 4 0 (32) (48) (8) (0)	<50> 20 20 0 0 ** (40) (40) (0) (0)
iver	angiectasis	(50) 1 3 1 0 (2) (6) (2) (0)	<50> 2 5 1 0 (4) (10) (2) (0)	<50> 1 3 0 0 (2) (6) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	deposit of amyloid	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
Grade <a>> b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

100 ppm 500 ppm 2500 ppm Group Name Control No. of Animals on Study 50 50 50 Grade (%) (%) (%) (%) (%) (%) Findings_ (%) (%) (%) Organ_ (Digestive system) ⟨50⟩ ⟨50⟩ <50> <50> liver 0 0 0 0 1 0 lymphocytic infiltration 0 (2)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) granulation 10 14 0 11 16 0 0 * 0 (20) (28) (0) (0) (22) (32) (0) (0) (14) (10) (0) (0) (0)(0)(0)(0) extramedullary hematopoiesis 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) clear cell focus 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) basophilic cell focus 3 2 0 0 2 0 0 3 0 0 2 0 0 (6)(4)(0)(0) (4)(0)(0)(0) (6)(0)(0)(0) (4)(0)(0)(0) biliary cyst 0 O 0 0 0 1 0 0 (4)(0)(0)(0) (2)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) hepatocellular hypertrophy:central 0 0 15 14 0 0 ** 1 32 0 (0)(0)(0)(0) (0)(0)(0)(0) (30) (28) (0) (0) (2) (64) (8) (0) <50> <50> <50> <50> pancreas 0 0 0 0 0 0 atrophy 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0)

Grade 1 : Slight (a)

^{2 :} Moderate

^{3 :} Marked

^{4 :} Severe

b

a : Number of animals examined at the site

b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

SEX

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

: FEMALE

•

		Group Name	Group Name Control No. of Animals on Study 50		500 թթա 50	2500 թթm 50				
Organ	Findings	Grade 1 2 (%) (%)	3 4	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)				
Digestive s	system)									
oancreas	inflanmation	0 0	<50> 0 0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<pre></pre>				
	hyperplasia:gland	0 0	0 0	0 0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0				
{Urinary sys	stem)									
kidney	hyaline droplet	1 2	<50> 11 0) (22) (0)	0 0 5 0 (0) (0) (10) (0)	<50> 0 2 5 1 (0) (4) (10) (2)	(50) 0 0 4 0 (0) (0) (8) (0)				
	basophilic change	2 0 (4) (0)	0 0	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)				
	deposit of amyloid	0 0	0 0	0 0 1 0 (0) (0) (2) (0)	0 0 0 0 0 (0)	0 0 0 0 0 0 (0)				
	deposit of hemosiderin	0 0	0 0	0 0 0 0 0 (0) (0)	1 0 3 0 (2) (0) (6) (0)	2 3 12 0 (4) (6) (24) (0)				
	inflammatory polyp	0 0 (0) (0	0 0	1 1 0 0 (2) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 1 0 0				

Grade

^{1 :} Slight

^{2 :} Moderate

^{3 :} Marked

^{4 :} Severe

⁽ a > b

a: Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 20

Organ		p Name	100 ppm 50 1 2 3 4 (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%) (%)
Urinary sys	təm)	÷			
idney	hydronephrosis	(50) 0 2 0 0 (0) (4) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	(50) 0 1 1 0 (0) (2) (2) (0)	<50> 0 0 1 0 (0) (0) (2) (0)
rin bladd	inflammatory infiltration	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	lymphocytic infiltration	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
Endocrine s	ystem)				
ituitary	congestion	<pre></pre>	(50> 1 0 0 0 (2) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	cyst	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
rade a> b c) ignificant	I: Slight 2: Moderate 3: M a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference: $*: P \le 0.05 \implies P \le 0.$				

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

SEX

: FEMALE

		oup Name Control	100 ppm 50	500 ppm 50	2500 ppm 50					
Organ		2. of Animals on Study 50 ade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)					
{Endocrine	system)									
pituitary	hyperplasia	2 0 0 0 0 (4) (0) (0) (0)	(50) 3 0 0 0 (6) (0) (0) (0)	(50) 0 4 0 0 * (0) (8) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)					
	focal hypertrophy	3 0 0 0 0 (6) (6) (7)	3 0 0 0 0 (6) (6) (7)	5 0 0 0 (10) (0) (0) (0)	1 0 0 0 0 (2) (3) (6)					
adrenal	spindle-cell hyperplasia	<50> 7 39 4 0 (14) (78) (8) (0)	<pre></pre>	<50> 8 38 1 0 (16) (76) (2) (0)	<pre></pre>					
	focal hypertrophy:cortex	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)					
{Reproducti	ve system)									
ovary	cyst	\$ 2 0 0 (16) (4) (0) (0)	\$50> 9 0 0 0 (18) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<pre></pre>					
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)					
Grade <a>> b <a>c c c c c c c c c c c c c c c c c c c	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a * 100 tdifference; *: P≤ 0.05 **: P≤									

SEX

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

: FEMALE

ALL ANIMALS (0-105W)

Organ	N	roup Name Control fo. of Animals on Study 50 frade 1 2 3 4 (%) (%) (%) (%)	100 ppm 50 4 1 2 3 4 6) (%) (%) (%)	500 ppm 50 1 2 3 4 (%) (%) (%)	2500 ppm 50 1 2 3 4 (%) (%) (%)
{Reproductiv	ve system)				
uterus	cystic endometrial hyperplasia	(36) (24) (0) ((50) 0 23 14 1 0 0) (46) (28) (2) (0)	<50> 20 7 2 0 (40) (14) (4) (0)	(50) 4 1 0 0 *** (8) (2) (0) (0)
{Nervous sys	stem}				
brain	mineralization	(42) (0) (0) ((50) 0 19 0 0 0 0) (38) (0) (0) (0)	<50> 22 0 0 0 (44) (0) (0) (0)	23 0 0 0 (46) (0) (0) (0)
{Special sen	nse organs/appendage)				
eye	degeneration:cornea	(50) 4 0 0 (8) (0) (0) ((50) 0 2 0 0 0 0) (4) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	<50> 4 0 0 0 (3) (0) (0) (0)
Harder gl	hyperplasia	<50> 0 0 0 (0) (0) (0) ((50) 0 0 0 0 0 0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
Musculoskel	letal system)				
muscle	mineralization	<50> 0 0 0 (0) (0) (0) (<pre></pre>	<50> 1 0 0 0 (2) (0) (0) (0)	<pre></pre>
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b/a * 100 difference: *: P ≤ 0.05 **: P ≤				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

rgan	Findings	Group Name No. of Animals on Stud Grade			1 (%)	50 2	3 4 (%) (%)	<u>1</u> (%)	50 2 (%)	500 pt 3 (%)	ля 	<u> </u>	50 2	3 (%)	4 (%)
									-						
Body cavities	5)														
eritoneum			<50>			<50>			<50	0>			<50>		
	granulation	(0 0 (0 (0)	0 (0)	0 (0) (1 0 2) (0)	(0) (0 (0) (0 (0)	0 (0))	-	0 0) (0 0)
ь с)	1: Slight 2: Moderat a: Number of animals examine b: Number of animals with le c: b/a * 100	d at the site	evere						<u> </u>					· · · · ·	
ignificant di	ifference; $*: P \leq 0.05$	**: P ≤ 0.01 Test of Chi	Square												
HPT150)													 		I

APPENDIX L 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

DEAD AND MORIBUND ANIMALS

STUDY NO. : 0462 ANIMAL

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: FEMALE

0rgan	Findings	Group Name Control No. of Animals on Study 21 Grade 1 2 3 (%) (%) (%)	1 100 ppm 16 16 4 (%) (%) (%) (%) (%)	500 ppm 24 1 2 3 4 (%) (%) (%) (%)	2500 ppm 45 1 2 3 4 (%) (%) (%) (%)
{Integumentary	y system/appandage)				
skin/app	scab	21> 2 0 0 (10) (0) (0) (0 0 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<45> 0 0 0 0 (0) (0) (0) (0)
{Respiratory s	system}				
nasal cavit	eosinophilic change:olfactory epithel	(21) ium 2 0 0 (10) (0) (0) (0 2 0 0 0 0) (13) (0) (0) (0)	<pre></pre>	<45> 21 2 0 0 *** (47) (4) (0) (0)
	eosinophilic change:respiratory epith	elium 7 2 0 (33) (10) (0) (0 10 1 0 0 0) (63) (6) (0) (0)	9 7 0 0 (38) (29) (0) (0)	19 14 1 0 * (42) (31) (2) (0)
	inflammation:respiratory epithelium	(0) (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0)	0 1 0 0 (0) (2) (0) (0)
	respiratory metaplasia:olfactory epit	0 0 0 (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0)	17 0 0 0 *** (38) (0) (0) (0)
	respiratory metaplasia:gland	7 0 0 (33) (0) (0) (0 5 0 0 0 0 0 0 0 131) (0) (0) (0)	9 1 0 0 (38) (4) (0) (0)	25 7 0 0 *** (56) (16) (0) (0)
nasopharynx	eosinophilic change	(21) 0 0 0 (0) (0) (0) (0 0 0 0 0 0 0) (0) (0) (0) (0)	<pre></pre>	<45> 2 0 0 0 (4) (0) (0) (0)
Grade <a>> b (c) Significant d	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤				

: 0462

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 21 Grade 1 2 3 4 (%) (%) (%) (%)	100 ppm 16 1 2 3 4 (%) (%) (%) (%)	500 ppm 24 1 2 3 4 (%) (%) (%) (%)	2500 ppm 45 1 2 3 4 (%) (%) (%)
{Respiratory	system)				
lung	inflammatory infiltration	0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (4) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	bronchiolar-alveolar cell hyperplasia	2 0 0 0 (10) (0) (0) (0)	(6) (0) (0) (0)	6 0 0 0 (25) (0) (0) (0)	16 0 0 0 (36) (0) (0) (0)
{Hematopoieti	c system)				
bone marrow	decreased hematopoiesis	0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)	0 0 0 1 (0) (0) (0) (4)	<45> 0 0 0 0 0 0 0 0 0 0 0
	erythropoiesis:increased	3 0 0 0 (14) (0) (0) (0)	3 0 0 0 0 (19) (0) (0) (0)	10 1 0 0 (42) (4) (0) (0)	26 8 0 0 *** (58) (18) (0) (0)
spleen	deposit of hemosiderin	21> 1 1 0 0 (5) (5) (0) (0)	(16) 2 2 0 0 (13) (13) (0) (0)	9 1 0 0 * (38) (4) (0) (0)	38 3 0 0 ** (84) (7) (0) (0)
	fibrosis:focal	0 0 1 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Grade (a > b (c) Significant d	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 ifference; *: $P \le 0.05$ **: $P \le 0.05$				

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

(HPT150)

Organ		of Animals on Study 21 de 1 2 3 4 (%) (%) (%) (%)	100 ppm 16 1 2 3 4 (%) (%) (%) (%)	500 ppm 24 1 2 3 4 (%) (%) (%) (%)	2500 ppm 45 1 2 3 4 (%) (%) (%) (%)
{Hematopoie	tic system)				
spleen	extramedullary hematopoiesis	<21> 6 1 9 0 (29) (5) (43) (0)	3 2 3 0 (19) (13) (19) (0)	<24> 2 10 8 0 * (8) (42) (33) (0)	<45> 9 21 8 0 *** (20) (47) (18) (0)
{Circulator	y system)				
heart	mineralization	21> 2 0 0 0 (10) (0) (0) (0)	\(\lambda 1 \) 0 \ 0 \ 0 \\ (6) \((0) \((0) \((0) \) \)	\$24\$\\ 5 1 0 0 \\ (21) (4) (0) (0)	<pre></pre>
	arteritis	0 1 0 0 (0) (5) (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
{Digestive	system)				
tooth	dysplasia	<21> 0 0 0 0 (0) (0) (0) (0)	<16> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<24> 0 0 0 0 0 0 0 0 0 0 0 0	<45> 0 1 0 0 (0) (2) (0) (0)
tongue	arteritis	<pre></pre>	<16> 0 0 0 0 0 0 0 0 0 0 0	(24) 0 0 0 0 (0) (0) (0) (0)	45> 1 0 0 0 (2) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: 1 a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P ≤ 0				

