アクリル酸=2-ヒドロキシエチルのマウスを用いた経口投与による2週間毒性試験(混水試験)報告書

試験番号:0315

APPENDIX

APPENDIXES

APPENDIX A 1	CLINICAL OBSERVATION: SUMMARY, MOUSE : MALE (2-WEEK STUDY)
APPENDIX A 2	CLINICAL OBSERVATION: SUMMARY, MOUSE : FEMALE (2-WEEK STUDY)
APPENDIX B 1	BODY WEIGHT CHANGES: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX B 2	BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX C 1	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX C 2	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX D 1	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX D 2	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX E 1	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX E 2	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX F 1	HEMATOLOGY: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX F 2	HEMATOLOGY: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX G 1	BIOCHEMISTRY: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX G 2	BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX H 1	GROSS FINDINGS: SUMMARY, MOUSE: MALE: ALL ANIMALS (2-WEEK STUDY)
APPENDIX H 2	GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (2-WEEK STUDY)

APPENDIXES (CONTINUED)

APPENDIX H 3	GROSS FINDINGS: SUMMARY, MOUSE: MALE: DEAD AND MORIBUND ANIMALS (2-WEEK STUDY)
APPENDIX H 4	GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: DEAD AND MORIBUND ANIMALS (2-WEEK STUDY)
APPENDIX H 5	GROSS FINDINGS: SUMMARY, MOUSE: MALE: SACRIFICED ANIMALS (2-WEEK STUDY)
APPENDIX H 6	GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: SACRIFICED ANIMALS (2-WEEK STUDY)
APPENDIX I 1	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX I 2	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX J 1	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: MALE (2-WEEK STUDY)
APPENDIX J 2	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: FEMALE (2-WEEK STUDY)
APPENDIX K 1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: MALE: ALL ANIMALS (2-WEEK STUDY)
APPENDIX K 2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (2-WEEK STUDY)
APPENDIX K 3	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: MALE: DEAD AND MORIBUND ANIMALS (2-WEEK STUDY)
APPENDIX K 4	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: FEMALE: DEADAND MORIBUND ANIMALS (2-WEEK STUDY)
APPENDIX K 5	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: MALE: SACRIFICED ANIMALS (2-WEEK STUDY)
APPENDIX K 6	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: FEMALE: SACRIFICED ANIMALS (2-WEEK STUDY)
APPENDIX L 1	IDENTITY AND IMPURITY OF 2-HYDROXYETHYL ACRYLATE IN THE 2-WEEK DRINKING WATER STUDY

APPENDIXES (CONTINUED)

APPENDIX L 2	STABILITY OF 2-HYDROXYETHYL ACRYLATE IN THE 2-WEEK DRINKING WATER STUDY
APPENDIX L 3	CONCENTMOUSEION OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY
APPENDIX L 4	STABILITY OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY
APPENDIX M 1	METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
APPENDIX M 2	UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

APPENDIX A 1

CLINICAL OBSERVATION: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 2

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 1

									PAGE :
Clinical sign	Group Name	Admini	stration W	eek-dav			 <u> </u>		
· ·		1-1	1-3	1-7	2-3	2-7			
							 	· · · · · · · · · · · · · · · · · · ·	
EATH	Control	0	0	0	0	1	•		
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0				
			0	0		0			
	3200 ppm	0	0	0	0	0			•
	8000 ppm	0			0	1			
	20000 ppm	0	0	0	2	7			
UNCHBACK POSITION	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	Ō	0	ō	Ö	Ö			
	8000 ppm	0	0	0	Ō	0			
	20000 ppm	0	0	Ō	Ō	2			
TAXIC GAIT	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	0	0			
	8000 ppm	0	0	0	0	0			
	20000 ppm	0	0	0	0	1			
ILOERECTION	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	. 0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	Ō	0			
	8000 ppm	0	0	0	2	2			
	20000 ppm	0	0	7	7	3			
IRREGULAR BREATHING	Control	0	0	0	0	0			
The second secon	512 ppm	0 -	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	0	0			
	8000 ppm								
		0	0	0	0	0			
	20000 ppm	0	0	0	0	1			•
ABNORMAL RESPIRATION	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	ō			
	3200 ppm	0	0	0	0	0			
	8000 ppm	0	0	0	0	0			
	20000 ppm	0	0	0	ō	1			

