2-フェノキシエタノールのマウスを用いた経口投与による13週間毒性試験(混水試験)報告書

試験番号: 0460

APPENDICES

APPENDICES

APPENDIX A 1	CLINICAL OBSERVATION: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX A 2	CLINICAL OBSERVATION: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX B 1	BODY WEIGHT CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX B 2	BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX C 1	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX C 2	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX D 1	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX D 2	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX E 1	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX E 2	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX F 1	HEMATOLOGY: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX F 2	HEMATOLOGY: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX G 1	BIOCHEMISTRY: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX G 2	BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)

APPENDICES (CONTINUED)

APPENDIX H 1	URINALYSIS: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX H 2	URINALYSIS: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX I 1	GROSS FINDINGS: SUMMARY, MOUSE: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX I 2	GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX J 1	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX J 2	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX K 1	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX K 2	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX L 1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX L 2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX M 1	IDENTITY OF 2-PHENOXYETHANOL IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 2	STABILITY OF 2-PHENOXYETHANOL IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 3	CONCENTRATION OF 2-PHENOXYETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 4	STABILITY OF 2-PHENOXYETHANOL IN FORMULATED WATER
APPENDIX N 1	METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

APPENDICES (CONTINUED)

APPENDIX O 1 UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

APPENDIX A 1

CLINICAL OBSERVATION : SUMMARY, MOUSE : MALE

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W	eek-day										
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7
NON REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10
	1250 բբա	10	10	10	10	10	10	10	10	10	10	10	10	10
	2500 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	20000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10

(HAN190)

APPENDIX A 2

CLINICAL OBSERVATION : SUMMARY, MOUSE : FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini	stration We	eek-day										
		1-7	2-7	3-7	4–7	5-7	6–7	7-7	8–7	9–7	10-7	11-7	12-7	13-7
OLIGO STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ррт	1	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10
	1250 ppm	9	10	10	10	10	10	10	10	10	10	10	10	10
	2500 ppm	10	10	9	10	10	10	10	10	10	10	10	10	10
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	20000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10

(IIAN190)

APPENDIX B 1

BODY WEIGHT CHANGES : SUMMARY, MOUSE : MALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 1

up Name	Administration	week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	23.4± 0.5	24.4± 0.7	25.4± 0.7	26.3± 0.9	27.2± 0.7	27.9± 1.0	28.5± 1.1
1250 ppm	23.3± 0.5	24.4± 0.8	25.0± 0.8	26.2± 1.1	26.6± 1.2	27.3± 1.1	27.8± 1.3
2500 ррт	23.3± 0.6	24.4± 0.6	25.3± 0.7	26.8± 0.7	27.0± 0.8	27.8± 1.1	28.6± 1.0
5000 ppm	23.4± 0.6	24.2± 0.9	25. 1 ± 0.9	26.1± 0.9	26.7± 1.3	27.6± 1.2	28.0± 1.5
10000 ppm	23.3± 0.5	24.2± 0.6	25.1± 0.8	26.2± 0.8	26.7± 0.7	27.2± 1.1	27.7± 1.3
20000 ppm	23.3± 0.5	22.7± 0.7**	24.0± 1.3**	24.9± 0.9**	25.3± 1.2**	25.7± 1.1**	26.2± 1.2**
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 2

oup Name	Administration	week-day					
	7–7	8-7	9-7	10-7	11-7	12-7	13-7
Control	28.7± 1.3	29.6± 1.1	30.4± 1.4	31.0± 1.6	31.8± 2.0	32.2± 2.0	32.7± 1.8
1250 ppm	28.4± 1.5	28.8± 1.4	29.5± 1.6	30.2± 1.7	30.2± 1.8	31.1± 1.9	31.6± 2.3
2500 բրա	29.2± 1.2	29.5± 1.3	30.0± 1.4	31.0± 1.6	31.4± 1.8	32.0± 1.9	32.9± 2.0
5000 ррт	28.3± 1.6	29.2± 1.6	29.6± 1.9	30.5± 2.0	30.9± 2.2	31.4± 2.4	31.7± 2.6
10000 ppm	28.0± 0.9	28.7± 1.5	29.6± 1.5	30.4± 1.7	30.6± 1.6	31.3± 1.9	31.6± 1.9
20000 ppm	26.1± 1.2**	27.0± 1.1**	26.6± 1.5**	27.3± 1.5**	27.5± 1.7**	28.0± 1.7**	28.6± 1.7**
Significant differe	ence; *: P ≤ 0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 2

BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

0-0	week-day	2-7	3-7			
			3- <i>(</i>	4-7	5–7	6-7
19.2± 0.6	19.9± 0.8	20.4± 0.6	21.4± 0.6	21.6± 0.8	21.6± 0.8	22.4± 0.7
19.2± 0.6	19.6± 1.7	20.5± 0.5	21.0± 0.5	21.5± 0.9	21.6± 0.6	22.1± 0.6
19.2± 0.6	20.3± 0.8	20.3± 0.9	20.8± 2.0	21.3生 0.8	21.9± 0.8	22.2± 0.9
19.2± 0.5	19.6± 0.6	20.7± 0.5	21.0± 0.7	21.3± 0.4	21.8± 0.6	22. 1± 0.8
19.2± 0.6	19.6± 0.9	20.1± 1.0	20.9± 0.9	20.9± 0.9	21.4± 1.2	21.7± 0.9
19.2± 0.6	19.0± 0.9	19.7± 0.9	20.5± 0.8	20.6± 0.7	21.2± 0.9	21.6± 1.2
	19.2± 0.6 19.2± 0.6 19.2± 0.5 19.2± 0.6 19.2± 0.6	19.2 ± 0.6 19.6 ± 1.7 19.2 ± 0.6 20.3 ± 0.8 19.2 ± 0.5 19.6 ± 0.6 19.2 ± 0.6 19.6 ± 0.9 19.2 ± 0.6 19.0 ± 0.9	19.2 ± 0.6 19.6 ± 1.7 20.5 ± 0.5 19.2 ± 0.6 20.3 ± 0.8 20.3 ± 0.9 19.2 ± 0.5 19.6 ± 0.6 20.7 ± 0.5 19.2 ± 0.6 19.6 ± 0.9 20.1 ± 1.0 19.2 ± 0.6 19.0 ± 0.9 19.7 ± 0.9	19.2 ± 0.6 19.6 ± 1.7 20.5 ± 0.5 21.0 ± 0.5 19.2 ± 0.6 20.3 ± 0.8 20.3 ± 0.9 20.8 ± 2.0 19.2 ± 0.5 19.6 ± 0.6 20.7 ± 0.5 21.0 ± 0.7 19.2 ± 0.6 19.6 ± 0.9 20.1 ± 1.0 20.9 ± 0.9 19.2 ± 0.6 19.6 ± 0.9 20.1 ± 1.0 20.9 ± 0.9 19.2 ± 0.6 19.0 ± 0.9 19.7 ± 0.9 20.5 ± 0.8	19.2 ± 0.6 19.6 ± 1.7 20.5 ± 0.5 21.0 ± 0.5 21.5 ± 0.9 19.2 ± 0.6 20.3 ± 0.8 20.3 ± 0.9 20.8 ± 2.0 21.3 ± 0.8 19.2 ± 0.5 19.6 ± 0.6 20.7 ± 0.5 21.0 ± 0.7 21.3 ± 0.4 19.2 ± 0.6 19.6 ± 0.9 20.1 ± 1.0 20.9 ± 0.9 20.9 ± 0.9 19.2 ± 0.6 19.0 ± 0.9 19.7 ± 0.9 20.5 ± 0.8 20.6 ± 0.7	19.2 ± 0.6 19.6 ± 1.7 20.5 ± 0.5 21.0 ± 0.5 21.5 ± 0.9 21.6 ± 0.6 19.2 ± 0.6 20.3 ± 0.8 20.3 ± 0.9 20.8 ± 2.0 21.3 ± 0.8 21.9 ± 0.8 19.2 ± 0.5 19.6 ± 0.6 20.7 ± 0.5 21.0 ± 0.7 21.3 ± 0.4 21.8 ± 0.6 19.2 ± 0.6 19.6 ± 0.9 20.1 ± 1.0 20.9 ± 0.9 20.9 ± 0.9 21.4 ± 1.2 19.2 ± 0.6 19.0 ± 0.9 19.7 ± 0.9 20.5 ± 0.8 20.6 ± 0.7 21.2 ± 0.9

(HAN260)

BAIS 4

PAGE: 3

ANIMAL : MOUSE Crj:BDF1

UNIT : g
REPORT TYPE : AI 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 4