ANIMAL

SEX

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE

100 ppm 500 ppm 2500 ppm Group Name Control No. of Animals on Study 16 45 21 24 Grade (%) Findings. (%) (%) (%) (%) (%) Organ_ (Digestive system) <16> <45> ⟨21⟩ <24> salivary gl 0 0 0 0 0 0 0 0 0 lymphocytic infiltration (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) stomach ⟨21⟩ <16> <24> <45> 12 1 0 5 0 0 * 12 6 0 0 19 18 0 0 hyperplasia:glandular stomach 11 (19) (57) (5) (0) (69) (31) (0) (0) (50) (25) (0) (0) (42) (40) (0) (0) liver <21> <16> <24> <45> 1 1 0 0 0 0 0 1 0 0 0 0 0 angiectasis (0)(5)(0)(0) (0)(6)(6)(0) (4)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 1 0 0 granulation 0 0 0 0 (5)(0)(0)(0) (0)(0)(0)(0) (4)(0)(0)(0) (0)(0)(0)(0) basophilic cell focus 2 0 0 0 (4)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) hepatocellular hypertrophy:central 0 (0)(0)(0)(0) (0)(0)(0)(0) (25) (17) (0) (0) (2) (64) (9) (0) <21> <16> <24> <45> pancreas 0 0 0 inflammation 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (4)(0)(0)(0) (0)(0)(0)(0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

<a>>

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : FEMALE

Organ	N	roup Name Control 5. of Animals on Study 21 rade 1 2 3 4 (%) (%) (%) (%)	100 ppm 16 1 2 3 4 (%) (%) (%) (%)	500 ppm 24 1 2 3 4 (%) (%) (%) (%)	2500 ppm 45 1 2 3 4 (%) (%) (%) (%)
{Digestive s					
pancreas	hyperplasia:gland	(21) 0 0 0 0 (0) (0) (0) (0)	(16) 0 0 0 0 (0) (0) (0) (0)	(24) 1 0 0 0 (4) (0) (0) (0)	<45> 0 0 0 0 (0) (0) (0) (0)
{Urinary sys	tem}				
kidney	hyaline droplet	<pre></pre>	<16> 0 0 4 0 0 0 0 5 (0)	(24) 0 2 4 1 (0) (8) (17) (4)	<45> 0 0 4 0 ** (0) (0) (9) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (6) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	deposit of hemosiderin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 2 0 (4) (0) (8) (0)	2 2 11 0 * (4) (4) (24) (0)
	inflammatory polyp	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)
	hydronephrosis	0 1 0 0 (0) (5) (0) (0)	0 0 0 0 0	0 0 0 0 0 0 (0) (0)	0 0 1 0 (0) (2) (0)
{Endocrine s	system)				
pituitary	congestion	<pre></pre>	<pre></pre>	(24) 0 0 0 0 (0) (0) (0) (0)	<45> 0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

ANIMAL

DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

500 ppm Group Name 100 ppm 2500 ppm Control No. of Animals on Study 21 16 45 Grade Findings_ (%) (%) (%) (%) {Endocrine system} pituitary ⟨21⟩ <16> <24> <45> hyperplasia 0 0 0 0 0 0 0 0 (0)(8)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (6)(0)(0)(0) focal hypertrophy 0 0 0 0 0 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) adrenal ⟨21⟩ <16> <24> <45> spindle-cell hyperplasia 5 16 0 0 4 10 1 0 6 15 0 0 32 10 0 0 ** (24) (76) (0) (0) (25) (63) (0) (0) (25) (63) (6) (0) (71) (22) (0) (0) focal hypertrophy:cortex 0 0 1 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (Reproductive system) ovary <21> <16> <24> 0 0 0 0 0 0 0 0 0 0 1 0 cyst (10) (0) (0) (0) (6)(0)(0)(0) (0)(0)(0)(0) (0)(0)(2)(0) 0 0 0 0 xanthogranuloma 0 0 0 0 (0)(0)(0)(0) (0)(6)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 1 : Slight 2 : Moderate Grade 3 : Marked 4 : Severe <a>> a: Number of animals examined at the site ь b: Number of animals with lesion (c) c:b/a * 100 Significant difference; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE DEAD AND MORIBUND ANIMALS (0-105W)

	Group Name		Control		100 ppm			mqu	2500 ppm					
Organ		No. of Animals on Study Grade 1 (%)	21 2 3 4 (%) (%) (9	1 2	16 3 4 (%) (%)	<u>1</u> (%)	24 2 3 (%) (%)	<u>4</u> (%)	<u>1</u> (%)	45 2 3 (%) (%)	(%)			
{Reproductive	e system)													
uterus	cystic endometrial hyperplasia	2 (10)	<21> 3 0 (14) (0) (6 1	(0) (0)	9 (38) (<24> 1 0 4) (0)	0 (0)	4 (9) (<45> 1 0 2) (0)	0 (0)			
{Nervous sys	tem)													
brain	mineralization	5 (24)	<21> 0 0 (0) (0) (1)	8 0	(16) 0 0 0 0 0 0 0 0 0	7 (29) (<24> 0 0 0) (0)	0 (0)	22 (49) (<45> 0 0 0) (0)	0 (0)			
{Special sen	se organs/appendage)													
eye	degeneration:cornea	1 (5)	<21> 0 0 (0) (0) (0 1 0	(16) 0 0 0 (0) (0)	2 (8) (<24> 0 0 0) (0)	0 (0)	4 (9) (<45> 0 0 0) (0)	0 (0)			
Harder gl	hyperplasia	0 (0)	<21> 0 0 (0) (0) (0 0	(16) 0 0 0 (0) (0)	1 (4) (<24> 0 0 0) (0)	0 (0)	0 (0) (<45> 0 0 0) (0)	0 (0)			
{Musculoskel	etal system)													
muscle	mineralization	0 (0)	<21> 0 0 (0) (0) (0 2 0	(16> 0 0) (0) (0)	(4)(<24> 0 0 0) (0)	0 (0)	(0) (<45> 0 0 0) (0)	0 (0)			
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤										-			

APPENDIX L 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] SACRIFI

REPORT TYPE : A1 SEX : FEMALE

ANIMAL

SACRIFICED ANIMALS (105W)

Group Name Control 100 ppm 500 ppm 2500 ppm No. of Animals on Study 34 5 Grade 3 (%) (%) Findings_ (%) {Integumentary system/appandage} skin/app <29> ⟨34⟩ < 5> <26> scab 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (4)(0)(0)(0) (0)(0)(0)(0) {Respiratory system} nasal cavit eosinophilic change:olfactory epithelium 0 0 0 (21) (3) (0) (0) (15) (0) (0) (0) (27) (4) (0) (0) (60) (20) (0) (0) eosinophilic change:respiratory epithelium 12 8 0 12 8 0 0 14 10 0 0 2 1 0 (41) (28) (0) (0) (35) (24) (0) (0) (54) (38) (0) (0) (40) (20) (0) (0) respiratory metaplasia:olfactory epithelium 3 0 0 0 2 0 0 0 0 0 3 0 (10) (0) (0) (0) (6)(0)(0)(0) (31) (0) (0) (0) (60) (0) (0) (0) respiratory metaplasia:gland 0 0 0 1 0 10 0 3 2 0 ** (34) (0) (0) (0) (21) (3) (0) (0) (38) (4) (0) (0) (60) (40) (0) (0) nasopharynx <29> <34> <26> < 5> 1 0 0 eosinophilic change 0 0 0 0 0 0 0 0 0 (0)(4)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 1 : Slight 2 : Moderate 3 : Marked Grade 4 : Severe < a > a : Number of animals examined at the site b: Number of animals with lesion c : b / a * 100(c) Significant difference; *: P ≤ 0.05 **: P ≤ 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	N	roup Name o. of Animals on Study rade (%)	29 2 (%)	Contro) 3 (%)	1 (%)	1 (%)	(%	34	3 (%)	4 (%)	_ <u>1</u> (9	L6)	2 (%)	500 6 3 (%)	4	-	1 (%))		2500 5 3 (%	<u>4</u> (%)
{Respiratory :	system}																				
lung	lymphocytic infiltration	0 (0)	<29 0 (0)	0	0	1 (3)	((0	0 (0)	1		0	6> 0 (0)	0 (0)		0 (0		0	5> 0 (0	0 0)
	bronchiolar-alveolar cell hyperplasia	6 (21)	0 (0)	0 (0)	0 (0)	10 (29)	((·) (0 0) (0 (0)	15 (58	5 3) (0 0)	0 (0)	(0)	*	1 (20		0 0)	0	0 0)
{Hematopoieti	c system)																				
bone marrow	erythropoiesis:increased	0 (0)	<29 0 (0)	0 (0)	0 (0)	1 (3)	((<34>) (0	0 (0)	{ (19	5 9) (0	6> 0 (0)	0 (0)	*	3 (60		i	5> 0 (0	0 ** 0)
spleen	deposit of hemosiderin	11 (38)	<29 4 (14)	0	0 (0)	17 (50)	2		0	0 (0)	14 (54		3	6> 0 (0)	0 (0)		3 (60		1	5> 0 (0	0 0)
	deposit of melanin	0 (0)	0 (0)	0 (0)	0 (0)	3 (9)	((0	0 (0)		0 0) (0 0)	0 (0)	0 (0)		(0		0 0)	0)	0 0)
	fibrosis:focal	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(() (0	0 (0)	(0	(0)	0 (0)		0		0	0	0 0)
Grade < u > b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤																				

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SACRIF

REPORT TYPE : A1 SEX : FEMALE OHORIT TODA TECHNISMO (1

Organ	Findings	Group Name No. of Animals on Study 2 Grade 1 2 (%) (%)	Control) 3 4 (%) (%)	100 ppm 34 1 2 3 4 (%) (%) (%)	500 ppm 26 1 2 3 4 (%) (%) (%) (%)	2500 ppm 5 1 2 3 4 (%) (%) (%) (%)
{Hematopoietic	c system)					
spleen	extramedullary hematopoiesis	4 2 (14) (7)	1 0	<pre></pre>	\(\lambda 26 \rangle \) 11	<pre></pre>
	follicular hyperplasia	3 2 (10) (7)	0 0	4 0 0 0 (12) (0) (0) (0)	3 0 0 0 0 (12) (0) (0) (0)	0 0 0 0 0 (0) (0)
{Digestive sys	stem)					
tooth	dysplasia	(2 0 1 (0) (3)	0 0	<pre></pre>	<26> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	xanthogranuloma	0 0 (0) (0)	0 0	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0
salivary gl	lymphocytic infiltration	1 0 (3) (0)	0 0	(34) 1 0 0 0 (3) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
stomach	hyperplasia:glandular stomach	<2 7 14 (24) (48)	8 0	34> 6 20 7 0 (18) (59) (21) (0)	<26> 4 18 4 0 (15) (69) (15) (0)	< 5> 1 2 0 0 *** (20) (40) (0) (0)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 14