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1 2

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 2 Clinical sign Group Name Administration Week-day _____

		1-1	1-3	1-7	2-3	2-7
SMALL STOOL	Control	0	0	0	0	0
	512 ppm	0	0	1	0	0
	1280 ppm	0	0	0	0	0
	3200 ppm	0	0	0	0	0
	8000 ppm	0	0	1	1	0
	20000 ppm	0	0	. 10	8	3
OLIGO-STOOL	Control	0	0	0	0	0
	512 ppm	0	0	0	0	Ö
	1280 ppm	0	0	0	0	0
	3200 ppm	0	0	1	1	0
	8000 ppm	0	0	1	2	2
	20000 ppm	0	10	10	8	3

(HAN190)

APPENDIX A 2

CLINICAL OBSERVATION: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 2

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

PAGE: 3 Clinical sign Group Name Administration Week-day _____

	- Croap Tallo	1-1	1-3	1-7	2-3	2-7	_		
DEATH	0	^	0	•	0	0			
DEATH	Control	0	0	0	0	0			
	512 ppm	Ü	Ü	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	0	0			
	8000 ppm	0	0	0	0	. 0			
	20000 ppm	0	0	1	10	10-			
PILOERECTION	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	0	0			
	8000 ppm	0	0	2	5	3			
	20000 ppm	0	0	9	0	-			
SMALL STOOL	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	0	0			
	8000 ppm	0	0	0	0	0			
	20000 ppm	0	0	9	0	_			
	Paga Phin	Ţ	•	-	-				
OLIGO-STOOL	Control	0	0	0	0	0			
	512 ppm	0	0	0	0	0			
	1280 ppm	0	0	0	0	0			
	3200 ppm	0	0	0	1	0			
	8000 ppm	0	0	1	1	0			
	20000 ppm	0	10	9	0	-			
	20000 Phili	•	20	-	Ŭ				

(HAN190)

APPENDIX B 1

BODY WEIGHT CHANGES :SUMMARY, MOUSE : MALE (2-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 2

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

(SUMMAR)

Group Name Administration week-day_ 1-3 1-7 2-3 2-7 0-0 Control 22.5 ± 0.8 22.8± 1.0 23.3 ± 1.1 23.0± 2.3 24.4± 1.2 512 ppm 22.5± 0.7 21.9± 2.1 22.9 ± 1.9 23.7± 0.9 24.6± 1.2 1280 ppm 22.5 ± 0.8 22.4 ± 0.8 23.2 ± 1.3 23.4 ± 1.2 24.1± 1.5 3200 ppm 22.5 ± 0.8 21.4± 1.3 22.2 ± 2.0 22.6 ± 1.8 22.8± 1.3 22.5 ± 0.8 8000 ppm 18.7± 0.8** 18.9± 1.9** 18.9± 2.4** 19.6± 2.1** 20000 ppm 22.5 ± 0.7 17.7± 0.6** 14.8± 0.8** 13.7± 0.7** 12.8生 0.2** Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 3

PAGE: 1

APPENDIX B 2

BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 2

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 2

Group Name	Administration	week-day				
	0-0	1-3	1-7	2-3	2-7	
Control	17.5± 0.5	16.7± 1.0	18.7± 0.8	18.9± 0.6	19.2± 0.9	
512 ppm	17.6± 0.4	17.9± 0.5	19.1± 0.6	19.0± 0.6	19.8± 0.5	
1280 ppm	17.5± 0.4	17.5± 0.4	19.1± 0.5	18.9± 0.4	19.6± 0.5	
3200 ppm	17.5± 0.4	17.0± 0.5	18.2± 0.7	18.1± 1.3	19.2± 0.8	
8000 ppm	17.5± 0.4	14.4± 0.6	14.5± 0.7**	15.1± 0.7**	15.6± 0.9**	
20000 ppm ·	17.5± 0.5	13.3± 0.4**	10.7± 0.3**	-	-	
Significant differ	rence; $*: P \leq 0.05$	** : P ≤ 0.01		Test of Dunnett		
(HAN260)						BAIS