Administration 7-7	8-7	9-7	10-7	11-7	12-7	. 13-7
22.8± 0.9	23.1 ± 0.7	22.8± 0.8	23.6± 1.0	23.7± 0.5	24.0± 0.7	24.2± 0.7
22.5± 0.8	23.1± 1.1	23.1± 0.8	24.0± 1.6	23.6± 0.9	23.8± 0.9	24.5± 1.1
22.5± 1.0	23.1± 0.7	23.0± 0.7	23.8± 1.2	23.6± 0.8	24.2± 0.7	24.2± 0.7
22.5± 0.4	23.1± 0.8	22.9± 0.8	23.9± 0.9	23.8± 0.4	23.6± 0.4	24.0± 1.1
22.1± 0.9	22.5± 1.0	22.8± 1.3	23.2± 1.1	23.4± 1.1	23.7± 1.3	24.0± 1.6
21.4± 0.7**	22.2± 1.0	22. 1 ± 1. 0	22.8± 1.1	22.9± 1.0	23.1± 1.2	23.1± 1.4
	22.5 ± 1.0 22.5 ± 0.4 22.1 ± 0.9	22.5 ± 1.0 23.1 ± 0.7 22.5 ± 0.4 23.1 ± 0.8 22.1 ± 0.9 22.5 ± 1.0	22.5 ± 1.0 23.1 ± 0.7 23.0 ± 0.7 22.5 ± 0.4 23.1 ± 0.8 22.9 ± 0.8 22.1 ± 0.9 22.5 ± 1.0 22.8 ± 1.3	22.5 ± 1.0 23.1 ± 0.7 23.0 ± 0.7 23.8 ± 1.2 22.5 ± 0.4 23.1 ± 0.8 22.9 ± 0.8 23.9 ± 0.9 22.1 ± 0.9 22.5 ± 1.0 22.8 ± 1.3 23.2 ± 1.1	$22.5 \pm \ 1.0$ $23.1 \pm \ 0.7$ $23.0 \pm \ 0.7$ $23.8 \pm \ 1.2$ $23.6 \pm \ 0.8$ $22.5 \pm \ 0.4$ $23.1 \pm \ 0.8$ $22.9 \pm \ 0.8$ $23.9 \pm \ 0.9$ $23.8 \pm \ 0.4$ $22.1 \pm \ 0.9$ $22.5 \pm \ 1.0$ $22.8 \pm \ 1.3$ $23.2 \pm \ 1.1$ $23.4 \pm \ 1.1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(HAN260)

APPENDIX C 1

WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

UNIT : g

STUDY NO. : 0460

REPORT TYPE : A1 13

SEX: MALE

roup Name	Administration	week-day(effective)					
	1-7(4)	2-7 (4)	3-7(4)	4-7(4)	5-7 (4)	6-7(4)	7-7 (4)
Control	5.7± 1.1	5.2± 0.8	4.8± 0.6	4.8± 0.5	4.4± 0.4	4.3± 0.4	4.0± 0.5
1250 ppm	4.5± 0.6	4.4± 0.6	4.1± 0.6	4.1± 0.8	4.0± 0.7	4.0± 0.8	4.1± 0.8
2500 ррт	5.2± 0.9	5.2± 1.3	5.0± 1.1	4.8± 0.9	4.3± 0.8	4.3± 0.7	4.1± 0.7
5000 ppm	5.0± 1.0	4.8± 0.6	4.8± 1.2	4.2± 0.7	4.1± 0.5	4.2± 1.0	4.1± 1.0
10000 ppm	3.5± 0.5**	3.6± 0.8**	3.5± 0.9 * *	3.4± 0.6**	3.3± 0.6**	3.4± 0.5**	3.2± 0.5*
20000 ppm	2.9± 0.3**	2.5± 0.5**	2.9± 0.4**	2.8± 0.5**	2.8± 0.3**	3.0± 0.4**	2.8± 0.4**
20000 ppm	2.9± 0.3**	2.5± 0.5**	2.9± 0.4**	2.8± 0.5**	2.8± 0.3**	3.0± 0.4**	2.8± 0.4
Significant differe	ence; *: P ≤ 0.05 *	⇒*: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

PAGE: 1

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration	week-day(effective)					
	8-7(4)	9-7 (4)	10-7 (4)	11-7 (4)	12-7 (4)	13-7 (4)	
Control	4.5± 0.3	4.1± 0.3	4.2± 0.4	4.2± 0.4	4.2± 0.3	4.1± 0.2	
1250 ppm	4.1± 0.7	3.9± 0.8	4.0± 0.7	3.8± 0.7	3.8± 0.6	4.0± 0.7	
2500 թթա	4.4± 0.7	4.2± 0.6	4.1± 0.6	4.1± 0.7	4.0± 0.6	4.0± 0.6	
5000 ppm	4.3± 1.0	4.2± 1.1	3.9± 0.9	4.0± 1.2	3.9± 0.9	4.0± 1.0	
10000 ppm	3.4± 0.5**	3.2± 0.5 * *	3.1± 0.5**	3.1± 0.5**	3.0± 0.4**	3.1± 0.4**	
20000 ppm	2.9± 0.3**	2.7± 0.3**	2.7± 0.3**	2.7± 0.4**	2.6± 0.3**	2.7± 0.3**	

(HAN260)

APPENDIX C 2

WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0460 ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

0.3 1.2 0.3	4.5± 0.6 4.2± 0.4 4.2± 0.3	4.4± 0.4 4.1± 0.3 4.0± 1.2	4.5± 0.3 4.3± 0.4 4.3± 0.3	4.6± 0.4 4.2± 0.4 4.3± 0.3	4.7± 0.5 4.3± 0.2 4.4± 0.2	4.7± 0.4 4.4± 0.3 4.3± 0.3
1.2	4.2± 0.4	4.1± 0.3	4.3± 0.4	4.2± 0.4	4.3± 0.2	4.4± 0.3
0.3						
	4.2± 0.3	4.0± 1.2	4.3± 0.3	4.3± 0.3	4.4± 0.2	4.3± 0.3
0. 7	4.1± 0.4	4.1± 0.3	4.3± 0.3	4.2± 0.3	4.4± 0.3	4.3± 0.4
0.4**	3.0± 0.6**	3.2± 0.5**	3.4± 0.6**	3.3± 0.5**	3.5± 0.4**	3.4± 0.5**
0.3**	2.2± 0.3**	2.6± 0.3**	2.7± 0.2**	2.6± 0.3**	2.8± 0.3**	2.6± 0.3**
	: 0.4** : 0.3**	: 0.3** 2.2± 0.3**	: 0.3** 2.2± 0.3** 2.6± 0.3**	: 0.3** 2.2± 0.3** 2.6± 0.3** 2.7± 0.2**	: 0.3** 2.2± 0.3** 2.6± 0.3** 2.7± 0.2** 2.6± 0.3**	: 0.3** 2.2± 0.3** 2.6± 0.3** 2.7± 0.2** 2.6± 0.3** 2.8± 0.3**

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : MOUSE Crj:BDF1 ALL ANIMALS

UNIT : g

STUDY NO. : 0460

REPORT TYPE : A1 13

SEX : FEMALE PAGE: 4

	8-7(4)	week-day(effective) 9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)
Control	4.8± 0.6	4.7± 0.4	4.7± 0.5	4.4± 0.4	4.7± 0.5	4.7± 0.5
1250 ppm	4.4± 0.4	4.3± 0.2	4.3± 0.4	4.2± 0.3	4.1± 0.7	4.3± 0.2
2500 ррт	4.5± 0.1	4.3± 0.3*	4.3± 0.3*	4.0± 0.3*	4.2± 0.2	4.2± 0.2*
5000 ppm	4.4± 0.3	4.2± 0.3*	4.4± 0.3	4.1± 0.3	4.1± 0.2	4.2± 0.2**
10000 ppm	3.5± 0.5**	3.5± 0.5**	3.5± 0.4**	3.3± 0.4**	3.3± 0.4**	3.4± 0.4**
20000 ppm	2.7± 0.3**	2.7± 0.3**	2.8± 0.2**	2.7± 0.3**	2.7± 0.3**	2.9± 0.3**

Significant difference ; $*: P \le 0.05$ **: $P \le 0.01$ Test of Dunnett

(HAN260) BAIS 4

APPENDIX D 1

FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration week-day(effective)_ 1-7(7) 2-7(7) 3-7(7) 4-7(7) 5-7(7) 6-7(7) 7-7(7) Control 4.0 ± 0.2 4.0± 0.2 4.0 ± 0.2 4.0 ± 0.2 3.9 ± 0.2 3.9 ± 0.2 3.9 ± 0.3 3.9 ± 0.3 3.7 ± 0.3 3.9 ± 0.4 3.9 ± 0.3 1250 ppm 4.1± 0.2 3.8 ± 0.2 3.9 ± 0.3 2500 ppm 4.0± 0.2 4.0± 0.2 4.1± 0.2 4.1 ± 0.2 3.9 ± 0.2 4.0± 0.2 4.0 ± 0.3 3.9 ± 0.3 5000 ppm 4.0± 0.2 3.9 ± 0.3 3.9 ± 0.2 4.0 ± 0.3 3.9 ± 0.3 4.0 ± 0.2 10000 ppm 3.7± 0.2* 3.8 ± 0.2 3.9 ± 0.3 3.9 ± 0.2 3.7 ± 0.3 3.8± 0.3 3.8 ± 0.3 3.6 ± 0.2 3.6± 0.2* 20000 ppm 3.1± 0.2** 3.6± 0.2** 3.6± 0.2** 3.7± 0.2* $3.5 \pm 0.2*$ Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 4