		Group Name No. of Animals on Study Grade 1	29 2	3_	4_	1	2	100 34 3	4_	1		20	3	4_		1	į	5 2	3	- 4	4
Organ	Findings	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		(%)	(%)	(%)		(%)		K) 	(%)		(%)
{Digestive	system)																				
liver	angiectasis	1 (3)	<29 2 (7)	1	0 (0)	2 (6)	4	34> 0 (0)	0 (0)	0 (0)		<20 3 12)	0	0 (0)	(0		< 5 0 0) (0 0)		0 0)
	deposit of amyloid	1 (3)	0 (0)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0)		0 0)	0 (0)	0 (0)	(0 0)		0 0) (0		0 0)
	inflammatory infiltration	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(1 4)	0 (0)	0 (0)	(0 0)		o 0) (0 0)		0 0)
	lymphocytic infiltration	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	0 (0)	(0 0)		0 0) (0 0)		0 0)
	granulation	9	14 (48)	0 (0)	0 (0)	11 (32)	16 (47)	0 (0)	0 (0)	6 (23)	(5 19)	0 (0)	0 *	(0 0)	(0 0) (0 (0)	((0 ** 0)
	extramedullary hematopoiesis	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (4)	(0 0)	0 (0)	0 (0)	(0 0)		0 0) (0		0 0)
	clear cell focus	0 (0)	0 (0)	0 (0)	0 (0)	(3)	0 (0)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	0 (0)	(0		0 0) (0 (0)		0 0)
	basophilic cell focus	3 (10)	2 (7)	0 (0)	0	2 (6)	0 (0)	0 (0)	0 (0)	3 (12)	(0 0)	0 (0)	0 (0)	(0		0 0) (0 (0)		0 0)

1 : Slight Grade

2 : Moderate

3 : Marked

4 : Severe

< a >

a : Number of animals examined at the site

ь

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

PAGE: 15

Organ		Group Name (No. of Animals on Study 29 Grade 1 2 (%) (%)	3 4 (%) (%)	100 ppm 34 1 2 3 4 (%) (%) (%) (%)	500 ppm 26 1 2 3 4 (%) (%) (%) (%)	2500 ppm 5 1 2 3 4 (%) (%) (%) (%)
{Digestive	system)					
liver	biliary cyst	<pre></pre>	0 0	(34) 1 0 0 0 (3) (0) (0) (0)	<26> 1 0 0 0 (4) (0) (0) (0)	(5) 0 0 0 0 (0) (0) (0) (0)
	hepatocellular hypertrophy:central	0 0 (0) (0 0	0 0 0 0 0 0 (0) (0) (0)	9 10 0 0 *** (35) (38) (0) (0)	0 3 0 0 ***
pancreas	atrophy	0 0 (0) (0) (0 0	(34> 1 0 0 0 (3) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
{Urinary sy	stem)					
kidney	hyaline droplet	(29) 1 1 (3) (3) (1 0	(34) 0 0 1 0 (0) (0) (3) (0)	<26> 0 0 1 0 (0) (0) (4) (0)	(5> 0 0 0 0 (0) (0) (0) (0)
	basophilic change	2 0 (7) (0) (0 0	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	deposit of hemosiderin	0 0 (0) (0 0 0 0)	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (4) (0)	0 1 1 0 ** (0) (20) (20) (0)
Grade <a>a> <a>b <a>c <a>c<	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; *: P \le 0.05 **: P \le 1					

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	1	roup Name o. of Animals on Study rade	29 2 (%)	3 (%)	4 (%)	<u>1</u> (%)	2 (%)	100 ₁ 34 3 (%)	9pm 4 (%)	<u>(</u>	1 %)	26 2 (%)	3 (%)	9m 4 (%)		1 (%)		2500 5 3 (%)	4
{Urinary syst	tem)																		
kidney	inflammatory polyp	0 (0)	<29 0 (0) (0	0 (0)	1 (3)		34> 0 (0)	0 (0)	(1 4) (<26 1 4) (0 (0)	(0 (0	5> 0 (0)	0 (0)
	hydronephrosis	(0)	1 (3) (0 0	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	(0 0) (1 4) (1 4)	0 (0)	(0 (0 0)	0 (0)	0 (0)
urin bladd	inflammatory infiltration	1 (3)	<29 0 (0) (0	0 (0)	0 (0)		34> 0 (0)	0 (0)	(0 0) (<26 0 0) (0	0 (0)	(0 (0	5> 0 (0)	0 (0)
	lymphocytic infiltration	2 (7)	0 (0) (0 0)	0 (0)	0 (0)	(0)	0 (0)	0 (0)		0 0) (0	0 (0)	0 (0)	(0 (0 0)	0 (0)	0 (0)
	arteritis	0 (0)	0 (0) (0 (0)	0	0 (0)	(0)	0 (0)	0 (0)	(1 4) (0	0 (0)	0 (0)	(0 (0	(0)	0 (0)
{Endocrine sy	ystem}																		
pituitary	cyst	1 (4)	<28 0 (0) (0	0 (0)	0 (0)	0	34> 0 (0)	0 (0)		0 0) (0 (0)	(0 0) (0	5> 0 (0)	0 (0)
Grade < a > b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100	Marked 4: Severe	,																

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1
SEX : FEMALE

		Group Name Control No. of Animals on Study 29	100 ppm	mqq 000	2500 ppm
Organ	Findings	No. of Animals on Study 29 Grade 1 2 3 4 (%) (%) (%) (%) (%)	34 1 2 3 4 (%) (%) (%) (%)	26 1 2 3 4 (%) (%) (%) (%)	5 1 2 3 4 (%) (%) (%) (%)
{Endocrine s	system)				
pituitary	hyperplasia	2 0 0 0 0 (7) (0) (0) (0)	2 0 0 0 (6) (0) (0) (0)	(26) 0 2 0 0 (0) (8) (0) (0)	< 5> 0 0 0 0 (0) (0) (0) (0)
	focal hypertrophy	3 0 0 0 0 (11) (0) (0) (0)	3 0 0 0 0	5 0 0 0 (19) (0) (0) (0)	0 0 0 0 0 (0) (0)
adrenal	spindle-cell hyperplasia	<29> 2 23 4 0 (7) (79) (14) (0)	5 27 2 0 (15) (79) (6) (0)	265 2 23 1 0 (8) (88) (4) (0)	5 0 0 0 *** (100) (0) (0) (0)
{Reproductiv	ve system)				
ovary	cyst	<29> 6 2 0 0 (21) (7) (0) (0)	<pre></pre>	<26> 4 0 0 0 (15) (0) (0) (0)	< 5> 0 0 0 0 (0) (0) (0) (0)
uterus	cystic endometrial hyperplasia	29> 16 9 0 0 (55) (31) (0) (0)	(34) 17 13 1 0 (50) (38) (3) (0)	(26) 11 6 2 0 (42) (23) (8) (0)	< 5> 0 0 0 0 *** (0) (0) (0) (0)
(Nervous sys	stem)				
brain	mineralization	<29> 16 0 0 0 (55) (0) (0) (0)	34> 11 0 0 0 (32) (0) (0) (0)	<26> 15 0 0 0 (58) (0) (0) (0)	<pre></pre>
Grade <a>a> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the s: b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		p Name of Animals on Study e 1	Contro 29 2 3	o1 4	1	34 2	100 ppm ! 3 4	1	26 2	500 p		1	2	2500 p 5	10m 4
rgau	Findings	(%)	(%) (%)	(%)	(%)	(%)	(%) (%)	(%)	(%)	(%)	(%)	(%)	(%) (%)	(%)
Special sens	e organs/appendage)														
ye	degeneration:cornea	3 (10) (<29> 0 0 0) (0)	0 (0)	1 (3)	(34 0 (0) ((0) (0)	3 (12) (<26 0 (0) (0	0 (0)	(0)	0	< 5> 0) (0)	0 (0)
Body cavities	s)														
eritoneum	granulation	0 (0) (<29> 0 0 0) (0)	0 (0)	0 (0)	<34 0 (0) (1 0 (3) (0)	0 (0) (<26 0 (0) (0	0 (0)	0 (0)	0		0 (0)
Grade (a > b (c) Significant d	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100 ifference; *: P ≤ 0.05 **: P ≤ 0.0														
(HPT150)															

APPENDIX M 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0462

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE

Time-related Items_____ Group Name Control 100 ppm 500 ppm 2500 ppm ____Weeks__ 0 - 52 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 53 - 78 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 79 - 104 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 105 - 105 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

SEX : MALE

PAGE: 2

Time-related Weeks	Items	Group Name	Control	100 ppm	500 ppm	2500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		44	45	50	49	
	NO. OF ANIMALS WITH SINGLE TUMORS		21	15	15	5	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		23	30	35	44	
	NO. OF BENIGN TUMORS		38	51	36	41	
	NO. OF MALIGNANT TUMORS		35	45	70	84	
	NO. OF TOTAL TUMORS		73	96	106	125	

(HPT070)

BAIS4

APPENDIX M 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0462

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE

Time-related Items_____ Group Name Control 100 ppm 500 ppm 2500 ppm ____Weeks_ 1 . 0 - 52 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS NO. OF EXAMINED ANIMALS 53 - 78 NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 79 - 104 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 105 - 105NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS

NO. OF TOTAL TUMORS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

REPORT TYPE : A1

SEX : FEMALE PAGE: 4

Time-relatedWeeks	Items	Group Name	Control	100 ppm	500 ppm	2500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		43	42	50	50	
	NO. OF ANIMALS WITH SINGLE TUMORS		27	17	7	4	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		16	25	43	46	
	NO. OF BENIGN TUMORS		23	46	54	44	
	NO. OF MALIGNANT TUMORS		42	39	59	90	
	NO. OF TOTAL TUMORS		65	85	113	134	
					_		

(HPT070)

BAIS4

APPENDIX N 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS : MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ		roup Name o. of animals on Study		Control 50		100 ppm 50			500 ppm 50		2500 ppm 50
{Integumenta	ry system/appandage)										
skin/app	melanoma:malignant			<50> (2%)	0	<50> (0%)	0		(50> (0%)	0	<50> (0%)
subcutis	histiocytic sarcoma			<50> (2%)	0	<50> (0%)	0		(50> (0%)	0	<50> (0%)
	hemangiosarcoma		0	(0%)	0	(0%)	1	. 4	(2%)	0	(0%)
{Respiratory	system)										
lung	bronchiolar-alveolar adenoma			<50> (18%)	8	<50> (16%)	3		<50> (6%)	0	<50> (0%)
	hemangioma		0	(0%)	0	(0%)	0)	(0%)	1	(2%)
	bronchiolar-alveolar carcinoma		4	(8%)	10	(20%)	3	3	(6%)	i	(2%)
{Hematopoiet	ic system)										
lymph node	mastcytoma:benign			<50> (0%)	0	<50> (0%)	0		<50> (0%)	1	<50> (2%)
	malignant lymphoma		5	(10%)	7	(14%)	4	Į	(8%)	1	(2%)
spleen	hemangioma			<50> (0%)	3	<50> (6%)	0		<50> (0%)	c	<50> (0%)
	histiocytic sarcoma		0	(0%)	1	(2%)	0)	(0%)	C	(0%)
	malignant lymphoma		0	(0%)	1	(2%)	0)	(0%)	C	(0%)
(a)	a: Number of animals examined at the site b: Number of animals with neoplasm c: b/a * 100		-								

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Findings	Group Name No. of animals on Study		Control 50		100 ppm 50		500 ppm 50		2500 ppm 50
system)									
hemangiosarcoma	1			2	<50> (4%)	3		2	<50> (4%)
em)									
histiocytic sarcoma	,			0	<50> (0%)	0		0	<50> (0%)
squamous cell papilloma				1	<50> (2%)	0		0	<50> (0%)
carcinoid tumor	:	1	(2%)	0	(0%)	0	(0%)	0	(0%)
fibroma	(0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
hemangioma				4	<50> (8%)	1	<50> (2%)	2	〈50〉 (4%)
hepatocellular adenoma	19	9	(38%)	29	(58%)	30	(60%)	34	(68%)
histiocytic sarcoma	:	2	(4%)	0	(0%)	1	(2%)	1	(2%)
hemangiosarcoma		1	(2%)	2	(4%)	0	(0%)	0	(0%)
hepatocellular carcinoma	1	.5	(30%)	14	(28%)	20	(40%)	35	(70%)
hepatoblastoma		1	(2%)	6	(12%)	35	(70%)	44	(88%)
islet cell adenocarcinoma			<50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
	hemangiosarcoma dem) histiocytic sarcoma squamous cell papilloma carcinoid tumor fibroma hemangioma hepatocellular adenoma hemangiosarcoma hemangiosarcoma hepatocellular carcinoma	system) hemangiosarcoma tem) histiocytic sarcoma squamous cell papilloma carcinoid tumor fibroma hemangioma hepatocellular adenoma hemangiosarcoma hemangiosarcoma hepatocellular carcinoma	system) hemangiosarcoma 1 cem) histiocytic sarcoma 1 squamous cell papilloma 0 carcinoid tumor 1 fibroma 0 hemangioma 5 hepatocellular adenoma 19 histiocytic sarcoma 2 hemangiosarcoma 1 hepatocellular carcinoma 15 hepatocellular carcinoma 15	System S	System System Stop Sto	System S	System S	System S	System S