APPENDIX C 1

WATER CONSUMPTION CHANGES : SUMMARY, MOUSE : MALE (2-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 2

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration v	reek-day(effective)			· · · · · · · · · · · · · · · · · · ·
	1-3 (3)	1-7(4)	2-3(3)	2-7 (4)	
Control	4.2± 0.6	4.5± 0.5	4.0± 1.3	4.5± 0.7	
512 ppm	3.3± 0.8	3.2± 1.1	3.6± 0.8	3.6± 0.9	
1280 ppm	3.1± 0.3	2.7± 0.5	2.7± 0.6	2.7± 0.6*	
3200 ppm	2.2± 0.5**	2.0± 0.5**	1.9± 0.3*	1.8± 0.3**	
8000 ppm	0.9± 0.3**	1.2± 0.3**	1.2± 0.3**	1.2± 0.3**	
20000 ppm	0.4± 0.1**	0.4生 0.0**	0.3± 0.1**	0.8± 0.7**	
Significant differe	ence; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett	

(HAN260)

APPENDIX C 2

WATER CONSUMPTION CHANGES : SUMMARY, MOUSE : FEMALE (2-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 2

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week-day(effective)		
	1-3 (3)	1-7 (4)	2-3 (3)	2-7(4)
Control	3.7± 1.0	4.5± 1.0	4.1± 0.7	4.2± 0.5
512 ppm	3.6± 0.2	3.2± 0.3	3.1± 0.2	3.3± 0.4
1280 ррш	3.1± 0.3	3.0± 0.3	2.7± 0.5*	2.8± 0.6*
3200 ppm	2.4± 0.4*	2.4± 0.4**	2.1± 0.9**	2.6± 1.0**
8000 ppm	0.8± 0.2**	1.1± 0.1**	1.1± 0.1**	1.6± 1.1**
20000 ppm	0.3± 0.1**	0.3± 0.0**	-	-
Significant difference	; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett

(HAN260)

BAIS 3

PAGE: 2

APPENDIX D 1

FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 2 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

SEX : MALE		1 1 (00 11)			rn	AGE :
Group Name	Administration w	eek-day(effective) 1-7(4)	2-3(3)	2-7 (4)		
Control	3.6± 0.6	3.8± 0.5	3.5± 0.9	3.8± 0.5		
512 ppm	3.5生 0.8	3.8± 0.7	4.1± 0.8	3.9± 0.3		
1280 ppm	3.7± 0.2	3.6± 0.5	3.8± 0.2	3.7± 0.3		
3200 ppm	3.2± 0.5	3.6± 0.6	3.8± 0.4	3.4± 0.4		
8000 ppm	2.1± 0.3**	3.5± 0.7	3.3± 0.7	3.2± 0.7*		
20000 ррт	1.9± 0.2**	1.6± 0.2**	2.0± 0.1**	1.9± 0.4**		٠
Significant differe	ence; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett		

(HAN260)

APPENDIX D 2

FOOD CONSUMPTION CHANGES : SUMMARY, MOUSE : FEMALE (2-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1

UNIT : g

REPORT TYPE : A1 2

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Group Name	Administration w 1-3(3)	veek-day(effective) 1-7(4)	2-3 (3)	2-7 (4)
Control	2.7± 0.4	3.6± 0.3	3.3± 0.4	3.3± 0.3
512 ppm	3.1± 0.3	3.6± 0.2	3.2± 0.3	3.4± 0.2
1280 ppm	2.8± 0.2	3.7± 1.2	3.1± 0.3	3.3± 0.2
3200 ppm	2.6± 0.2	3.3± 0.3	3.0± 0.3	3.3± 0.3
8000 ppm	1.6± 0.4**	2.4± 0.3**	2.8± 0.3**	2.9± 0.3**
20000 ppm	1.3± 0.2**	1.6± 0.4**	-	-
Significant differer	nce; *: P ≦ 0.05 *	* : P ≤ 0.01		Test of Dunnett