PAGE: 1

FOOD CONSUMPTION CHANGES (SUMMARY)

ANIMAL : MOUSE Crj:BDF1 ALL ANIMALS

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

roup Name	Administration	week-day(effective)						
	8-7 (7)	9-7 (7)	10-7 (7)	11-7 (7)	12-7(7)	13-7 (7)		
Control	3.9± 0.3	3.9± 0.3	4.0± 0.3	4.0± 0.2	4.1± 0.2	4.1± 0.2		
1250 ррт	3.8± 0.3	3.9± 0.3	4.0± 0.3	3.9± 0.4	4.0± 0.4	4.1± 0.4		
2500 թթա	3.9± 0.2	4.0± 0.2	4.1± 0.2	4.1± 0.2	4.1± 0.2	4.2± 0.2		
5000 ppm	3.9± 0.3	4.0± 0.3·	4.0± 0.3	4.0± 0.3	4.0± 0.3	4.0± 0.2		
10000 ppm	3.8± 0.3	3.9± 0.3	3.9± 0.2	3.9± 0.3	4.0± 0.2	4.0± 0.2		
20000 ppm	3.5± 0.3**	3.5± 0.3**	3.6± 0.2**	3.7± 0.2	3.7± 0.3*	3.8± 0.3*		
Significant differen	nce; *: P ≤ 0.05	*: P ≤ 0.01		Test of Dunnett				

(HAN260)

APPENDIX D 2

FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration week-day(effective)												
	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7 (7)						
Control	3.5± 0.3	3.4± 0.2	3.5± 0.2	3.5± 0.2	3.6± 0.2	3.7± 0.2	3.9± 0.2						
1250 ppm	3.2± 0.3	3.4± 0.3	3.3± 0.2	3.5± 0.2	3.5± 0.2	3.6± 0.2	3.7± 0.2						
2500 թթա	3.5± 0.2	3.3± 0.3	3.4± 0.4	3.6± 0.4	3.6± 0.3	3.7± 0.2	3.8± 0.4						
5000 ppm	3.4 ± 0.2	3.5± 0.2	3.5± 0.2	3.6± 0.2	3.7± 0.2	3.7± 0.1	3.9± 0.1						
10000 ppm	3.2± 0.2	3.1± 0.3	3.4± 0.3	3.3± 0.3	3.4± 0.4	3.5± 0.3	3.5± 0.4*						
20000 ppm	2.7± 0.3**	3.1± 0.2*	3.2± 0.2*	3.3± 0.1*	3.4± 0.2	3.4± 0.2**	3.5± 0.2**						

Test of Dunnett

(HAN260)

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration week day(effective) 8-7(7) 9-7(7)		10-7(7) 11-7(7)		12-7 (7)	13-7(7)	
Control	3.9± 0.2	3.9± 0.2	4.0± 0.3	4.0± 0.1	4.0± 0.2	4.0± 0.2	
1250 ppm	3.7± 0.2	3.7± 0.2	3.8± 0.2	3.7± 0.3	3.6± 0.2*	3.8± 0.2	
2500 թթա	3.8± 0.2	3.8± 0.3	3.9± 0.3	3.8± 0.2	3.8± 0.2	3.8± 0.2	
5000 ppm	3.9± 0.2	3.9± 0.1	4.0± 0.1	3.9± 0.1	3.8± 0.1	3.9± 0.2	
10000 ppm	3.5± 0.3≉≉	3.6± 0.3	3.6± 0.3*	3.7± 0.3*	3.6± 0.4*	3.7± 0.3*	
20000 ppm	3.4± 0.2**	3.4± 0.2**	3.5± 0.2**	3.6± 0.2*	3.5± 0.2**	3.5± 0.3**	
Significant difference;	*: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 1

PAGE: 4

APPENDIX E 1

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1
UNIT : g/kg/day

REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
1250 ppm	0.233± 0.031	0.222± 0.028	0.197± 0.023	0.193± 0.031	0.184± 0.028	0.180± 0.033	0.179± 0.033
2500 թթո	0.528± 0.093	0.512± 0.124	0.464± 0.104	0.439± 0.077	0.386± 0.073	0.378± 0.065	0.354± 0.064
5000 ppm	1.027± 0.214	0.964± 0.127	0.919± 0.220	0.780± 0.113	0.739± 0.085	0.755± 0.182	0.729± 0.186
10000 ppm	1. 456 ± 0. 222	1.420± 0.327	1.327± 0.310	1.276± 0.228	1.226± 0.187	1.211± 0.183	1.144± 0.183
20000 ppm	2.519± 0.307	2. 113 ± 0. 324	2.346± 0.275	2. 245± 0. 361	2.192± 0.204	2.277± 0.268	2. 123± 0. 345

(IJAN300)

BAIS 4

PAGE: 1

ANIMAL : MOUSE Crj:BDF1
UNIT : g/kg/day

REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
1250 ppm	0.179± 0.029	0.167± 0.032	0.165± 0.028	0.157± 0.026	0.151± 0.022	0.157± 0.027	
2500 թթա	0.373± 0.059	0.349± 0.058	0.335± 0.055	0.327± 0.061	0.315± 0.054	0.308± 0.056	
5000 ррт	0.746± 0.180	0.719± 0.203	0.652± 0.173	0.660± 0.211	0.625± 0.173	0.632± 0.185	
10000 ppm	1.190± 0.191	1.080± 0.166	1.022± 0.165	1.015± 0.167	0.974± 0.142	0.977± 0.131	
20000 ppm	2.132± 0.275	2.064± 0.218	2.007± 0.301	1.964± 0.291	1.854± 0.225	1.914± 0.265	

(IIAN300)

APPENDIX E 2

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g/kg/day
REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Administration	(weeks)							
1	2	3	4	5	6	7		
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000		
0.236± 0.069	0.254± 0.021	0.243± 0.017	0.250± 0.020	0.243± 0.022	0.246± 0.008	0.243± 0.014		
0.547± 0.030	0.520± 0.046	0.474± 0.129	0.508± 0.037	0.493± 0.046	0.493± 0.045	0.480± 0.044		
1.013± 0.161	0.986± 0.100	0.986± 0.098	1.015± 0.065	0.972± 0.078	0.990± 0.093	0.957± 0.099		
1.563± 0.192	1.511± 0.268	1.525± 0.211	1.603± 0.286	1.528± 0.223	1.589± 0.175	1.543± 0.174		
2.760 ± 0.285	2.232± 0.248	2.522± 0.253	2.574 ± 0.253	2.440± 0.303	2.602± 0.300	2.450± 0.232		
	$1 \\ 0.000 \pm 0.000 \\ 0.236 \pm 0.069 \\ 0.547 \pm 0.030 \\ 1.013 \pm 0.161 \\ 1.563 \pm 0.192$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 0.000 \pm 0.000 0.000 \pm 0.000 0.000 \pm 0.000 0.236 \pm 0.069 0.254 \pm 0.021 0.243 \pm 0.017 0.547 \pm 0.030 0.520 \pm 0.046 0.474 \pm 0.129 1.013 \pm 0.161 0.986 \pm 0.100 0.986 \pm 0.098 1.563 \pm 0.192 1.511 \pm 0.268 1.525 \pm 0.211	1 2 3 4 $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.236\pm\ 0.069$ $0.254\pm\ 0.021$ $0.243\pm\ 0.017$ $0.250\pm\ 0.020$ $0.547\pm\ 0.030$ $0.520\pm\ 0.046$ $0.474\pm\ 0.129$ $0.508\pm\ 0.037$ $1.013\pm\ 0.161$ $0.986\pm\ 0.100$ $0.986\pm\ 0.098$ $1.015\pm\ 0.065$ $1.563\pm\ 0.192$ $1.511\pm\ 0.268$ $1.525\pm\ 0.211$ $1.603\pm\ 0.286$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

(IIAN300)

BAIS 4

PAGE: 3

ANIMAL : MOUSE Crj:BDF1
UNIT : g/kg/day

REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000 ± 0.000	0.000 ± 0.000	0.000± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	
1250 ppm	0.240± 0.017	0.231± 0.011	0.225± 0.011	0.220± 0.015	0. 215± 0. 038	0.220± 0.011	
2500 բբա	0.483± 0.023	0.464± 0.039	0.452± 0.041	0.426± 0.034	0.433± 0.024	0.438± 0.029	
5000 ppm	0.955± 0.085	0.926± 0.086	0.925± 0.099	0.852± 0.075	0.871± 0.048	0.870± 0.044	
10000 ppm	1.534± 0.195	1.529± 0.193	1.516± 0.171	1.394± 0.157	1.409± 0.133	1.438± 0.171	
20000 ppm	2. 457± 0. 258	2.487± 0.286	2.466± 0.197	2.391± 0.239	2.379± 0.260	2.520± 0.251	

(HAN300)