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name No. of animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
{Urinary sys	tem)					
kidney	histiocytic sarcoma		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
rin bladd	histiocytic sarcoma		<49> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
Endocrine s	rystem)					
thyroid	follicular adenoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
drenal	pheochromocytoma:malignant		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
(Reproductiv	re system}					
testis	xanthoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
epididymis	histiocytic sarcoma		<50> 1 (2%)	<49> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
Nervous sys	stem)					
oeriph merv	schwannoma		<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
	schwannoma:malignant		0 (0%)	0 (0%)	1 (2%)	0 (0%)
{Special sen	nse organs/appendage)					
Harder gl	adenoma		<50> 4 (8%)	<50> 4 (8%)	<50> 1 (2%)	<50> 2 (4%)
(a) b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c	: b / a * 100				

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

{Body cavities} retroperit hemangiosarc			<50>	(50)		
=			/50 \	(70)		
	ta .		1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	animals examined at the site	e c:b/a*100				

APPENDIX N 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS : FEMALE

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name No. of animals on Study		Control 50		100 ppm 50		500 ppm 50		2500 ppm 50
{Integumenta	ary system/appandage)									
skin/app	squamous cell papilloma	1		(50> (0%)	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)
	melanoma	1	0 ((0%)	1	(2%)	0	(0%)	0	(0%)
subcutis	hemangioma			(50> (2%)	0	<50> (0%)	1	<50> (2%)	1	<50> (2%)
	fibrosarcoma		1 ((2%)	0	(0%)	0	(0%)	0	(0%)
	histiocytic sarcoma		0 ((0%)	0	(0%)	1	(2%)	0	(0%)
{Respiratory	y system)									
lung	bronchiolar-alveolar adenoma			(50> (8%)	4	<50> (8%)	0	<50> (0%)	0	<50> (0%)
	bronchiolar-alveolar carcinoma	:	3 ((6%)	4	(8%)	3	(6%)	0	(0%)
Hematopoie	tic system)									
lymph node	malignant lymphoma	1:		(50> (32%)	17	<50> (34%)	17	<50> (34%)	3	<50> (6%)
	mastcytoma:malignant		1	(2%)	0	(0%)	0	(0%)	1	(2%)
	hemangiosarcoma		1	(2%)	. 0	(0%)	0	(0%)	0	(0%)
spleen	hemangioma			<50> (0%)	2	<50> (4%)	O	<50> (0%)	0	<50> (0%)
<a>> b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c:b/a * 1	00								
(HDT08E)					<u>.</u>					

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

Organ	Findings	Group Name No. of animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
{Hematopoiet	ic system)					
spleen	malignant lymphoma		<50> 2 (4%)	<50> 3 (6%)	<50> 3 (6%)	<50> 0 (0%)
	hemangiosarcoma		1 (2%)	0 (0%)	0 (0%)	1 (2%)
(Digestive s	ystem)					
stomach	squamous cell papilloma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)
small intes	hemangioma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	histiocytic sarcoma		1 (2%)	0 (0%)	0 (0%)	0 (0%)
liver	hemangioma		<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)
	hepatocellular adenoma		8 (16%)	22 (44%)	48 (96%)	38 (76%)
	histiocytic sarcoma		0 (0%)	0 (0%)	0 (0%)	2 (4%)
	hemangiosarcoma		0 (0%)	1 (2%)	0 (0%)	1 (2%)
	hepatocellular carcinoma		0 (0%)	3 (6%)	14 (28%)	48 (96%)
	hepatoblastoma		0 (0%)	0 (0%)	9 (18%)	28 (56%)
{Urinary sys	tem]					
urin bladd	histiocytic sarcoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
(a) b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c: b/a*	. 100				

STUDY NO. : 0462 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

organ	Findings	Group Name No. of animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
(Endocrine sys	etem)					
pituitary	adenoma		<49> 4 (8%)	<50> 6 (12%)	<50> 2 (4%)	<50> 0 (0%)
drenal	pheochromocytoma		<50> 0 (0%)	<50> 2 (4%)	<50> 0 (0%)	<50> 0 (0%)
{Reproductive	system)					
ovary	cystadenoma		<50> 2 (4%)	<50> 2 (4%)	<50> 1 (2%)	<50> 1 (2%)
	hemangioma		0 (0%)	0 (0%)	1 (2%)	0 (0%)
	teratoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
uterus	hemangioma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	papillary adenoma		1 (2%)	0 (0%)	0 (0%)	0 (0%)
	endometrial stromal polyp		0 (0%)	1 (2%)	0 (0%)	0 (0%)
	histiocytic sarcoma	1	5 (30%)	8 (16%)	12 (24%)	6 (12%)
vagina	histiocytic sarcoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
{Nervous syste	em)					
periph nerv	histiocytic sarcoma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

F1/Cr1;[Cr;:BDF1] ALL ANIMALS (

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings No. of	nime Contro nimals on Study 50	1	100 ppm 50	500 ppm 50	2500 ppm 50
{Special sens	se organs/appendage)					
Harder gl	adenoma	<50> 1 (2%)	2	<50> (4%)	<50> 0 (0%)	<50> 1 (2%)
(Musculoskele	etal system)					
muscle	hemangioma	<50> 0 (0%)	1	<50> (2%)	. <50> 0 (0%)	<50> o (0%)
{Body cavitie	os)					
peritoneum	histiocytic sarcoma	<50> 0 (0%)	1	<50> (2%)	<50> 0 (0%)	<50> 0 (0%)
<a>>	a: Number of animals examined at the site b: Number of animals with neoplasm c:b/a*100					
(HPT085)						

APPENDIX O 1

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

Group Name	Control	100 ppm	500 ppm	2500 թբա	
	SITE : lung				
_	TUMOR : bronchiolar—alveolar	adenoma			
Tumor rate	0/50/ 10 0)	0/50/ 10 0	9/50/ 5 0	0/50/ 0.0)	
Overall rates (a)	9/50(18.0) 20.00	8/50 (16. 0) 22. 86	3/50(6.0) 11.76	0/50(0.0) 0.0	
Adjusted rates(b) Terminal rates(c)	5/35(14.3)	8/35 (22. 9)	2/17(11.8)	0/8(0.0)	
Statistical analysis	5/35(14.3)	6/35(22.9)	2/1/(11.6)	0/ 8(0.0)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.9970				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0021**				
Fisher Exact test(e)	1 - 0.00213-7	P = 0.5000	P = 0.0606	P = 0.0013**	
	SITE : lung TUMOR : bronchiolar-alveolar	carcinoma			
Tumor rate	4/50/ 0.0	10 (50 (00 0)	0/50/ 0.0	* (FO (O A)	
Overall rates(a)	4/50(8.0)	10/50 (20. 0)	3/50(6.0)	1/50(2.0)	
Adjusted rates(b)	11. 43	24. 32	8.70	3.57	
Terminal rates(c) Statistical analysis	4/35(11.4)	7/35(20.0)	1/17(5.9)	0/8(0.0)	
Peto test					
Standard method(d)	P = 0.3199				
Prevalence method(d)	P = 0.8327				
Combined analysis(d)	P = 0.8520				
Cochran-Armitage test(e)	P = 0.0291*				
Fisher Exact test(e)	1 0.0201	P = 0.0739	P = 0.5000	P = 0.1811	
Tioner Brace section		1 0.0100	1 0.5000	1 0.2011	
T	SITE : lung TUMOR : bronchiolar-alveola	r adenoma, bronchiolar—alveolar carcinoma			
Tumor rate Overall rates(a)	13/50 (26. 0)	16/50(32.0)	6/50(12.0)	1/50(2.0)	
Adjusted rates(b)	28. 89	40.54	17.65	3. 57	
Terminal rates(c)	9/35 (25.7)	13/35(37. 1)	3/17(17.6)	0/8(0.0)	
Statistical analysis	0,00(20.1)	10/30(31.1/	0/11/11.0/	0, 0(0.0)	
Peto test					
Standard method(d)	P = 0.3199				
Prevalence method(d)	P = 0.9986				
• •	P = 0.9987				
Combined analysis(d)					
Combined analysis(d) Cochran-Armitage test(e)	P = 0.0002**				

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
SEX : MALE

Group Name	Control	100 ppm	500 ppm	2500 թթա
	SITE : lymph node TUMOR : malignant lymphoma			
Tumor rate	TOMOR . Hallghant lymphoma			
Overall rates(a)	5/50(10.0)	7/50(14.0)	4/50(8.0)	1/50(2.0)
Adjusted rates(b)	5. 71	11. 43	17. 65	12. 50
Terminal rates(c)	2/35(5.7)	4/35(11.4)	3/17(17.6)	1/8(12.5)
tatistical analysis				
Peto test				
Standard method(d)	P = 0.9207			
Prevalence method(d)	P = 0.2791			
Combined analysis(d) Cochran-Armitage test(e)	P = 0.6944 P = 0.0460*			
Fisher Exact test(e)	P = 0.0460*	P = 0.3798	P = 0.5000	P = 0.1022
1 13Het DANCE BEST(E)			1 0.0000	1 0.1025
	OVER . I			
	SITE : spleen TUMOR : hemangioma			
umor rate	TOMOR . Hemangroma			
Overall rates(a)	0/50(0.0)	3/50 (6.0)	0/50(0.0)	0/50(0.0)
Adjusted rates(b)	0.0	8. 57	0.0	0, 0
Terminal rates(c)	0/35(0.0)	3/35(8.6)	0/17(0.0)	0/8(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.6374			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.2450	B 0 1010	P. N.G.	D 11 0
Fisher Exact test(e)		P = 0. 1212	P = N. C.	P = N. C.
·	SITE : spleen			
	TUMOR : hemangiosarcoma			
Tumor rate	Total Grand Total			
Overall rates(a)	1/50(2.0)	2/50(4.0)	3/50(6.0)	2/50(4.0)
Adjusted rates(b)	2.86	2. 86	7.32	12.50
Terminal rates(c)	1/35(2.9)	1/35(2.9)	0/17(0.0)	1/8(12.5)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.3303			
Prevalence method(d)	P = 0.2076			
Combined analysis(d)	P = 0.2477			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.8587	P = 0.5000	P = 0.3087	P = 0.5000
1 TOHEL DAGE CEST(6)		1 - 0.0000	1 - 0.3001	1 - 0.0000