(HAN260)

APPENDIX E 1

CHEMICAL INTAKE CHANGES : SUMMARY, MOUSE : MALE (2-WEEK STUDY)

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

STUDY NO. ANIMAL SEX UNIT

: 0315 : MOUSE BDF1 : MALE : g/kg/day

Group Name	Administration ₁₋₄ Week-Day	1-7	2-4	2-7
Control	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
512 ppm	0.076 ± 0.016	0.070 ± 0.024	0.078 ± 0.017	0.075 ± 0.019
1280 ppm	0.176 ± 0.021	0.149 ± 0.024	0.144 ± 0.027	0.143 ± 0.027
3200 ppm	0.320 ± 0.066	0.278 ± 0.063	0.271 ± 0.029	0.254 ± 0.041
8000 ppm	0.367 ± 0.117	0.501 ± 0.095	0.498 ± 0.068	0.503 ± 0.093
20000 ppm	0.452 ± 0.072	0.542 ± 0.077	0.405 ± 0.168	1. 191 \pm 1. 119

APPENDIX E 2

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. ANIMAL SEX UNIT

: 0315 : MOUSE BDF1 : FEMALE : g/kg/day

Group Name	Administration ₁₋₄ Week-Day	1-7	2-4	2-7
Control	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
512 ppm	$0.\ 102\ \pm\ 0.\ 006$	0.086 ± 0.007	0.083 ± 0.007	0.085 ± 0.011
1280 ppm	$0.~224~\pm~0.~023$	0.203 ± 0.026	0.181 ± 0.034	0.182 ± 0.040
3200 ppm	0.451 ± 0.066	0.412 ± 0.060	0.367 ± 0.153	0.423 ± 0.153
8000 ppm	$0.~436~\pm~0.~072$	0.599 ± 0.050	0.605 ± 0.062	0.807 ± 0.573
20000 ppm	0.509 ± 0.084	0.602 ± 0.082		_

PAGE: 1

APPENDIX F 1

HEMATOLOGY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

ALL ANIMALS (2W)

HEMATOLOGY (SUMMARY)

SEX : MALE REPORT TYPE : A1

Group Name	NO, of Animals	RED BLO 1 O⁵∕µ		HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f l		MCH pg		MCHC g/dl		PLATELE 1 0³/µ	
Control	5	10.07±	0.62	15.3±	0.7	48.1±	3. 1	47.8±	0.7	15.2±	0, 6	31.8±	1.0	1122±	172
512 ppm	5	10.28±	0.33	15.6±	0.4	49.7±	1.0	48.4±	0.7	15.2±	0.3	31.3±	0.4	1129±	140
1280 ppm	5	10.61±	0. 51	15.7±	0.4	50.1±	1.5	47.3±	1.5	14.8生	0.4	31.4±	0.4	1100±	122
3200 ppm	5	10.47±	0. 34	15.8±	0.4	50.3±	2. 2	48.1±	0.9	15.1±	0.3	31.5±	0.7	1018±	65
8000 ppm	5	11.14±	0.57**	16.8±	0.5**	53.3±	1.9**	47.9±	1.0	15.0±	0.5	31.5±	0.8	1183±	142
20000 ppm	3	12.08±	0.40**	18.1±	0.4**	58.2±	2. 9**	48.2±	0.9	15.0±	0.2	31.2±	0.9	1099±	96

PAGE: 1

(HCLO70) BAIS 3

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (2W)