APPENDIX F 1

HEMATOLOGY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

RED BLOOD CELL 1 0 ⁵ / μℓ 10.60± 1.15 10.81± 0.30 10.69± 0.35	HEMOGLOBIN g / dl 15.1± 0.5 14.9± 0.5	HEMATOCRIT % 48.6± 4.3 48.9± 1.2	MCV f 2 46.0± 1.4 45.2± 0.4	MCH p g 14.4± 2.0 13.8± 0.2	MCHC g ∕dℓ 31.3± 3.1 30.5± 0.5	PLATELET 1 O³ / μℓ 1591± 89 1544± 134
10.81± 0.30	14.9± 0.5	48.9± 1.2	45. 2± 0. 4			
				13.8± 0.2	30.5± 0.5	1544± 134
10.69± 0.35	14.0+ 0.5					
	14.62 0.5	48.5± 1.6	45.4 ± 0.4	13.9± 0.3	30.5± 0.8	1532± 81
10.61± 0.31	14.8± 0.3	48.3± 1.1	45.5± 0.5	13.9± 0.3	30.6± 0.3	1551± 144
10.71± 0.28	14.9± 0.2	48.8± 1.2	45.5± 0.4	13.9± 0.2	30.5± 0.3	1472± 117
10.70± 0.31	14.8± 0.4	49.0± 1.4	45.8± 0.6	13.8± 0.2	30.2± 0.3	1535± 69
	10.70± 0.31	10.70± 0.31 14.8± 0.4	10.70± 0.31 14.8± 0.4 49.0± 1.4	10.70± 0.31 14.8± 0.4 49.0± 1.4 45.8± 0.6	10.70± 0.31 14.8± 0.4 49.0± 1.4 45.8± 0.6 13.8± 0.2	

(IICL070) BAIS 4

ANIMAL : MOUSE Crj:BDF1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

NO. of RETICULOCYTE Group Name % Animals Control 10 2.2 ± 0.2 1250 ppm 10 2.3 ± 0.2 2500 ppm 10 $2.2 \pm$ 0.2 5000 ppm 10 $2.2 \pm$ 0.2 10 $2.3 \pm$ 10000 ррт 0.2 20000 ppm 10 2.5± 0.2** Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett

(IICL070)

BAIS 4

PAGE: 2

ANIMAL : MOUSE Crj:BDF1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

NO. of Animals	₩BC 1 0³/1		Dif N·BAND	ferentia	1 WBC (% N-SEG	5)	EOSINO		BASO		MONO		LYMPIIO		OTHER	
10	1.07±	0. 50	1±	1	10±	3	$2\pm$	2	0±	0	1±	1	86±	4	0±	0
10	0.94±	0. 37	1±	1	13±	6	1±	1	0±	0	2±	1	84±	7	0±	0
10	0.80±	0. 41	0±	0	11±	3	2±	2	0±	0	2±	2	85±	5	0±	0
10	0.96±	0. 39	0±	1	11±	3	1±	1	0±	0	2±	1	85±	4	0±	0
10	0.81±	0.36	0±	1	11±	3	1±	1	0±	0	2±	1	86±	4	0±	0
10	0.82±	0.41	2±	4	9±	4	1±	1	0±	0	2±	1	87±	3	0±	0
	10 10 10 10	10 1.07± 10 0.94± 10 0.80± 10 0.96± 10 0.81±	10	10 $1.07\pm$ 0.50 $1\pm$ 10 $0.94\pm$ 0.37 $1\pm$ 10 $0.80\pm$ 0.41 $0\pm$ 10 $0.96\pm$ 0.39 $0\pm$ 10 $0.81\pm$ 0.36 $0\pm$	10 1.07 \pm 0.50 1 \pm 1 10 0.94 \pm 0.37 1 \pm 1 10 0.80 \pm 0.41 0 \pm 0 10 0.96 \pm 0.39 0 \pm 1 10 0.81 \pm 0.36 0 \pm 1	10 $1.07\pm$ 0.50 $1\pm$ 1 $10\pm$ 10 $0.94\pm$ 0.37 $1\pm$ 1 $13\pm$ 10 $0.80\pm$ 0.41 $0\pm$ 0 $11\pm$ 10 $0.96\pm$ 0.39 $0\pm$ 1 $11\pm$ 10 $0.81\pm$ 0.36 $0\pm$ 1 $11\pm$	10 $1.07\pm$ 0.50 $1\pm$ 1 $10\pm$ 3 10 $0.94\pm$ 0.37 $1\pm$ 1 $13\pm$ 6 10 $0.80\pm$ 0.41 $0\pm$ 0 $11\pm$ 3 10 $0.96\pm$ 0.39 $0\pm$ 1 $11\pm$ 3 10 $0.81\pm$ 0.36 $0\pm$ 1 $11\pm$ 3	10 $1.07\pm$ 0.50 $1\pm$ 1 $10\pm$ 3 $2\pm$ 10 $0.94\pm$ 0.37 $1\pm$ 1 $13\pm$ 6 $1\pm$ 10 $0.80\pm$ 0.41 $0\pm$ 0 $11\pm$ 3 $2\pm$ 10 $0.96\pm$ 0.39 $0\pm$ 1 $11\pm$ 3 $1\pm$ 10 $0.81\pm$ 0.36 $0\pm$ 1 $11\pm$ 3 $1\pm$	10 $1.07\pm$ 0.50 $1\pm$ 1 $10\pm$ 3 $2\pm$ 2 10 $0.94\pm$ 0.37 $1\pm$ 1 $13\pm$ 6 $1\pm$ 1 10 $0.80\pm$ 0.41 $0\pm$ 0 $11\pm$ 3 $2\pm$ 2 10 $0.96\pm$ 0.39 $0\pm$ 1 $11\pm$ 3 $1\pm$ 1 10 $0.81\pm$ 0.36 $0\pm$ 1 $11\pm$ 3 $1\pm$ 1	10 $1.07\pm$ 0.50 $1\pm$ 1 $10\pm$ 3 $2\pm$ 2 $0\pm$ 10 $0.94\pm$ 0.37 $1\pm$ 1 $13\pm$ 6 $1\pm$ 1 $0\pm$ 10 $0.80\pm$ 0.41 $0\pm$ $0\pm$ $0\pm$ $0\pm$ $0\pm$ $0\pm$ 10 $0.96\pm$ 0.39 $0\pm$ $0\pm$ $0\pm$ $0\pm$ $0\pm$ $0\pm$ 10 $0.81\pm$ 0.36 $0\pm$ 1 $11\pm$ 3 $1\pm$ 1 $0\pm$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1.07 \pm 0.50 1 \pm 1 10 \pm 3 2 \pm 2 0 \pm 0 1 \pm 1 10 10 0.94 \pm 0.37 1 \pm 1 13 \pm 6 1 \pm 1 0 \pm 0 2 \pm 1 10 0.80 \pm 0.41 0 \pm 0 11 \pm 3 2 \pm 2 0 \pm 0 2 \pm 2 10 0.96 \pm 0.39 0 \pm 1 11 \pm 3 1 \pm 1 0 \pm 0 2 \pm 1 10 0.81 \pm 0.36 0 \pm 1 11 \pm 3 1 \pm 1 0 \pm 0 2 \pm 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(IICL070)

APPENDIX F 2

HEMATOLOGY : SUMMARY, MOUSE : FEMALE

ANIMAL : MOUSE Crj:BDF1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

roup Name	NO. of Animals	RED BLC 1 0°/ı	OOD CELL	HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f l		MCH pg		MCHC g∕dl	<u>-</u>	PLATELE 1 0³/µ	
Control	9	10.71±	0. 31	15.2±	0.4	48.6±	1.3	45.4±	0.5	14. 2±	0.2	31.3±	0. 4	1374±	46
1250 ppm	10	10.59±	0.35	14.9±	0.5	47.9±	1. 5	45.3±	0.3	14.1±	0.2	31.1±	0.5	1383±	86
2500 ppm	10	10.48±	0.36	14.9±	0.6	47.5±	1.2	45.3±	0.4	14.2±	0.2	31.3±	0.4	1425±	96
5000 ppm	10	10.53±	0.29	15.0±	0.3	48.3±	1. 0	45.9±	0.7	14.2±	0.2	31.0±	0.5	1400±	108
10000 ррш	10	10.48±	0. 28	14.9±	0.3	48.2±	1. 1	46.0±	0. 4	14.2±	0. 2	30.9±	0.4	1330±	74
20000 ppm	10	10.30±	0. 31	14.5±	0.4**	47.7±	1.4	46.3±	0.7**	14.1±	0.3	30.5±	0.8**	1307±	84

(IICL070)

ANIMAL : MOUSE Crj:BDF1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 5 Group Name NO. of RETICULOCYTE % Animals 9 Control 2.3 ± 0.4 2.4 ± 0.3 1250 ppm 10 2500 ppm 10 2.4 ± 0.4 5000 ppm 10 $2.4\pm$ 0.5 10000 ppm 10 2.6± 0.5 20000 ppm 10 2.6 ± 0.5