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]
SEX : MALE

Group Name	Control	100 ррш	500 ppm	2500 թրտ
	SITE : spleen			
umor rate	TUMOR : hemangioma, hemangiosarcoma	ı		· ·
omor rate Overall rates(a)	1/50(2.0)	5/50(10.0)	3/50(6.0)	2/50(4.0)
Adjusted rates(b)	2.86	11.43	7. 32	12. 50
Terminal rates(c)	1/35(2.9)	4/35(11.4)	0/17(0.0)	1/8(12.5)
tatistical analysis	u,,	2, 24 (22. 2)	***************************************	2, 3 (22, 2,
Peto test				
Standard method(d)	P = 0.3303			
Prevalence method(d)	P = 0.3964			
Combined analysis(d)	P = 0.4431			
Cochran-Armitage test(e)	P = 0.6407			
Fisher Exact test(e)		P = 0.1022	P = 0.3087	P = 0.5000
umor rate	SITE : liver TUMOR : hemangioma			
Overall rates(a)	5/50(10.0)	4/50 (8.0)	1/50(2.0)	2/50(4.0)
Adjusted rates(b)	6. 82	11. 43	0.0	5. 13
Terminal rates(c)	2/35(5.7)	4/35(11.4)	0/17(0.0)	0/8(0.0)
itatistical analysis				
Peto test Standard method(d)	D 0 0077			
Prevalence method(d)	P = 0.6977 P = 0.5035			
Combined analysis(d)	P = 0.6366			
Cochran-Armitage test(e)	P = 0.3178			
Fisher Exact test(e)	1 0.0110	P = 0.5000	P = 0.1022	P = 0.2180
			1 0. 1000	1 0. 5130
	SITE : liver TUMOR : hepatocellular adenoma			
umor rate				
Overall rates(a)	19/50(38.0)	29/50 (58. 0)	30/50(60.0)	34/50(68.0)
Adjusted rates(b)	51. 43	72. 22	78. 95	80.00
Terminal rates(c)	18/35(51.4)	25/35(71.4)	13/17(76.5)	6/8(75.0)
Statistical analysis Peto test				
Standard method(d)	P = 0.1516			
Prevalence method(d)	P = 0.0001**			
Combined analysis(d)	P < 0.0001**			
unuajoao (u/				
Cochran-Armitage test(e)	P = 0.0236*			

(HPT360A)

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 4

BAIS4

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]
SEX : MALE

Group Name	Control	100 ppm	500 ppm	2500 թթա
	SITE : liver TUMOR : hepatocellular carcinoma			
Cumor rate	romok - nepatoceridiai carcinoma			
Overall rates(a)	15/50(30.0)	14/50 (28. 0)	20/50(40.0)	35/50(70.0)
Adjusted rates(b)	33. 33	32. 56	54. 17	95. 00
Terminal rates(c) Statistical analysis Peto test	11/35(31.4)	10/35(28.6)	9/17(52. 9)	7/ 8(87.5)
Standard method(d)	P = 0.0237*			
Prevalence method(d)	P < 0.0001**			
Combined analysis(d)	P < 0.0001**			
Cochran-Armitage test(e)	P < 0.0001**			
Fisher Exact test(e)		P = 0.5000	P = 0.2009	P = 0.0001**
	SITE : liver			
	TUMOR : hepatoblastoma			
Tumor rate	Tomote Topa top 100 balls			
Overall rates(a)	1/50(2.0)	6/50(12.0)	35/50(70.0)	44/50(88.0)
Adjusted rates(b)	2.86	11. 43	50.00	100.00
Terminal rates(c)	1/35(2.9)	4/35(11.4)	8/17(47.1)	8/8(100.0)
Statistical analysis				
Peto test				
Standard method(d)	P < 0.0001**?			
Prevalence method(d)	P < 0.0001**?			
Combined analysis (d)	P < 0.0001**?			
Cochran-Armitage test(e)	P < 0.0001**	D 4 4550	D 4 0 000444	D (0 0001)
Fisher Exact test(e)		P = 0.0559	P < 0.0001**	P < 0.0001**
	SITE : liver			
	TUMOR : hemangioma, hemangiosarcom	na		
Tumor rate				
Overall rates(a)	6/50(12.0)	6/50(12.0)	1/50(2.0)	2/50(4.0)
Adjusted rates(b)	6.98	17. 14	0.0	5. 13
Terminal rates(c)	2/35(5.7)	6/35(17.1)	0/17(0.0)	0/8(0.0)
Statistical analysis				
Peto test	D 0 0140			
Standard method(d) Prevalence method(d)	P = 0.8140 P = 0.5806			
Combined analysis(d)	P = 0.5806 P = 0.7509			
	r - 0.1000			
Cochran-Armitage test(e)	P = 0.1433			

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

(HPT360A)

500 ppm 2500 ppm Group Name Control 100 ppm SITE : liver TUMOR : hepatocellular adenoma, hepatocellular carcinoma, hepatoblastoma Tumor rate 49/50(98.0) Overall rates(a) 30/50(60.0) 36/50 (72.0) 49/50(98.0) Adjusted rates(b) 72, 22 80.56 100.00 100.00 Terminal rates(c) 25/35(71.4) 28/35(80.0) 17/17(100.0) 8/8(100.0) Statistical analysis Peto test Standard method(d) P < 0.0001**? Prevalence method(d) P = 0.0002**Combined analysis (d) P < 0.0001** Cochran-Armitage test(e) P < 0.0001** Fisher Exact test(e) P = 0.1456P < 0.0001** P < 0.0001** SITE : Harderian gland TUMOR : adenoma Tumor rate Overall rates(a) 4/50(8.0) 4/50(8,0) 1/50(2.0) 2/50(4.0) Adjusted rates(b) 11.11 11.43 4.00 5.13 Terminal rates(c) 3/35(8.6) 4/35(11.4) 0/17(0.0) 0/8(0.0) Statistical analysis Peto test P = ----Standard method(d) Prevalence method(d) P = 0.4938Combined analysis(d) P = ----Cochran-Armitage test(e) P = 0.4217Fisher Exact test(e) P = 0.6425P = 0.1811P = 0.3389

(a): Number of tumor-bearing animals/number of animals examined at the site.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

BAIS4

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{?:} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{--- :} There is no data which should be statistical analysis.

N.C.: Statistical value cannot be calculated and was not significant.

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

500 ppm Group Name Control 100 ppm 2500 ррт SITE : ALL SITE TUMOR : hemangioma Tumor rate Overall rates(a) 5/50(10.0) 6/50 (12.0) 1/50(2.0) 2/50(4.0) 0.0 5.13 Adjusted rates(b) 6.82 17.14 0/8(0.0) 2/35(5.7) 6/35(17.1) 0/17(0.0) Terminal rates(c) Statistical analysis Peto test Standard method(d) P = 0.6977Prevalence method(d) P = 0.5732Combined analysis (d) P = 0.6908Cochran-Armitage test(e) P = 0.1939Fisher Exact test(e) P = 0.5000P = 0.1022P = 0.2180SITE : ALL SITE TUMOR : histiocytic sarcoma Tumor rate 2/50(4.0) 1/50(2.0) Overall rates(a) 5/50(10.0) 3/50(6.0) Adjusted rates (b) 0.0 2,86 2.56 6.25 Terminal rates(c) 0/35(0.0) 1/35(2.9) 0/17(0.0) 0/8(0.0) Statistical analysis Peto test Standard method(d) P = 0.9665Prevalence method(d) P = 0.2086Combined analysis (d) P = 0.8000Cochran-Armitage test(e) P = 0.1481Fisher Exact test(e) P = 0.3575P = 0.2180P = 0.1022SITE : ALL SITE TUMOR : malignant lymphoma Tumor rate Overall rates(a) 5/50(10.0) 8/50 (16.0) 4/50(8.0) 1/50(2.0) Adjusted rates(b) 5.71 14.29 17.65 12, 50 Terminal rates(c) 2/35(5.7) 1/8(12.5) 5/35(14.3) 3/17(17.6) Statistical analysis Peto test Standard method(d) P = 0.9207Prevalence method(d) P = 0.3204Combined analysis(d) P = 0.7203Cochran-Armitage test(e) P = 0.0349*Fisher Exact test(e) P = 0.2768P = 0.5000P = 0.1022

(HPT360A)

BAIS4

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

(HPT360A)

Group Name	Control		100 ppm		500 ppm	2:	500 ppm
	SITE : ALL SITE TUMOR : hemangiosarcoma						
fumor rate	iomor : nemangiosarcoma						
Overall rates(a)	3/50(6.0)	3/50(6.0)	4/50(ຂ ທ)	2/50(4 0)
Adjusted rates(b)	5, 71	5/ 50 (5. 71	4/00(7.50		12. 50
Terminal rates(c)	2/35(5.7)	2/35(0/17(1/8(
tatistical analysis	2, 33 (3, 7,	-,	****	-, -, -,	.,,,	., .,	
Peto test							
Standard method(d)	P = 0.5943						•
Prevalence method(d)	P = 0.3740						
Combined analysis(d)	P = 0.4657						
Cochran-Armitage test(e)	P = 0.5568						
Fisher Exact test(e)		P = 0.66	11	P = 0.50	000	P = 0.50	00

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

PAGE: 2

BAIS4

APPENDIX O 2

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
SEX : FEMALE

Group Name	Control	100 ppm	500 ppm	2500 ppm
	SITE : lung TUMOR : bronchiolar-alveola			
fumor rate	10WOK - projectionar-alveotal	adenoma		
Overall rates(a)	4/50(8.0)	4/50(8.0)	0/50(0.0)	0/50(0.0)
Adjusted rates(b)	13. 33	11. 76	0.0	0.0
Terminal rates(c) Statistical analysis	3/29 (10. 3)	4/34(11.8)	0/26(0.0)	0/5(0.0)
Peto test Standard method(d)	P =			
Prevalence method(d)	P = 0.9725			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.0389*			
Fisher Exact test(e)		P = 0.6425	P = 0.0587	P = 0.0587
Tumor rate	SITE : lung TUMOR : bronchiolar—alveola	carcinoma		
Overall rates(a)	3/50(6.0)	4/50(8,0)	3/50(6.0)	0/50(0.0)
Adjusted rates(b)	6.98	11. 76	7. 69	0.0
Terminal rates(c)	1/29(3.4)	4/34(11.8)	2/26(7.7)	0/5(0.0)
Statistical analysis				
Peto test Standard method(d)	P =			
Prevalence method(d)	P = 0.9427			
Combined analysis (d)	P =			
Cochran-Armitage test(e)	P = 0.0611			
Fisher Exact test(e)		P = 0.5000	P = 0.6611	P = 0.1212
Tumor rate	SITE : lung TUMOR : bronchiolar-alveola	r adenoma, bronchiolar-alveolar carcinoma		
Overall rates(a)	6/50(12.0)	8/50 (16.0)	3/50(6.0)	0/50(0.0)
Adjusted rates(b)	15. 15	23. 53	7. 69	0.0
Terminal rates(c)	3/29(10.3)	8/34(23.5)	2/26(7.7)	0/5(0.0)
Statistical analysis				
Peto test	_			
Standard method(d)	P =			
Prevalence method(d) Combined analysis(d)	P = 0.9897 P =			
Cochran-Armitage test(e)	P = 0.0065**			
IT IT HIT POPE POST (C)	. 0. 0000			

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0462
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
SEX : FEMALE

Group Name	Control	100 ppm	500 ppm	2500 ppm
	SITE : lymph node			
T	TUMOR : malignant lymphoma			
Tumor rate Overall rates(a)	16/50(32.0)	17/50 (34. 0)	17/50(34.0)	3/50(6.0)
Adjusted rates(b)	27. 59	29. 41	30.77	5, 00
Terminal rates(c)	8/29(27.6)	10/34(29. 4)	8/26(30.8)	0/5(0.0)
Statistical analysis	0, 20 (211 0)		0,20(00.0)	0, 01 0.0,
Peto test				
Standard method(d)	P = 0.8359			
Prevalence method(d)	P = 0.8616			
Combined analysis(d)	P = 0.9314			
Cochran-Armitage test(e)	P = 0.0002**			
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.0008**
	SITE : spleen	<u></u>		
.	TUMOR : malignant lymphoma			
Tumor rate Overall rates(a)	2/50 (4.0)	2/50/ 5.0	2/50/ 0.0	0/20/ 0.0
Adjusted rates(b)	6.90	3/50 (6. 0) 5. 88	3/50(6.0) 11.54	0/50(0.0) 0.0
Terminal rates(c)	2/29(6.9)	2/34(5.9)	3/26(11.5)	0/5(0,0)
Statistical analysis	2) 20 (0.0)	2,01(0.0)	0720(11.07	0, 0(0.0)
Peto test				
Standard method(d)	P = 0.4352			
Prevalence method(d)	P = 0.5308			
Combined analysis(d)	P = 0.6224			
Cochran-Armitage test(e)	P = 0.1172			
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.2475
	SITE : liver			
_	TUMOR : hepatocellular adenoma			
Tumor rate	0.170 (.10.0)	and the district of the second	and the desired	A- 4-4 - 1 12
Overall rates(a)	8/50 (16. 0)	22/50 (44. 0)	48/50(96.0)	38/50 (76. 0)
Adjusted rates(b) Terminal rates(c)	25. 81 7/29(24. 1)	57. 14	96. 55	80.00
Statistical analysis	1/63(24. 1)	19/34(55. 9)	25/26(96.2)	4/5(80.0)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P < 0.0001**			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P < 0.0001**			