	OTHERS		LYMPHO	-	MONO		BASO		EOSINO	6)	WBC (% N-SEG	ferentia	Dif N-BAND		₩BC 1 0³/1	NO. of Animals	Group Name
0	0±	13	81±	1	3±	0	0±	1	2±	12	14±	0	0±	0.60	2.61±	5	Control
0	0±	2	86±	2	3±	0	0±	1	1±	2	10±	1	0±	2. 16	3.59±	5	512 ppm
0	ο±	11	72±	1	3±	0	0±	1	2±	11	22±	1	1±	1. 42	3.95±	5	1280 ppm
0	0±	4	82±	1	3±	0	0±	1	1±	4	13±	0	0±	0.74	3.06±	5	3200 ppm
0	0±	16	70±	1	3±	0	0±	1	1±	15	26±	1	1±	0.86	2,23±	5	8000 ppm
0	0±	19*	49±	2	3±	0	0±	0	0±	20*	47±	1	2±	0.11	0.23±	3	20000 ppm

(HCL070)

APPENDIX F 2

HEMATOLOGY: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX: FEMALE REPORT TYPE : A1

PAGE: 3

roup Name	NO. of Animals	RED BLO	ood cell	HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f l		MCH pg		MCHC g/dl		PLATELE 1 O³/w	
Control	5	10.29±	0. 22	15.5±	0, 4	48.2±	1. 4	46.8±	0.4	15.1±	0.2	32. 2±	0.4	1009±	98
512 ppm	5	10.16±	0. 25	15.3±	0.3	48.3±	1.1	47.6±	0.6	15.1±	0.2	31.7±	0.4	983±	80
1280 ppm	5	10.19±	0.26	15.3±	0.5	48.4±	1.7	47.5±	0.5	15.0±	0.1	31.7±	0.3	975±	66
3200 ppm	5	10.30±	0.34	15.2±	0.3	48.6±	1. 4	47.2±	0.5	14.8±	0.3	31. 4±	0.5	985±	33
8000 ppm	5	11.27±	0.37**	16.8±	0.4**	52.5±	2. 2**	46.5±	0.6	14.9±	0.2	32.0±	0.6	1033±	44
20000 ppm	0	-		-		-		_		_		-		-	

HEMATOLOGY (SUMMARY)

(HCL070)

ANIMAL : MOUSE Crj:BDF1

HEMATOLOGY (SUMMARY) ALL ANIMALS (2W)

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

Group Name	NO. of Animals	WBC 1 O³∕µl	Dif N-BAND	ferential	WBC (% N-SEG	5)	EOSINO		BASO		MONO		LYMPHO		OTHERS	
Control	5	2.90± 0.92	0±	0	11±	2	2±	1	0±	0	3±	2	83±	2	0±	0
512 ppm	5	3.14± 0.88	0±	0	9±	1	2±	1	0±	0	4 ±	2	85±	2	0±	0
1280 ppm	5	3.46± 1.05	0±	0	13±	4	2±	2	0±	0	3±	1	83±	5	0±	0
3200 ppm	5	3.48± 0.49	0±	1	11±	4	1±	0	0±	0	5±	2	83±	6	0±	0
8000 ppm	5	1.93± 0.38	0±	0	20±	3**	2±	0	0±	0	2±	1	75±	2	0±	0
20000 ppm	0	-	-		-		-		-		_		-		-	
Significan	t difference	; *: P ≤ 0.05	** : P ≦	0.01			Test	of Duni	nett							

(HCL070)

APPENDIX G 1

BIOCHEMISTRY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

SEX : MALE

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	albumin g/dl		A/G RAT	10	T-BILIF mg/dl	RUBIN	GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	PHOSPHOI mg/dl	LIPID
Control	5	4.9±	0.4	2.7±	0.1	1.3±	0.2	0.17±	0.01	268±	45	93±	14	187±	26
512 ppm	5	4.6±	0.2	2.7±	0.1	1.3±	0.1	0.16±	0.02	281±	22	80±	6	176±	19
1280 ppm	5	5.1±	0.7	2.8±	0.1	1.2±	0.2	0.17±	0.02	244±	51	102±	32	199±	44
3200 ppm	5	4.4±	0.0	2.5±	0.0	1.3±	0.0	0.17±	0.02	261±	24	78±	4	166±	9
8000 ppm	5	4.6±	0.5	2.6±	0.2	1.4±	0.1	0.24±	0. 10	227±	68	98±	5	178±	21
20000 ppm	3	5.0±	0.3	3.0±	0.0	1.6±	0.2	0.48±	0.16	94土	60**	119±	63	137±	56