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(IICL070)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX: FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 6 (%) Group Name NO. of WBC Differential WBC $10^{3}/\mu \ell$ EOSINO . BASO MONO LYMPIIO Animals N-BAND N-SEG OTHER Control 9 0.94 ± 0.77 $1\pm$ 1 17± 5 $1\pm$ 1 $0\pm$ 0 1± 1 81± 0± 0 4 1250 ppm 10 0.82 ± 0.28 $1\pm$ 1 12± 6 $1\pm$ 1 $0\pm$ 0 $1\pm$ 1 85± 5 0± 0 2500 ppm 10 0.93 ± 0.57 $0\pm$ 0 $16\pm$ 15 $1\pm$ 1 $0\pm$ 0 $1\pm$ 1 82± 15 $0\pm$ 0 $15\pm$ 1± 0± $1\pm$ 5000 ppm 10 0.83 ± 0.54 1± 1 1 1 $84\pm$ 7 $0\pm$ 0 12± 3 1± 1± 10000 ppm 10 0.87 ± 0.62 $0\pm$ 1 1 $0\pm$ 0 1 86± 4 $0\pm$ 0 20000 ppm 10 0.76 ± 0.59 1± 6 $0\pm$ 1 $11\pm$ 1 $0\pm$ 0± 1 $88 \pm$ 6 $0\pm$ 0 ** : $P \leq 0.01$ Significant difference; $*: P \leq 0.05$ Test of Dunnett

(IICL070) BAIS 4

APPENDIX G 1

BIOCHEMISTRY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1 MEASURE. TIME: 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

roup Name	NO. of Animals	TOTAL P g/dl	PROTEIN	ALBUMIN g/dl		a/g rat	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	TEROL	TRIGLYCI mg∕dl	ERIDE
Control	10	5.3±	0.2	3.2±	0. 1	1.5±	0. 2	0.14生	0.02	233±	22	87±	6	27±	9
1250 ррт	10	5.1±	0.1*	3.1±	0.2	1.5±	0. 2	0.14±	0. 02	218±	41	81±	8	23±	10
2500 ppm	10	5.1±	0.1	3.1±	0. 1	1.5±	0.1	0.13±	0.01	206±	40	81±	4	25±	11
5000 ppm	10	5.1±	0.2*	3.1±	0.2	1.5±	0.2	0.14±	0.02	203±	32	78±	7*	25±	12
10000 ррш	10	5.2±	0. 2	3.1±	0.2	1.5±	0. 1	0.16±	0.08	201±	32	80±	8	26±	13
20000 ppm	10	5.1±	0.1*	3.1±	0.2	1.6±	0.2	0.14±	0, 03	203±	30	75±	7**	16±	7

(HCL074)

ANIMAL : MOUSE Crj:BDF1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2

roup Name	NO. of Animals	PHOSPHOI mg/dl	LIPID	GOT IU/L		GPT I U/l		LDH IU/J	2	ALP IU/1		G-GTP IU/l		CPK IU/l	!
Control	10	187±	14	40±	3	18±	3	211±	35	153±	8	1±	1	74±	26
1250 ppm	10	172±	17	47±	14	18±	2	237±	79	158±	10	1±	1	114±	98
2500 ppm	10	171±	9	42±	7	18±	2	215±	42	154±	11	1±	1	83±	50
5000 ppm	10	168±	18*	44±	3	19±	4	215±	34	149±	9	1±	1	75±	17
10000 թթա	10	168±	14*	46±	8	18±	4	308±	270	148±	10	1±	1	80±	23
20000 ppm	10	154±	17**	42±	7	17±	3	212±	55	176±	16**	1±	0	79±	24

(IICL074)

ANIMAL : MOUSE Crj:BDF1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

roup Name	NO. of Animals	UREA NI mg∕dl	TROGEN	m Eq / l		POTASSI m Eq / J		CHLORIDE m Eq / l		CALCIUM mg∕dl		INORGAN mg/dl	IC PHOSPHORUS
Control	10	27.5±	3. 9	151±	1	4.8±	0. 5	122±	2	8.9±	0.3	9.0±	1. 4
1250 ppm	10	26.2±	2. 8	151±	2	4.6±	0.3	122±	3	8.7±	0. 2	7.8±	1. 0
2500 թթm	10	24.8±	3. 0	151±	2	4.5±	0. 4	123±	3	8.7±	0.1	8.4±	1.1
5000 ppm	10	25.4±	3. 2	151±	1	4.4±	0.3	123±	2	8.6±	0. 2**	7.5±	1. 0*
10000 թթա	10	23.6±	4. 1	151±	1	4.7±	0.4	123±	2	8.7±	0. 2	8.0±	1.5
20000 ppm	10	23.1±	3.3	151±	1	4.4±	0.5	123±	2	8.5±	0. 2**	7.3±	0.9**

(IICL074)

APPENDIX G 2

BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX: FEMALE

REPORT TYPE : A1

PAGE: 4

roup Name	NO. of Animals	TOTAL P g/dl	PROTEIN	ΛLBUMIN g∕dl		A/G RAT	10	T-BILII mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYCE mg/dl	RIDE
Control	10	5.3±	0.2	3.5±	0.1	1.9±	0.3	0.16±	0.04	177±	19	74±	11	11±	4
1250 ppm	9	5.2±	0. 1	3.5±	0. 2	2.1±	0.3	0.15±	0.03	175±	13	77±	5	15±	9
2500 ppm	10	5.2±	0.2	3.4±	0.2	1.9±	0.3	0.14±	0. 03	189±	31	77±	10	13±	2
5000 ppm	10	5.2±	0. 1	3.5±	0.1	2.1±	0.3	0.14±	0. 03	182±	31	74±	10	10±	3
10000 ррш	10	5.2±	0.2	3.5±	0.2	2.0±	0.3	0.14±	0. 03	176±	31	73±	12	12±	5
20000 ppm	10	5.0±	0.3	3,3±	0.1	2.0±	0.3	0.13±	0.03	173±	25	72±	15	9±	3

(IICL074)

ANIMAL : MOUSE Crj:BDF1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	GOT I U / L		GPT I U/l		LDH IU/J	2	ALP IU/1		G-GTP IU∕£		CPK IU/s	2
Control	10	153±	24	56±	7	21±	3	245±	27	244±	19	1±	1	92±	50
1250 ppm	9	158±	15	51±	7	19±	2	211±	40	243±	23	1±	1	70±	29
2500 ррт	10	156±	19	54±	13	21±	4	268±	108	238±	16	2±	1	133±	139
5000 ppm	10	145±	20	63±	27	22±	4	291±	144	249±	25	1±	1	145±	163
10000 թթm	10	146±	24	60±	14	24±	7	274±	88	236±	25	Ι±	1	126±	64
20000 ppm	10	138±	28	56±	16	20±	4	263±	123	245±	26	1 ±	ı	125±	92

(IICL074)

SEX : FEMALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Group Name mg/dl mEq/l mEq/l mEq/l Animals mg/dl mg/dl Control 10 $21.8 \pm$ 1.8 151± 1 4.5± 0.6 $122 \pm$ 8.6± 0.2 6.9 ± 0.7 1 1250 ppm 9 $21.5 \pm$ 2.9 151± 1 4.4± 0.3 122± 2 8.6± 0.3 6.5± 0.9 2500 ppm 10 $22.4 \pm$ 2.8 151± 1 4.4± 0.5 $122 \pm$ 1 8.6± 0.2 $6.9 \pm$ 0.7 5000 ppm 10 $24.4 \pm$ 3. 1 $152 \pm$ 1 $4.3\pm$ 0.5 124± 2 8.6± 0.3 6.7 \pm 0.7 10000 ррт $23.2\pm$ 10 4.8 $153 \pm$ 2 $4.4\pm$ 0.6 124± 2 $8.7\pm$ 0.3 7.1± 1.2 20000 ppm 10 $22.2 \pm$ 3.4 $152\pm$ 1 $4.3\pm$ 0.6 $123 \pm$ 2 8.5± 0.3 $7.3\pm$ 1.3 Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(IICL074)

BAIS 4

PAGE: 6

APPENDIX H 1

URINALYSIS: SUMMARY, MOUSE: MALE

URINALYSIS

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of	pH_								Prot	tein				G1	icos	e			Ket	one	bod	у			0cc	ult	blo	od	
	Animals	5. 0	6. 0	6.5	7.0	7.5	8.0	8.5	CHI	- :	<u>+</u> -	l- 2	1 3+	41 CIII		±	+ 2	+ 3+	4-1 CIII		±	-l- 2	+ 3+	4+	CIII		± 	+ 2	1 3	+ CHI
Control	10	0	0	0	O	0	5	5		0	3	6	0 1	. 0	10	0	0	0 0	0	б	2	2	0 0	. 0		10	0	n	0 (n
1250 թթա	10	0	0	1	0	2	6	1						0			0						0 0				0			
2500 ppm	10	0	0	0	0	4	4	2		0	1	9	0 0	0	10	0	0	0 0	0	6	4	0	0 0	0		10	0	0	0 1	0
5000 ppm	10	0	0	1	1	3	3	2		0	0 1	0	0 0	0	10	0	0	0 0	0	6	2	2	0 0	0		10	0	0	0	0
10000 ppm	10	0	0	0	4	4	2	0	**	0	0	7	3 0	0	10	0	0	0 0	0	0	5	5	0 0	0	*	10	0	0	0	0
20000 ppm	10	0	1	б	1	2	0	0	**	0	0	8	2 0	0	10	0	0	0 0	0	2	4	4	0 0	0		10	0	0	0	0