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
SEX : FEMALE PAGE: 8

Group Name	Control	100 ppm	500 ppm	2500 ppm	
	SITE : liver				
	TUMOR : hepatocellular carcinoma				
Cumor rate	0/50/ 0.0)	2/50/ 5.0)	11/50/ 90 0	49/E0/ 0C 0)	
Overall rates(a)	0/50(0.0) 0.0	3/50(6.0) 6.98	14/50(28. 0) 34. 62	48/50(96. 0) 100. 00	
Adjusted rates(b) Terminal rates(c)	0/29(0.0)	2/34(5.9)	9/26(34.6)	5/ 5(100.0)	
tatistical analysis	0/29(0.0)	2/34(5.9)	9/20(34.0/	5/ 5(100.0)	
Peto test					
Standard method(d)	P < 0.0001**?				
Prevalence method(d)	P < 0.0001**?				
Combined analysis(d)	P < 0.0001**?				
Cochran-Armitage test(e)	P < 0.0001***				
Fisher Exact test(e)	P C 0. 0001**	P = 0.1212	P < 0.0001**	P < 0.0001**	
risher bact test(e)		r = 0. 1212	r \ 0.0001++	r \ 0.0001++	
	SITE : liver				
	TUMOR : hepatoblastoma				
fumor rate	TORION THE PRODUCTION OF THE PROPERTY OF THE P				
Overall rates(a)	0/50(0.0)	0/50(0.0)	9/50(18.0)	28/50(56.0)	
Adjusted rates(b)	0.0	0.0	11.54	44. 44	
Terminal rates(c)	0/29(0.0)	0/34(0.0)	3/26(11.5)	1/ 5(20. 0)	
Statistical analysis	1, 20 (1, 0,	0,01(0.0)	0,001 1110,	2, 0 (200 5)	
Peto test					
Standard method(d)	P < 0.0001**?				
Prevalence method(d)	P < 0.0001**?				
Combined analysis(d)	P < 0.0001**?				
Cochran-Armitage test(e)	P < 0.0001**				
Fisher Exact test(e)		P = N. C.	P = 0.0013**	P < 0.0001**	
	SITE : liver				
	TUMOR : hepatocellular adenoma, hepat	tocellular carcinoma, hepatoblasto	oma		
umor rate					
Overall rates(a)	8/50(16.0)	24/50(48.0)	50/50(100.0)	50/50(100.0)	
Adjusted rates(b)	25. 81	60.00	100.00	100.00	
Terminal rates(c)	7/29(24.1)	20/34(58.8)	26/26(100.0)	5/ 5(100.0)	
Statistical analysis					
Peto test					
Standard method(d)	P < 0.0001**?				
Prevalence method(d)	P < 0.0001**?				
Combined analysis(d)	P < 0.0001**				
Cochran-Armitage test(e)	P < 0.0001≠+				
Fisher Exact test(e)		P = 0.0006**	P < 0.0001≠≠	P < 0.0001**	

(HPT360A)

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : FEMALE

Group Name	Control	100 ppm	500 ppm	2500 ppm
	SITE : pituitary gland TUMOR : adenoma			
Tumor rate	towor - adenoma			
Overall rates(a)	4/49(8.2)	6/50(12.0)	2/50(4.0)	0/50(0.0)
Adjusted rates(b)	12.50	17. 65	7-41	0. 0
Terminal rates(c)	3/28(10.7)	6/34(17.6)	1/26(3.8)	0/5(0.0)
Statistical analysis		, , ,	,	
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.9566			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.0230*			
Fisher Exact test(e)		P = 0.3833	P = 0.3292	P = 0.0563
	SITE : uterus			
	TUMOR : histiocytic sarcoma			
Tumor rate	·			
Overall rates(a)	15/50 (30.0)	8/50 (16. 0)	12/50(24.0)	6/50(12.0)
Adjusted rates(b)	20. 69	8. 82	15. 38	14. 29
Terminal rates(c)	6/29(20.7)	3/34(8.8)	4/26(15.4)	0/5(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.7367			
Prevalence method(d)	P = 0.2686			
Combined analysis(d)	P = 0.5944			
Cochran-Armitage test(e)	P = 0.0847			
Fisher Exact test(e)		P = 0.0765	P = 0.3264	P = 0.0239*

(a): Number of tumor-bearing animals/number of animals examined at the site.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

Significant difference ; $*: P \le 0.05$ **: $P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

BAIS4

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{? :} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : FEMALE

Group Name Control 100 ppm 500 ppm 2500 ppm SITE : ALL SITE TUMOR : hemangioma Tumor rate 3/50(6.0) 3/50(6.0) 2/50(4.0) Overall rates(a) 3/50 (6.0) Adjusted rates(b) 3.45 7.14 5.13 4.55 1/29(3.4) 0/5(0.0) Terminal rates(c) 2/34(5.9) 1/26(3.8) Statistical analysis Peto test Standard method(d) P = 0.7411Prevalence method(d) P = 0.4221Combined analysis(d) P = 0.5719Cochran-Armitage test(e) P = 0.5975Fisher Exact test(e) P = 0.6611P = 0.6611P = 0.5000SITE : ALL SITE TUMOR : histiocytic sarcoma Tumor rate Overall rates(a) 17/50(34.0) 11/50 (22.0) 8/50(16.0) 13/50(26.0) Adjusted rates(b) 20.69 17.65 15.38 14.29 Terminal rates(c) 6/29 (20.7) 6/34(17.6) 4/26(15.4) 0/5(0.0) Statistical analysis Peto test Standard method(d) P = 0.6661Prevalence method(d) P = 0.2533Combined analysis (d) P = 0.5087Cochran-Armitage test(e) P = 0.0923Fisher Exact test(e) P = 0.1327P = 0.2565P = 0.0317*

BAIS4

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

X : FEMALE

				
Group Name	Control	100 ррш	500 ppm	נוטט 2500
	SITE : ALL SITE TUMOR : malignant lymphoma			
Tumor rate	TOMOR . Wallgham Llymphoma			
Overall rates(a)	18/50(36.0)	20/50(40.0)	20/50(40.0)	3/50(6.0)
Adjusted rates(b)	34. 48	35, 29	42. 31	5. 00
Terminal rates(c)	10/29(34.5)	12/34(35.3)	11/26(42.3)	0/5(0.0)
Statistical analysis		•		
Peto test				
Standard method(d)	P = 0.8538			
Prevalence method(d)	P = 0.8861			
Combined analysis(d)	P = 0.9477			
Cochran-Armitage test(e)	P < 0.0001**			
Fisher Exact test(e)	1 0 0001.	P = 0.4185	P = 0.4185	P = 0.0002**
1 101101 Dillion 1000 (0)		1 0. 1100		1 0.000

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

PAGE :

BAIS4

APPENDIX P 1

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

MALE: ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
Organ	Findings	NO. OI ANIMAIS ON Study		30	50	30
Integumentar	y system/appandage)					
kin/app	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
{Respiratory	system)					
larynx	leukemic cell infiltration		<50> 1	<50> 0	<50> 0	<50> 0
trachea	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
lung	leukemic cell infiltration		<50> 2	<50> 2	<50> 1	<50> 0
	metastasis:liver tumor		6	1	8	20
	metastasis:spleen tumor		0	1	0	0
	metastasis:salivary gland tumor		1	0	0	0
{Hematopoieti	c system)					
bone marrow	leukemic cell infiltration		<50> 0	<50> 3	<50> 1	<50> 0
	metastasis:liver tumor		1	0	0	o
	metastasis:spleen tumor		0	1	0	0
	metastasis:salivary gland tumor		1	0	0	0
lymph node	metastasis:liver tumor		<50> 1	<50> 0	<50> 1	<50> 0
< a >	a: Number of animals examined at the sib: Number of animals with lesion	ite				

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
rgan	Findings					
Hematopoieti	c system)					
ymph node	metastasis:pancreas tumor		<50> 0	<50> 0	<50> 1	<50> 0
pleen	leukemic cell infiltration		<50> 4	<50> 5	<50> 4	<50> 0
Circulatory	system)					
eart	leukemic cell infiltration		<50> 3	<50> 1	<50> 0	<50> 0
Digestive sy	stem)					
ongue	leukemic cell infiltration		<50> 1	<50> 1	<50> 0	<50> 0
alivary gl	leukemic cell infiltration		<50> 1	<50> 2	<50> 0	<50> 0
	metastasis:liver tumor		1	0	0	0
tomach	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
mall intes	leukemic cell infiltration		<50> 0	<50> 0	<50> 0	<50> 1
arge intes	metastasis:liver tumor		<50> 1	<50> 0	<50> 0	<50> 0
iver	leukemic cell infiltration		<50> 3	<50> 3	<50> 1	<50> 0
	metastasis:subcutis tumor		1	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
Digestive sy	vstem)					
liver			<50>	<50>	<50>	<50>
	metastasis:spleen tumor		0	2	0	0
	metastasis:epididymis tumor		1	0	0	0
	metastasis:kidney tumor		0	0	1	0
	metastasis:salivary gland tumor		1	0	0	0
oancreas			<5 0>	<50≻	<50≻	<50>
	leukemic cell infiltration		0	4	0	0
	metastasis:epididymis tumor		0	1	0	0
Urinary syst	tem)					
idney			<50>	<50>	<50>	<50>
	leukemic cell infiltration		2	2	2	0
	metastasis:liver tumor		1	0	0	0
	metastasis:salivary gland tumor		1	0	0	0
ırin bladd			<49>	<50>	<50≻	<50>
	leukemic cell infiltration		0	1	1	0
Endocrine sy	ystem)			÷		
thyroid			<50≻	<50>	<50≻	<50>
	leukemic cell infiltration		2	1	0	0
Reproductive	e system)					
emin ves			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105#)

REPORT TYPE : A1

SEX : MALE

Organ		roup Name o. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
Reproductive	avatan)		· · · · · · · · · · · · · · · · · · ·			
,keproductive	system;					
semin ves			<50>	<50>	<50>	<50>
	metastasis:liver tumor		0	0	1	0
mammary gl			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	2	0	0
(Special sens	e organs/appendage)					
arder gl			<50>	<50>	<50>	<50>
•	leukemic cell infiltration		1	1	0	0
{Body cavitie	s)					
eritoneum			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	1	0	0
	metastasis:liver tumor		0	0	2	2
(a)	a: Number of animals examined at the sit	:e		····		
b	b: Number of animals with lesion					

APPENDIX P 2

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ		Group Name Control No. of Animals on Study 15	100 ppm 15	500 ppm 33	2500 ppm 42
Respiratory	system)				
larynx	leukemic cell infiltration	<15>	<15> 0	<33> 0	<42> 0
ung	leukemic cell infiltration	<15> 2	<15> 0	<33> 1	<42> 0
	metastasis:liver tumor	3	0	6	16
	metastasis:spleen tumor	0	1	0 .	0
	metastasis:salivary gland tumor	1	0	0	0
(Hematopoieti	c system) .				
oone marrow	metastasis:liver tumor	<15> 1	<15> 0	<33>	<42> 0
	metastasis:spleen tumor	0	1	0	0
	metastasis:salivary gland tumor	1	0	0	0
ymph node	metastasis:liver tumor	<15> 1	<15> 0	<33> 1	<42> 0
	metastasis:pancreas tumor	0	0	i	0
spleen	leukemic cell infiltration	<15> 2	<15> 2	<33> 1	<42> 0
(Circulatory	system)				
heart	leukemic cell infiltration	<15> 2	<15> 0	<33> 0	<42> 0
(a)	a: Number of animals examined at the si b: Number of animals with lesion	te			