BAIS 3 (HCL074)

ANIMAL : MOUSE Crj:BDF1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name NO. of GOT GPT LDH G-GTP CPK UREA NITROGEN SODIUM Animals IU/l IU/l IU/l IU/l IU/l mg/dl mEq/ℓ Control 5 $30 \pm$ 2 18± 3 207± 42 $2\pm$ $61 \pm$ 27 27.5± 10.7 1 147士 1 512 ppm 5 $36\pm$ 9 20± 3 $1\pm$ 206± 44 1 78± 35 $20.5 \pm$ 2.2 147± 1 1280 ppm 5 $33 \pm$ 5 18± 304± 147 $2\pm$ 1 57± 8 27.9± 2.5 146± 1 3200 ppm 5 $34\pm$ 4 $19\pm$ 2 $183 \pm$ 34 $2\pm$ 0 $65\pm$ 14 24.1± 3.8 147土 1 8000 ppm 5 50± 20* $22\pm$ 4 $275\pm$ 76 $3\pm$ 3 71± 20 41.0± 11.1 155± 6 20000 ppm 3 1721± 2750** 497± 790 4971 ± 7268* 15± 5 7077± 11922 115.2± 91.7 185± 11* Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HCL074)

BAIS 3

PAGE: 2

ANIMAL : MOUSE Crj:BDF1

MEASURE, TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

Group Name	NO. of Animals	POTASSI m Eq / .		CHLORIDE m Eq / l		CALCIUW mg/dl		INORGAN mg/dl	C PHOSPHORUS	
Control	5	5.4±	0,8	116±	2	9.4±	0.5	6.3±	1.0	
512 ppm	5	5.1±	0.5	117±	1	9.3±	0.3	7.8±	1.0	
1280 ppm	5	4.9±	0.2	113±	6	9.7±	0.7	6.9±	0.9	
3200 ppm	5	5.2±	0.2	117±	1	9.1±	0.2	7.4±	1.3	
8000 ppm	5	5.0±	0.5	123±	4*	9.0±	0.4	6.8±	0.4	
20000 ppm	3	4.6±	0.5	143±	9**	9.4±	0.2	13.4±	8.9	
Significan	t difference;	* : P ≤ (0. 05	**: P ≤ 0.01				Test of Dur	ett	
(HCL074)							• • • • • • • • • • • • • • • • • • • •			Be

(HCL074)

BAIS 3

PAGE: 3

APPENDIX G 2

BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX: FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

Group Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g/dl	!	A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	TEROL	PHOSPHOI mg/dl	JIPID
Control	5	4.7±	0.1	3.0±	0.1	1.7±	0.1	0.18±	0.01	253±	16	69±	5	135±	5
512 ppm	5	4.6±	0.1	2.9±	0.1	1.7±	0.1	0.19±	0.03	250±	12	72±	7	140±	13
1280 ppm	5	4.6±	0.1	2.9±	0.1	1.7±	0.1	0.20±	0. 03	253±	15	69±	5	141±	9
3200 ppm	5	4.4±	0.2**	2.7±	0.1	1.6±	0.1	0.17±	0.02	231±	6	78±	7	160±	14**
8000 ppm	5	4.5±	0.1*	2.7±	0.0	1.5±	0.1*	0.20±	0.06	187±	20**	103±	5**	197±	7**
20000 ppm	0	-		-		-		-		-		-			

(HCL074)