(IICL101)

ANIMAL : MOUSE Crj:BDF1

URINALYSIS

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2 Group Name NO. of Urobilinogen Animals ± + 2+ 3+ 4+ CIII Control 10 10 0 0 0 0 1250 ppm 10 10 0 0 0 0 2500 ppm 10 10 0 0 0 0 5000 ppm 10 10 0 0 0 0 10000 ppm 10 10 0 0 0 0 20000 ppm 10 10 0 0 0 0 Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

(IICL101)

APPENDIX H 2

URINALYSIS : SUMMARY, MOUSE : FEMALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of	pH								Protein	Glucose	Ketone body	Occult blood
	Animals	5. 0	6.0	6.5	7.0	7.5	8.0	8.5	CIII	- ± + 2+ 3+ 4+ CIII	- ± + 2+ 3+ 4+ CIII	- ± -+ 2+ 3+ 4+ CIII	- ± - 2+ 3+ CIII
Control	10	0	0	2	0	3	5	0		0 0 7 3 0 0	10 0 0 0 0 0	0 6 4 0 0 0	10 0 0 0 0
1250 ppm	10	0	1	1	1	4	3	0		0 1 7 2 0 0	10 0 0 0 0 0	0 8 2 0 0 0	10 0 0 0 0
2500 ppm	10	0	0	0	4	3	3	0		0 0 10 0 0 0	10 0 0 0 0 0	0 9 1 0 0 0	10 0 0 0 0
5000 ppm	10	0	0	1	4	2	3	0		0 0 7 3 0 0	10 0 0 0 0 0	0 3 3 4 0 0	10 0 0 0 0
10000 ppm	10	0	0	3	4	2	1	0		0 0 4 6 0 0	10 0 0 0 0 0	0 0 9 1 0 0 *	10 0 0 0 0
20000 ррт	10	0	0	10	0	0	0	0	**	0 0 9 1 0 0	10 0 0 0 0 0	0 3 7 0 0 0	10 0 0 0 0
20000 ррт	10	0	0	10	0	0	0	0	**	0 0 9 1 0 0	10 0 0 0 0 0	0 3 7 0 0 0	10 0 0 0

URINALYSIS

(IICL101)

ANIMAL : MOUSE Crj:BDF1

URINALYSIS

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4 Group Name NO. of Urobilinogen ± + 2+ 3+ 4+ CIII Animals Control 10 10 0 0 0 0 1250 ppm 10 10 0 0 0 0 2500 ppm 10 10 0 0 0 0 5000 ppm 10 10 0 0 0 0 10000 ppm 10 10 0 0 0 0 20000 ppm 10 10 0 0 0 0 Significant difference ; $*: P \leq 0.05$ $** : P \leq 0.01$ Test of CHI SQUARE

(IICL101)

APPENDIX I 1

GROSS FINDINGS : SUMMARY, MOUSE : MALE : ALL ANIMALS

STUDY NO. : 0460 ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

SEX : MALE

REPORT TYPE : A1

0тgап	Findings	Group Name NO. of Animals	Control 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
pleen	black zone		0 (0)	0 (0)	2 (20)	0 (0)
HPT080)						

PAGE: 1

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name NO. of Animals	10000 ppm 10 (%)	20000 ppm 10 (%)	
spleen	black zone		2 (20)	0 (0)	
(HPT080)					 BAIS 4

PAGE: 2

APPENDIX I 2

GROSS FINDINGS : SUMMARY, MOUSE : FEMALE : ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 3

0rgan	Findings	Group Name NO. of Animals	Control 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
spleen	black zone		0 (0)	3 (30)	0 (0)	0 (0)
(HPT080)						BAIS 4

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name 10000 ppm NO. of Animals 10 (%)	20000 ppm 10 (%)	
spleen	black zone	1 (10)	2 (20)	
(HPT080)				BAIS 4

PAGE: 4

APPENDIX J 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

roup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	29.3± 1.7	0.044± 0.004	0.012± 0.002	0.221± 0.020	0.147± 0.009	0.162± 0.012	
1250 ppm	10	28.5± 2.1	0.038± 0.003*	0.013± 0.003	0.223± 0.018	0.150± 0.011	0.162± 0.016	
2500 թբա	10	29.4± 2.0	0.046± 0.012	0.011± 0.002	0.220± 0.033	0.150± 0.008	0.165± 0.009	
5000 ppm	10	28.8± 2.5	0.045± 0.009	0.011± 0.003	0.218± 0.031	0.149± 0.010	0.165± 0.004	
10000 ppm	10	28.7± 1.6	0.039± 0.005	0.013± 0.003	0.226± 0.016	0.147± 0.005	0.172± 0.010	
20000 ppm	10	25.9± 1.6**	0.037± 0.002*	0.012± 0.002	0.220± 0.027	0.143± 0.013	0.158± 0.009	

(HCL040)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 2

roup Name	NO. of Animals	KID	NEYS	SPLI	BEN	LIV	ER	BRA	IN	TIIYI	ROID	
Control	10	0. 422±	0.026	0.046±	0.005	1. 134±	0.056	0.439±	0.015	0.007±	0. 001	
1250 ppm	10	0.413±	0. 028	0.045±	0.002	1.117±	0. 081	0.444±	0.006	0.006±	0.001	
2500 թթա	10	0.435±	0.021	0.047±	0.004	1.162±	0. 029	0.443±	0.012	0.006±	0.001	
5000 ppm	10	0.434±	0. 024	0.049±	0. 005	1.149±	0. 055	0.445±	0. 010	0.007±	0. 002	
10000 ppm	10	0.448±	0. 021	0.046±	0.004	1.140±	0.047	0.444±	0.006	0.007±	0.002	
20000 ppm	10	0.432±	0. 030	0.044±	0.008	1.082±	0.062	0.447±	0.009	0.006±	0.001	

(HCL040)

APPENDIX J 2

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 3

roup Name	NO. of Animals	Body Weight	TIIYMUS	ADRE	NALS	OVAR:	IES	HEART	` 	LUNGS	S
Control	10	20.7± 0.5	0.048± 0.0	0.015±	0.002	0.031±	0.004	0. 125±	0. 011	0.165±	0.015
1250 ppm	10	20.9± 1.0	0.048± 0.0	0.016±	0.003	0.033±	0.007	0.121±	0.010	0.152±	0.007
2500 թթա	10	20.9± 0.7	0.044± 0.0	0.014±	0.002	0.029±	0.004	0.122±	0. 010	0.153±	0.009
5000 ppm	10	20.8± 0.8	0.043± 0.0	0.015±	0.003	0.026±	0.003	0.121±	0.004	0.164±	0.017
10000 ppm	10	20.8± 1.2	0.045± 0.0		0.003	0.028±	0.005	0.123±	0.016	0. 157±	0.015
20000 ppm	10	20.6± 1.0	0.042± 0.0	0.014±	0.003	0.026±	0.007	0.117±	0.009	0.153±	0.010
Significant	difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test	of Dunnett					

(HCL040)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1
SEX : FEMALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 4

coup Name	NO. of Animals	KID	NEYS	SPLI	EEN	LIV	ER	BRA	IN	TIIYI	ROID
Control	10	0.286±	0.020	0.051±	0.004	0.900±	0.047	0.453±	0. 009	0.005±	0.001
1250 ppm	10	0.285±	0.013	0.049±	0.006	0.887±	0.044	0.456±	0.013	0.006±	0.002
2500 ррш	10	0.296±	0.012	0.053±	0.007	0.876±	0.059	0.457±	0.014	0.006±	0.002
5000 ppm	10	0. 298±	0.012	0.051±	0.008	0.887±	0.069	0.463±	0. 015	0.006±	0.002
10000 ppm	10	0.311±	0. 021**	0.052±	0.009	0.899±	0. 085	0.461±	0. 013	0.006±	0.001
20000 ppm	10	0.319±	0.017**	0.049±	0.011	0.882±	0.071	0.454±	0. 011	0.006±	0.002

(HCL040)

APPENDIX K 1

ORGAN WEIGHT, RELATIVE : SUMMARY, MOUSE : MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 1

roup Name	NO. of Animals	Body Weight (g)	TIIYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	29.3± 1.7	0.151± 0.018	0.041± 0.009	0.753± 0.062	0.500± 0.027	0.554± 0.046
1250 ррт	10	28.5± 2.1	0.132± 0.009*	0.045± 0.010	0.786± 0.073	0.526± 0.030	0.571± 0.060
2500 բթա	10	29.4± 2.0	0.156± 0.038	0.039± 0.008	0.749± 0.117	0.511± 0.030	0.565± 0.051
5000 ppm	10	28.8± 2.5	0.155± 0.026	0.038± 0.009	0.759± 0.109	0.520± 0.045	0.579± 0.060
10000 ppm	10	28.7± 1.6	0.136± 0.014	0.043± 0.010	0.790± 0.078	0.511± 0.026	0.599± 0.033
20000 ppm	10	25.9± 1.6**	0.143± 0.009	0.044± 0.008	0.851± 0.113	0.552± 0.034**	0.610± 0.043