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name No. of Animals on Study	Control 15	100 ppm 15	500 ppm 33	2500 ppm 42
{Digestive sy	rstem}					
salivary gl	metastasis:liver tumor		<15>	<15> 0	<33> 0	<42>
stomach	leukemic cell infiltration		<15>	<15> 1	<33> 0	<42>
large intes	metastasis:liver tumor		<15>	<15> 0	0 33>	<42> 0
liver	leukemic cell infiltration		<15> 2	<15> 1	<33> 1	<42> 0
	metastasis:subcutis tumor		1	0	0	0
	metastasis:spleen tumor		0	2	0	0
	metastasis:epididymis tumor		1	0	0	0
	metastasis:kidney tumor		0	0	1	0
	metastasis:salivary gland tumor		1	0	0	0
pancreas	leukemic cell infiltration		<15> 0	<15> 3	<333> 0	<42> 0
	metastasis:epididymis tumor		0	1	0	0
(Urinary syst	tem)					
kidney	leukemic cell infiltration		<15> 2	<15> 0	<33> 1	<42> 0
	metastasis:liver tumor		1	0	0	0
	metastasis:salivary gland tumor		1	0	0	0
< a > b	a: Number of animals examined at the b: Number of animals with lesion	site				

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animals on Study	Control 15	100 ppm 15	500 ppm 33	2500 ppm 42
rgan	Findings					
{Urinary syst	em)					
urin bladd	leukemic cell infiltration		<15> 0	<15> 0	<33> 1	<42> 0
{Endocrine sy	rstem)					
thyroid	leukemic cell infiltration		<15> 1	<15> 0	(33) 0	<42> 0
{Reproductive	system)					
semin ves	leukemic cell infiltration		<15> 1	<15> 0	<33> 0	< 42 > 0
	metastasis:liver tumor		0	0	1	0
mammary gl	leukemic cell infiltration		<15> 0	<15> 1	<33> 0	<42> 0
{Special sens	se organs/appendage}					
Harder gl	leukemic cell infiltration		<15> 1	<15> 0	<33> 0	<42> 0
{Body cavitie	es]					
peritoneum	leukemic cell infiltration		<15> 0	<15> 1	<33> 0	<42> 0
	metastasis:liver tumor		0	0	2	2
< a > b	a: Number of animals examined at the s b: Number of animals with lesion	ite				
(JPT150)	b : Number of animals with lesion					

APPENDIX P 3

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

MALE: SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE

Organ	1	Group Name No. of Animals on Study	Control 35	100 ppm 35	500 ppm 17	2500 ppm 8
Organ	Findings					***************************************
{Integumentar	y system/appandage)					
skin/app	leukemic cell infiltration		<35> 0	<35> 1	<17> 0	< 8>
{Respiratory	system]					
trachea	leukemic cell infiltration		<35> 0	<35> 1	<17> 0	0 0
lung	leukemic cell infiltration		<35> 0	<35> 2	<17> 0	< 8> 0
	metastasis:liver tumor		3	1	2	4
{Hematopoieti	c system)					
bone marrow	leukemic cell infiltration		<35> 0	<35> 3	<17> 1	< 8>
spleen	leukemic cell infiltration		<35> 2	<35> 3	<17> 3	< 8> 0
{Circulatory	system)					
lieart	leukemic cell infiltration		<35> 1	<35> 1	<17> 0	< 8>
{Digestive sy	stem)					
tongue	leukemic cell infiltration		<35> 1	<35> 1	<17> 0	< 8> 0
salivary gl	leukemic cell infiltration		<35> 1	<35> 2	<17> 0	< 8> 0
<a>→ b	a: Number of animals examined at the si b: Number of animals with lesion	te	, , ,	· · · · · · · · · · · · · · · · · · ·		

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE SEX

Organ		Group Name No. of Animals on Study	Control 35	100 ppm 35	500 ppm 17	2500 ppm 8
{Digestive sy	vstem}					
small intes	leukemic cell infiltration		<35> 0	<35> 0	<17> 0	< 8>
liver	leukemic cell infiltration		<35> 1	<35> 2	<17> 0	< 8> 0
ancreas	leukemic cell infiltration		<35> 0	<35> 1	<17> 0	< 8>
{Urinary syst	tem)					
kidney	leukemic cell infiltration		<35> 0	<35> 2	<17> 1	< 8> 0
urin bladd	leukemic cell infiltration		<34> 0	<35> 1	<17> 0	< 8> 0
{Endocrine sy	ystem)					
thyroid	leukemic cell infiltration		<35> 1	<35> 1	<17> 0	< 8> 0
{Reproductive	e system)					
mammary gl	leukemic cell infiltration		<35> 0	<35> 1	<17> 0	0 (8>
{Special sens	se organs/appendage}					
Harder gl	leukemic cell infiltration		<35> 0	<35> 1	<17> 0	< 8> 0
⟨a⟩ b	a: Number of animals examined at the si b: Number of animals with lesion	te				

APPENDIX P 4

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

FEMALE: ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

PAGE: 5

Organ		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
						
{Integumentary	v system/appandage)					
skin/app	leukemic cell infiltration		<50>	<50> 2	<50> 0	<50> 0
subcutis	leukemic cell infiltration		<50> 1	<50> 0	<50> 0	<50> 0
{Respiratory s	system)					
masal cavit	metastasis:uterus tumor		<50> 0	<50> 0	<50> 1	<50> 0
trachea	leukemic cell infiltration		<50> 2	<50> 0	<50> 0	<50> 0
lung	leukemic cell infiltration		<50> 10	<50> 11	<50> 10	<50> 2
	metastasis:liver tumor		0	1	2	30
	metastasis:uterus tumor		8	4	5	3
	metastasis:subcutis tumor		0	0	1	0
{Hematopoieti	c system)					
bone marrow	leukemic cell infiltration		<50> 3	<50> 8	<50> 3	<50> 0
	metastasis:liver tumor		0	0	0	2
	metastasis:uterus tumor		3	2	1	0
	metastasis:subcutis tumor		0	0	I	0
(a >	a: Number of animals examined at the si b: Number of animals with lesion	te				· · · · · · · · · · · · · · · · · · ·

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

X : FEMALE

DDR	. 1 Multip					I NOC .	
)rgan		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50	
Hematopoiet:	ic system)						
lymph node	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0	
	metastasis:uterus tumor		2	0	0	0	
spleen	leukemic cell infiltration		<50> 8	<50> 12	<50> 7	<50> 2	
	metastasis:liver tumor		0	0	0	1	
	metastasis:uterus tumor		0	1	0	0	
	metastasis:lymph node tumor		1	0	0	0	
Circulatory	system)						
eart	leukemic cell infiltration		<50> 5	<50> 4	<50> 3	<50> 1	
Digestive s	ystem}						
ongue	leukemic cell infiltration		<50> 1	<50> 1	<50> 0	<50> 0	
salivary gl	leukemic cell infiltration		<50> 2	<50> 5	<50> 7	<50> 0	
	metastasis:lymph node tumor		0	0	0	1	
stomach	leukemic cell infiltration		<50> I	<50> 3	<50> 4	<50> 0	
	metastasis:lymph node tumor		1	0	0	0	
(a) b	a: Number of animals examined at the s: b: Number of animals with lesion	ite					
(IPT150)							

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
				······································		
(Digestive sys	stem)					
small intes			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	1	1	0
	metastasis:uterus tumor		0	0	2	0
liver			<50>	<50>	<50>	<50>
	leukemic cell infiltration		10	10	12	1
	metastasis:uterus tumor		9	5	7	4
	metastasis:peritoneum tumor		0	1	0	0
	metastasis:subcutis tumor		0	0	1	0
	metastasis:1ymph node tumor		1	0	0	0
gall bladd			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	0	1	0
pancreas			<50>	<50>	<50>	<50>
	leukemic cell infiltration		2	3	5	0
	metastasis:liver tumor		0	0	0	2
	metastasis:uterus tumor		1	2	1	i
	metastasis:peritoneum tumor		0	1	0	0
{Urinary syste	em)					
kidney			<50>	<50>	<50≻	<50>
	leukemic cell infiltration		6	7	9	1
	metastasis:uterus tumor		3	2	1	1
< a > b	a: Number of animals examined at the si b: Number of animals with lesion	te				

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

Findings	Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
rstem)					
		<50>	<50>	<50>	<50>
leukemic cell infiltration		2	. 4	4	0
metastasis:uterus tumor		0	0	1	0
system)					
		<50>	<50≻	<50>	<50>
leukemic cell infiltration		2	1	1	0
ve system)					
leukemic cell infiltration		<50> 5	<50>	<50> 6	<50> 0
			5		
metastasis:liver tumor		0	0	0	1
metastasis:uterus tumor		7	3	6	2
metastasis:peritoneum tumor		0	1	0	0
		<50>	<50≻	<50>	<50>
leukemic cell infiltration		3	i.	4	1
leukemic cell infiltration		<50> 2	<50> 3	<50>	<50> 0
				1	
metastasis:uterus tumor		2	0	0	1
1 of the late of the second		<50>	<50>	<50>	<50>
leukemic cell infiltration		0	1	0	0
ystem)					
		<50>	<50>	<50>	<50>
leukemic cell infiltration		0	2	1	0
a : Number of animals examined at t	the site				
a : Numbe		or of animals examined at the site	cell infiltration 0 or of animals examined at the site	cell infiltration 0 2 or of animals examined at the site	cell infiltration 0 2 1 or of animals examined at the site

STUDY NO. : 0462
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W) $\,$

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study	Control 50	100 ppm 50	500 ppm 50	2500 ppm 50
rgan	Findings					
{Nervous syst	em)					
brain	metastasis:peripheral nerve tumor		<50>	<50> 0	<50> 0	<50> 0
	metastasts-peripheral nerve tumor				•	
spinal cord	leukemic cell infiltration		<50> 0	<50> 2	<50> 0	<50> 0
	Tenkemic cell luffittsflou		U	2	V	U
Special sens	e organs/appendage)					
larder gl			<50>	<50≻	<50>	<50>
0-	leukemic cell infiltration		0	0	2	0
	metastasis:liver tumor		0	0	0	1
{Musculoskele	tal system)					
			<50>	<50≻	<50>	<50>
nuscle	leukemic cell infiltration		1	1	2	0
one			<50>	<50>	<50≻	<50>
Me	metastasis:lung tumor		0	0	1	0
{Body cavitie	s}					
nediastinum			<50>	<50>	<50≻	<50>
nediastindm	leukemic cell infiltration		2	2	0	0
	metastasis:lung tumor		0	0	1	0
oeritoneum			<50>	<50≻	<50≻	<50>
	leukemic cell infiltration		0	3	0	0
retroperit			<50>	<50>	⟨50⟩	<50>
	leukemic cell infiltration		0	1	0	0

APPENDIX P 5

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1;[Cr1:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 21	100 ppm 16	500 ppm 24	2500 ppm 45
)rgan	Findings				
(Integumentary	y system/appandage)				
skin/app	leukemic cell infiltration	<21> 0	<16>	<24> 0	<45> 0
subcutis	leukemic cell infiltration	<21> i	<16> 0	<24> 0	<45> 0
{Respiratory s	system)				
nasal cavit	metastasis:uterus tumor	<21> 0	<16>	<24> 1	<45> 0
trachea	leukemic cell infiltration	<21> 1	<16> 0	<24> 0	<45> 0
lung	leukemic cell infiltration	<21> 6	<16> 5	<24> 6	<45> 2
	metastasis:liver tumor	0	1	1	26
	metastasis:uterus tumor	8	4	5	3
	metastasis:subcutis tumor	0	0	1	0
{Hematopoietic	c system)				
bone marrow	leukemic cell infiltration	<21> 2	<16> 4	<24> 1	<45> 0
	metastasis:liver tumor	0	0	0	2
	metastasis:uterus tumor	3	2	1	0
	metastasis:subcutis tumor	0	0	1	0
< a > b	a: Number of animals examined at the sib: Number of animals with lesion	ite			

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study	Control 21	100 ppm 16	500 ppm 24	2500 ppm 45
gan	Findings				······································	
ematopoietic	system)					
mph node	metastasis:uterus tumor		<21> 2	<16> 0	<24> 0	<45> 0
leen	leukemic cell infiltration		<21> 5	<16> 6	<24> 3	<45> 2
	metastasis:liver tumor		0	0	0	1
	metastasis:uterus tumor		0	1	0	0
	metastasis:lymph node tumor		1	0	0	0
irculatory s	ystem}					
art	leukemic cell infiltration		<21> 2	<16> 2	<24> 2	<45> 1
igestive sys	tem)					
ngue	leukemic cell infiltration		<21> 0	<16> 1	<24> 0	<45> 0
livary gl	leukemic cell infiltration		<21> 0	<16> 2	<24> 3	<45> 0
	metastasis:lymph node tumor		0	0	0	1
tomach	leukemic cell infiltration		<21> 1	<16> 2	<24> 4	<45> 0
	metastasis:lymph node tumor		1	0	0	0
mall intes	leukemic cell infiltration		<21> 0	<16> 1	<24> 0	<45> 0

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)
DEAD AND MORIBUND ANIMÁLS (0-105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 21	100 ppm 16	500 ppm 24	2500 ppm 45
rgan	Findings				
igestive sy	rstem)				
mall intes	metastasis:uterus tumor	<21> 0	<16> 0	<24>	<45> 0
ver	leukemic cell infiltration	<21> 7	<16> 6	<24> 6	<45> 1
	metastasis:uterus tumor	9	4	7	4
	metastasis:subcutis tumor	0	0	1	0
	metastasis:lymph node tumor	1	0	0	0
all bladd	leukemic cell infiltration	<21> 1	<16> 0	<24>	<45> 0
ancreas	leukemic cell infiltration	<21> 2	<16> 1	<24> 2	<45> 0
	metastasis:liver tumor	0	0	0	2
	metastasis:uterus tumor	1	2	1	1
Urinary syst	tem}				
idney	leukemic cell infiltration	<21> 4	<16>	<24> 3	<45> 1
	metastasis:uterus tumor	3	2	1	1
rin bladd	leukemic cell infiltration	<21> 2	<16> 2	<24> 3	<45> 0
	metastasis:uterus tumor	0	0	1	0
Endocrine sy	ystem)				
chyroid	leukemic cell infiltration	<21> 0	<16> 0	<24> 1	<45> 0
(a)	a: Number of animals examined at the si b: Number of animals with lesion	te			

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

			Group Name No. of Animals on Study	Control 21	100 ppm 16	500 ppm 24	2500 ppm 45
leukemic cell infiltration 5)rgan	Findings					
leukemic cell infiltration 5	{Reproductive	system)					
metastasis:liver tumor 0	ovary						
metastasis:uterus tumor 7 3 5 2		leukemic cell infiltration		ð			
Leukemic cell infiltration Signar Call Call		metastasis:liver tumor		0	0	0	1
Leukemic cell infiltration 3		metastasis:uterus tumor		7	3	5	2
Leukemic cell infiltration 3	ıterus			<21>	<16>	<24>	<45>
leukemic cell infiltration 2		leukemic cell infiltration		3	1	3	1
metastasis:uterus tumor 2	vagina						
Carry Carr		leukemic cell infiltration		2	2	1	0
leukemic cell infiltration 0		metastasis:uterus tumor		2	0	0	1
(Nervous system) brain	mammary gl			<21>	<16>	<24>	<45>
Special sense organs/appendage Spec		leukemic cell infiltration		0	1	0	0
leukemic cell infiltration 0 2 1 0 0 0 0 0 0 0 0 0	{Nervous syste	m}					
metastasis:peripheral nerve tumor 1	brain			<21>	<16>	<24>	<45>
Special cord C21 C25 C24 C24 C25 C25 C26 C26 C26 C27 C		leukemic cell infiltration		0	2	1	0
Leukemic cell infiltration 0 2 0 0		metastasis:peripheral nerve tumor		1	0	0	0
leukemic cell infiltration 0 2 0 0	spinal cord			<21>	<16>	<24>	⟨45⟩
		leukemic cell infiltration		0	2	0	0
leukemic cell infiltration 0 0 2 0 metastasis:liver tumor 0 0 1 <a> a : Number of animals examined at the site	{Special sense	organs/appendage)					
metastasis:liver tumor 0 0 1 <a>a> a: Number of animals examined at the site	Harder gl			⟨21⟩	<16>	⟨24⟩	<45>
<a>> a: Number of animals examined at the site	-	leukemic cell infiltration					0
		metastasis:liver tumor		0	0	0	1
b b: Number of animals with lesion	<a>⟩ b	a : Number of animals examined at the s b : Number of animals with lesion	te	· · · · · · · · · · · · · · · · · · ·			

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ		Group Name No. of Animals on Study	Control 21	100 ppm 16	500 ppm 24	2500 ppm 45
(Musculoskele	tal system)					
muscle	leukemic cell infiltration		<21> 0	<16> 1	<24> 2	<45> 0
{Body cavitie	s)					
nediastinum	leukemic cell infiltration		<21> 1	<16> 1	<24> 0	<45> 0
eritoneum	leukemic cell infiltration		<21> 0	<16> 1	<24> 0	<45> 0
retroperit	leukemic cell infiltration		<21> 0	<16> 1	<24> 0	<45> 0
(a) b	a : Number of animals examined at the si b : Number of animals with lesion	te				
(JPT150)						

APPENDIX P 6

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:

FEMALE: SACRIFICED ANIMALS

ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE

Group Name Control 100 ppm 500 ppm 2500 ppm No. of Animals on Study 34 Organ_ Findings_ {Integumentary system/appandage} skin/app <29> <34> <26> < 5> leukemic cell infiltration 0 1 0 (Respiratory system) trachea <29> <34> ⟨26⟩ < 5> leukemic cell infiltration 1 0 0 0 lung <29> <34> <26≻ < 5> leukemic cell infiltration 4 6 4 0 metastasis:liver tumor 0 0 {Hematopoietic system} bone marrow <29> (34> <26> < 5> leukemic cell infiltration 1 lymph node ⟨29⟩ ⟨34⟩ ⟨26⟩ < 5> leukemic cell infiltration 0 spleen ⟨29⟩ ⟨34⟩ <26> < 5> leukemic cell infiltration 3 6 (Circulatory system) heart <29> <34> <26> < 5> leukemic cell infiltration (Digestive system) tongue <29> <34> ⟨26⟩ < 5> leukemic cell infiltration 1 0 0 0 < a > a: Number of animals examined at the site b: Number of animals with lesion

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study	Control 29	100 ppm 34	500 ppm 26	2500 ppm 5
rgalı	Findings					
Digestive sys	stem)					
alivary gl	leukemic cell infiltration		<29> 2	<34> 3	<26>	< 5> 0
tomach	leukemic cell infiltration		<29> 0	<34> 1	<26>	< 5> 0
mall intes	leukemic cell infiltration		<29> 0	<34> 0	<26>	< 5> 0
	metastasis:uterus tumor		0	0	1	0
liver	leukemic cell infiltration		<29> 3	<34> 4	<26>	< 5> 0
	metastasis:uterus tumor		0	1	0 .	0
	metastasis:peritoneum tumor		0	1	0	0
ancreas	leukemic cell infiltration		<29> 0	<34> 2	<26>	< 5> 0
	metastasis:peritoneum tumor		0	1	0	0
Urinary syst	em}					
idney	leukemic cell infiltration		<29>	<34> 3	<26>	< 5> 0
rin bladd	leukemic cell infiltration		<29> 0	<34> 2	<26> 1	< 5> 0
{Endocrine sy	stem)					
thyroid	leukemic cell infiltration		<29> 2	<34> 1	<26> 0	< 5> 0
(a >	a: Number of animals examined at the si b: Number of animals with lesion	te	- 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

	1	Group Name No. of Animals on Study	Control 29	100 ppm 34	500 ppm 26	2500 ppm 5
rgalı	Findings					
Reproductive	system)					
ovary			<29>	⟨34⟩	<26>	< 5>
-	leukemic cell infiltration		0	2	1	0
	metastasis:uterus tumor		0	0	1	0
	metastasis:peritoneum tumor		0	1	0	0
iterus			<29>	⟨34⟩	<26>	< 5>
	leukemic cell infiltration		0	0	1	0
vagina			<29>	<34>	<26>	< 5>
	leukemic cell infiltration		0	i ·	0	0
(Musculoskele	tal system)					
muscle			⟨29⟩	<34>	<26>	< 5>
	leukemic cell infiltration		1	0	0	0
bone			<29>	<34>	<26>	< 5>
	metastasis:lung tumor		0	0	1	0
{Body cavitie	s)					
mediastinum			<29>	<34>	<26>	< 5>
	leukemic cell infiltration		1	1	0	0
	metastasis:lung tumor		0	0	1	0
peritoneum			<29>	<34>	<26>	< 5>
	leukemic cell infiltration		0	2	0	0
< a >	a: Number of animals examined at the si b: Number of animals with lesion	te				
D	b . Number of animals with lesion					

APPENDIX Q

METHODS, UNITS AND DECIMAL PLACE FOR
HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR
FEED STUDY OF 1-CHLORO-2-NITROBENZENE

METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR FEED STUDY OF 1-CHLORO-2-NITROBENZENE

Item	Method	Unit	Decimal
			place
Hematology			
Red blood cell (RBC)	Light scattering method ¹⁾	×106/μL	2
Hemoglobin(Hgb)	Cyanmethemoglobin method 1)	g/dL	1
Hematocrit(Hct)	Calculated as RBC×MCV/10 1)	%	1
Mean corpuscular volume(MCV)	Light scattering method 1)	fL	1
Mean corpuscular hemoglobin(MCḤ)	Calculated as Hgb/RBC×10 10	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct×100 10	g/dL	1
Platelet	Light scattering method 1)	$\times 10^3/\mu$ L	0
Reticulocyte	Light scattering method 1)	%	1
White blood cell(WBC)	Light scattering method 1)	×10 ³ /μL	2
Differential WBC	Pattern recognition method 2)	%	0
	(Wright staining)		
Biochemistry			
Total protein(TP)	Biuret method ³⁾	g/dL	1
Albumin (Alb)	BCG method 3)	g/dL	1
A/G ratio	Calculated as Alb/(TP-Alb) 3)	_	1
T-bilirubin	Alkaline azobilirubin method 3)	mg/dL	2
Glucose	GlcK·G-6-PDH method 8)	mg/dL	0
T-cholesterol	CE·COD·POD method 3)	mg/dL	0
Triglyceride	LPL·GK·GPO·POD method 3)	mg/dL	0
Phospholipid	PLD·ChOD·POD method 3)	mg/dL	0
Aspartate aminotransferase (AST)	JSCC method 3)	IU/L	0
Alanine aminotransferase (ALT)	JSCC method 3)	IU/L	0
Lactate dehydrogenase (LDH)	SFBC method 3)	IU/L	0
Alkaline phosphatase (ALP)	GSCC method 3)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	JSCC method 3)	IU/L	0
Creatine kinase (CK)	JSCC method 3)	IU/L	0
Urea nitrogen	Urease·GLDH method 3)	mg/dL	1
Sodium	Ion selective electrode method 3)	mEq/L	0
Potassium	Ion selective electrode method 3)	mEq/L	1
Chloride	Ion selective electrode method 3)	mEq/L	0
Calcium	OCPC method 3)	mg/dL	1
Inorganic phosphorus	PNP·XOD·POD method 3)	mg/dL	1

¹⁾ Automatic blood cell analyzer (ADVIA120: Bayer Corporation)

²⁾ Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)

³⁾ Automatic analyzer (Hitachi 7080: Hitachi, Ltd.)