(HCL042)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 2

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	TIIYROID	
Control	10	1.438± 0.047	0.157± 0.014	3.868± 0.066	1.498± 0.068	0.023± 0.006	
1250 ppm	10	1.453± 0.100	0.158± 0.014	3.926± 0.157	1.566± 0.132	0.020± 0.005	
2500 թթտ	10	1.484± 0.105	0.160± 0.012	3.963± 0.212	1.512± 0.094	0.020± 0.003	
5000 ppm	10	1.516± 0.133	0.171± 0.015	4.009± 0.226	1.558± 0.129	0.023± 0.008	
10000 ppm	10	1.564± 0.100*	0.161± 0.010	3.974± 0.151	1.551± 0.087	0.024± 0.007	
20000 ppm	10	1.669± 0.097**	0.168± 0.022	4.175± 0.108**	1.729± 0.105**	0.022± 0.005	
Significant	difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Test	of Dunnett		

(HCL042)

APPENDIX K 2

ORGAN WEIGHT, RELATIVE : SUMMARY, MOUSE : FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE

Œ	•	
35		

NO. of Animals	Body Weight (g)	TIIYMUS	ADRENALS	OVARIES	HEART	LUNGS
10	20.7± 0.5	0.230± 0.036	0.071± 0.009	0.150± 0.016	0.602± 0.054	0.794± 0.070
10	20.9± 1.0	0.230± 0.025	0.078± 0.016	0.155± 0.032	0.577± 0.057	0.728± 0.050*
10	20.9± 0.7	0.212± 0.030	0.069± 0.009	0.137± 0.016	0.584± 0.048	0.733± 0.036
10	20.8± 0.8	0.205± 0.027	0.072± 0.014	0.123± 0.015	0.580± 0.014	0.786± 0.062
10	20.8± 1.2	0.217± 0.028	0.071 ± 0.014	0.134± 0.021	0.588± 0.053	0.754± 0.044
10	20.6± 1.0	0.206± 0.038	0.067± 0.017	0. 127± 0. 032	0.568± 0.041	0.748± 0.060
	10 10 10 10 10 10	Animals (g) 10 20.7 ± 0.5 10 20.9 ± 1.0 10 20.9 ± 0.7 10 20.8 ± 0.8 10 20.8 ± 1.2	Antimals (g) 10 20.7 \pm 0.5 0.230 \pm 0.036 10 20.9 \pm 1.0 0.230 \pm 0.025 10 20.9 \pm 0.7 0.212 \pm 0.030 10 20.8 \pm 0.8 0.205 \pm 0.027 10 20.8 \pm 1.2 0.217 \pm 0.028	Antimals (g) 10 20.7± 0.5 0.230± 0.036 0.071± 0.009 10 20.9± 1.0 0.230± 0.025 0.078± 0.016 10 20.9± 0.7 0.212± 0.030 0.069± 0.009 10 20.8± 0.8 0.205± 0.027 0.072± 0.014 10 20.8± 1.2 0.217± 0.028 0.071± 0.014	Antimals (g) 10 20.7± 0.5 0.230± 0.036 0.071± 0.009 0.150± 0.016 10 20.9± 1.0 0.230± 0.025 0.078± 0.016 0.155± 0.032 10 20.9± 0.7 0.212± 0.030 0.069± 0.009 0.137± 0.016 10 20.8± 0.8 0.205± 0.027 0.072± 0.014 0.123± 0.015 10 20.8± 1.2 0.217± 0.028 0.071± 0.014 0.134± 0.021	Animals (g) 10 20.7 ± 0.5 0.230 ± 0.036 0.071 ± 0.009 0.150 ± 0.016 0.602 ± 0.054 10 20.9 ± 1.0 0.230 ± 0.025 0.078 ± 0.016 0.155 ± 0.032 0.577 ± 0.057 10 20.9 ± 0.7 0.212 ± 0.030 0.069 ± 0.009 0.137 ± 0.016 0.584 ± 0.048 10 20.8 ± 0.8 0.205 ± 0.027 0.072 ± 0.014 0.123 ± 0.015 0.580 ± 0.014 10 20.8 ± 1.2 0.217 ± 0.028 0.071 ± 0.014 0.134 ± 0.021 0.588 ± 0.053

(HCL042)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	TIIYROID	
Control	10	1.381± 0.098	0.246± 0.018	4.338± 0.176	2. 185± 0. 067	0.024± 0.003	
1250 ppm	10	1.362± 0.066	0.236± 0.023	4.236± 0.079	2. 183± 0. 154	0.030± 0.012	
2500 բբա	10	1.416± 0.066	0.252± 0.036	4.192± 0.198	2. 190± 0. 096	0.030± 0.009	
5000 ppm	10	1.433± 0.044	0. 243± 0. 027	4.253 ± 0.187	2.225± 0.117	0.030± 0.008	
10000 ppm	10	1.495± 0.078**	0.247± 0.031	4.309 ± 0.241	2.219± 0.134	0.026± 0.006	
20000 ppm	10	1.554± 0.090**	0.238± 0.042	4.287 ± 0.180	2.213± 0.131	0.030± 0.011	
Significant	difference;	*: P ≤ 0.05 **:	₽ ≤ 0.01	Tes	et of Dunnett		

(HCL042)

APPENDIX L 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: MALE: ALL ANIMALS

(13-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE: A1

SEX : MALE

Organ	Group Name No. of Anim Grade Findings	Control als on Study 10 \\ \frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
Respiratory	system)	- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			
nasal cavit	respiratory metaplasia:olfactory epithelium	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
lung	hemorrhage	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
Hematopoiet	ic system)				
pleen	deposit of melanin	0 0 0 0 (0) (0) (0) (0)	(0)(0)(0)(0)	2 0 0 0 (20) (0) (0) (0)	(0)(0)(0)(0)
Digestive s	ystem}		•		
iver	granulation	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)
Grade (a > b (c) Significant	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01 Te	4 : Severe st of Chi Square			

(HIPT150)

BAIS4

PAGE: 1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

SEX

: MALE

Organ	P.	Group Name No. of Animals on Study Grade 1 (%)	10000 ppm 10 2 3 (%) (%)	<u>4</u> (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
(Respiratory	system)					
nasal cavit	respiratory metaplasia:olfactory epithe		<10> 0 0 (0) (0) (0	<10> 0 0 0 0 (0) (0) (0) (0)	
lung	hemorrhage	(0)	<10> 0 0 (0) (0)	0	<10> 0 0 0 0 (0) (0) (0) (0)	
{Hematopoiet	tic system)					
spleen	doposit of melanin	2 (20)	<10> 0 0 (0) (0)	0 (0)	0 0 0 0 (0) (0) (0) (0)	
{Digestive s	system)					
liver	granulation	1 (10)	<10> 0 0 (0) (0)		0 0 0 0 (0) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; * : P ≤ 0.05 **: P ≤				·	

(IIPT150)

BAIS4

PAGE: 2

APPENDIX L 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: FEMALE: ALL ANIMALS

(13-WEEK STUDY)

SEX

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

: FEMALE

)rgan		O Name Control of Animals on Study 10 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
(Respiratory	system)				
ung	hemorrhage	2 0 0 0 (20) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	\(\lambda \) \(
{ lematopoiet	ic system)				
lymph node	deposit of hemosiderin	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(13) (0) (0) (0)	<pre></pre>
spleen	deposit of melanin	<10> 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 (30) (0) (0) (0)	(0) (0) (0) (0)	(0) (0) (0) (0)
(Digestive s	ystem)				
iver	necrosis:focal	(10) (0) (0) (0) (0)	<pre></pre>	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 (0) (0) (0) (0)
	granulation	1 0 0 0 (10) (10) (10)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0
Grade (a) b (c) Significant	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.0				

(HPT150)

PAGE: 3

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1
SEX : FEMALE

PAGE: 4

Organ	Group No. of Grade Findings	Name 10000 ppm Animals on Study 10 1 2 3 4 (%) (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
6				
(Respirator	y system)			
lung	hemorrhage	1 0 0 0 (10) (10) (10) (10)	\(\frac{10}{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1}{10} \) \(\frac{1}{0} \) \(1	
(Hematopoie	tic system)			
lymph node	deposit of hemosiderin	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	
spleen	deposit of melanin	1 0 0 0 (10) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	
{Digestive	system)			
liver	necrosis:focal	1 0 0 0 (10) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	
	granulation	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: Mar a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100; difference; *: $P \le 0.05$ **: $P \le 0.01$	2 12 121		

(HPT150)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

SEX

: FEMALE

PAGE: 5

Organ		Name Control of Animals on Study 10 10 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
6					
{Urimary sys	stem)				
kidney	basophilic change	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
{Bindocrine s	system)				
pituitary	Rathke pouch	(9) 1	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: Ma a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0.0$				

(HPT150)

BAIS4

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

SEX : FEMALE

PAGE: 6

Organ	No	oup Name 10000 ppm of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Urinary sys	stem}			
kidney	basophilic change	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
(Endocrine :	system)			
pituitary	Rathke pouch	(10) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	
Grade <a>> b <a>c c significant	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0$			
(HPT150)				BAIS4

APPENDIX M 1

IDENTITY OF 2-PHENOXYETHANOL

IN THE 13-WEEK DRINKING WATER STUDY

IDENTITY OF 2-PHENOXYETHANOL IN THE 13-WEEK DRINKING WATER STUDY

Test Substance

: 2-Phenoxyethanol (Wako Pure Chemical Industries, Ltd.)

Lot No.

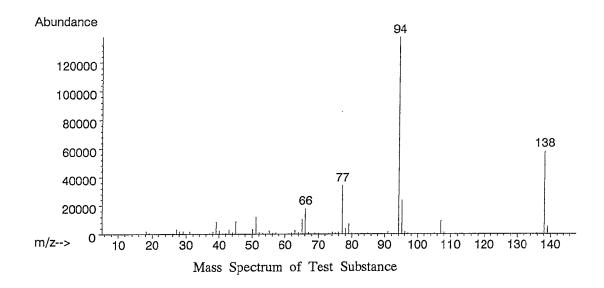
))

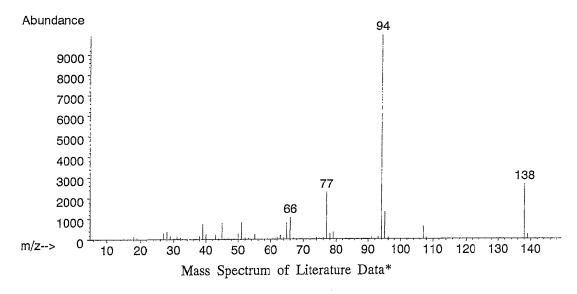
: WAL4150

1. Spectral Data

Mass Spectrometry

Instrument


: Hewlett Packard 5989B Mass Spectrometer


Ionization

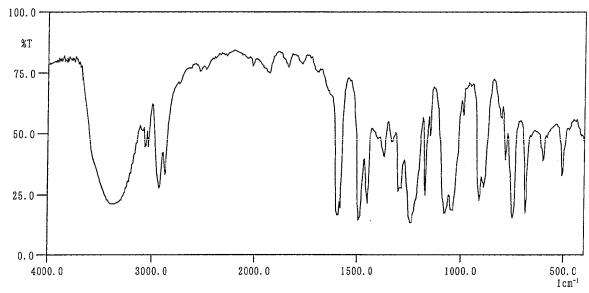
: EI (Electron Ionization)

Ionization Voltage

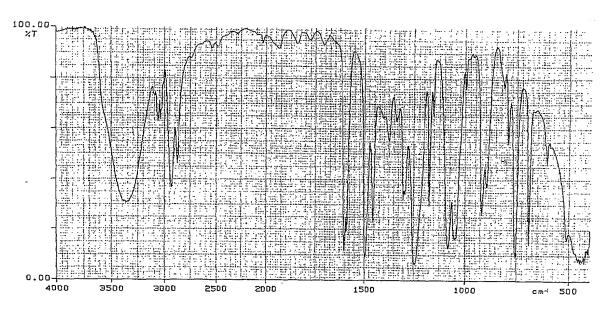
: 70eV

Result: The mass spectrum was consistent with literature spectrum.

(*McLafferty, F.W. (1994)


Wiley Registry of Mass Spectral Data, (6th edition), Entry Number 25888 John Wiley and Sons, New York, NY)

Infrared Spectrometry


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

Infrared Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Conclusion: The test substance was identified as 2-phenoxyethanol by mass spectrum and infrared spectrum.

APPENDIX M 2

STABILITY OF 2-PHENOXYETHANOL

IN THE 13-WEEK DRINKING WATER STUDY

STABILITY OF 2-PHENOXYETHANOL IN THE 13-WEEK DRINKING WATER STUDY

Test Substance : 2-Phenoxyethanol (Wako Pure Chemical Industries, Ltd.)

Lot No. : WAL4150

1. Sample : This lot was used from 2002.9.10 to 2002.12.12. Test substance was

stored in a dark place at room temperature.

2. High Performance Liquid Chromatography

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature : 40 °C

))

))

Flow Rate : 1 mL/min

Mobile Phase : Acetonitrile : Distilled Water = 4 : 6

Detector : UV (271 nm)

Injection Volume : 10 μL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
2002.09.02	1	3.657	100
2002.12.16	1	3.480	100

Result: High performance liquid chromatography indicated one major peak (peak No.1) analyzed on 2002.9.2 and one major peak (peak No.1) analyzed on 2002.12.16. No new trace impurity peak in the test substance analyzed on 2002.12.16 was detected.

3. Conclusion: The test substance was stable for about 15 weeks in a dark place at room temperature.

APPENDIX M 3

CONCENTRATION OF 2-PHENOXYETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

CONCENTRATION OF 2-PHENOXYETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

=

Target Concentration							
Date Analyzed	1250ª	2500	5000	10000	20000		
2002.09.10	1260 (101) ^b	2560 (102)	5060 (101)	10100 (101)	20300 (102)		

a ppm b %

Analytical Method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Shimadzu LC-10 High Performance Liquid Chromatograph

Column

: TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature

: 40 °C

Flow Rate

: 1 mL/min

Mobile Phase

: Acetonitrile : Distilled Water = 4 : 6

Detector

: UV (271 nm)

Injection Volume

: 10 μL

APPENDIX M 4

STABILITY OF 2-PHENOXYETHANOL IN FORMULATED WATER

STABILITY OF 2-PHENOXYETHANOL IN FORMULATED WATER

		Target Concen	tration
Date Prepared	Date Analyzed	100ª	25000
2002.05.15	2002.05.15	97.3 (100) ^b	24600 (100)
	2002.05.20°	93.2 (95.8)	25500 (104)

^a ppm

Analytical Method : The samples were analyzed by high performance liquid chromatography.

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature : 40 ° C Flow Rate : 1 mL/min

Mobile Phase : Acetonitrile : Distilled Water = 4 : 6

Detector : UV (271 nm)

Injection Volume : 10 μL

b $\hat{\%}$ (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

APPENDIX N 1

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS

IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)
Hematocrit (Hct)	Calculated as RBC×MCV/10 1)
Mean corpuscular volume (MCV)	Light scattering method 1)
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC×10 1)
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct×100 1)
Platelet	Light scattering method 1)
Reticulocyte	Light scattering method 1)
White blood cell (WBC)	Light scattering method 1)
Differential WBC	Pattern recognition method 2)
	(Wright staining)
Biochemistry	
Total protein (TP)	Biuret method 3)
Albumin (Alb)	BCG method 3)
A/G ratio	Calculated as Alb/(TP – Alb) 3)
T-bilirubin	Alkaline azobilirubin method 3)
Glucose	GlcK·G-6-PDH method
T-cholesterol	CE·COD·POD method 3)
Triglyceride	LPL·GK·GPO·POD method 3)
Phospholipid	PLD·ChOD·POD method 3)
Glutamic oxaloacetic transaminase (GOT)	JSCC method 3)
Glutamic pyruvic transaminase (GPT)	JSCC method 3)
Lactate dehydrogenase (LDH)	SFBC method 3)
Alkaline phosphatase (ALP)	GSCC method 3)
γ -Glutamyl transpeptidase (γ -GTP)	L- γ -Glutamyl-p-nitroanilide method 3)
Creatine phosphokinase (CPK)	JSCC method 3)
Urea nitrogen	Urease · GLDH method 3)
Sodium	Ion selective electrode method 3)
Potassium	Ion selective electrode method 3)
Chloride	Ion selective electrode method 3)
Calcium	OCPC method 3)
Inorganic phosphorus	PNP·XOD·POD method 3)
Urinalysis	
pH,Protein,Glucose,Ketone body,Occult Blood,	Urinalysis reagent paper method 4)
Urobilinogen	
	<u> </u>

- 1) Automatic blood cell analyzer (ADVIA120: Bayer Corporation)
- 2) Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)
- 3) Automatic analyzer (Hitachi 7070: Hitachi, Ltd.)

))

) j

4) Ames reagent strips for urinalysis (Uro-Labstix: Bayer Corporation)

APPENDIX O 1

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY
IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-PHENOXYETHANOL

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	$\times 10^6/\mu$ L	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	$\times 10^3/\mu$ L	0
Reticulocyte	%	1
White blood cell (WBC)	$\times 10^3/\mu$ L	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Triglyceride	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transaminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
Alkaline phosphatase (ALP)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Sodium	mEq/L	. 0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1

))

))