BAIS 3

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

PAGE: 5

Group Name	NO. of Animals	GOT IU/L		GPT I U/£		LDH IU/1		G-GTP I U/l		CPK IU/A	2	UREA NI mg∕dl	TROGEN	SODIUM m Eq / l	
Control	5	39±	7	24±	2	236±	55	1±	1	78±	51	21.2±	3. 2	147±	0
512 ppm	5	37±	1	22±	1	260±	78	1±	0	85±	46	21.5±	3. 3	147±	1
1280 ppm	, 5	37±	2	22±	3	287±	99	3±	4	128±	89	20.4±	3.0	147±	2
3200 ppm	5	33±	3	21±	5	216±	44	1±	2	83±	39	26.6±	5. 2	146±	2
8000 ppm	5	44±	10	25±	4	328±	50	3±	2	82±	28	41.4土	5.7**	155±	4
20000 ppm	0	-		-		-		-		~		_		-	
Significan	t difference;	*: P ≤ 0	. 05	** : P ≤ 0.0	1			Test of Duni	nett						<u> —</u>
(HCL074)															

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (2W)

Group Name	NO. of Animals	POTASSIUM m Eq / L	CHLORIDE m Eq / l	CALCIUM mg/dl	INORGANIC PHOSPHORUS mg/dl	
Control	5	5.0± 0.4	118± 1	9.1± 0.2	7.4± 1.0	
512 ppm	5	5.0± 0.3	118± 1	9.1± 0.2	7.2± 0.7	
1280 ppm	5	5.3± 0.8	118± 3	9.1± 0.3	7.1± 2.0	
3200 ppm	5	5.2± 0.3	118± 2	9.2± 0.2	6.4± 1.5	
8000 ppm	5	5.1± 0.2	123± 4**	9.5± 0.3	6.7± 0.9	
20000 ppm	0	-	-	-	-	
Significan	t difference;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett	
(HCL074)						BAIS

PAGE: 6

APPENDIX H 1

GROSS FINDINGS: SUMMARY, MOUSE: MALE ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 2W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
thymus	atrophic		0 (0)	0 (0)	0 (0)	0 (0)
spleen	black zone		0 (0)	1 (10)	1 (10)	0 (0)
kidney	white zone		1 (10)	0 (0)	0 (0)	0 (0)
	hydronephrosis		1 (10)	1 (10)	2 (20)	1 (10)

(HPT080)

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 2W)

REPORT TYPE : A1 SEX : MALE

PAGE: 2

		 _·		
thymus atm	rophic	2 (20)	10 (100)	
pleen bla	ack zone	1 (10)	1 (10)	
idney whi	ite zone	0 (0)	0 (0)	
hyd	dronephrosis	0 (0)	0 (0)	

(HPT080)

APPENDIX H 2

GROSS FINDINGS : SUMMARY, MOUSE : FEMALE ALL ANIMALS (2-WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 2W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 3

)rgan	Findings	Group Name NO. of Animals	Control 10 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
/mus	atrophic		0 (0)	0 (0)	0 (0)	0 (0)
een	black zone		0 (0) _	1 (10)	0 (0)	0 (0)
iney	hydronephrosis		0 (0)	0 (0)	0 (0)	1 (10)

(HPT080)

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY)

REPORT TYPE : A1

SEX : FEMALE

ALL ANIMALS (0- 2W)

Organ	Findings	Group Name NO. of Animals	8000 ppm 10 (%)	20000 ppm 10 (%)	
thymus	atrophic		0 (0)	10 (100)	
pleen	black zone		0 (0)	0 (0)	
kidney	hydronephrosis		0 (0)	0 (0)	
(HPT080)					BA

APPENDIX H 3

GROSS FINDINGS : SUMMARY, MOUSE : MALE
DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

SEX

REPORT TYPE : A1 : MALE

Organ	Findings	Group Name NO. of Animals	Control 1 (%)	512 ppm 0 (%)	1280 ppm 0 (%)	3200 ppm 0 (%)
thymus	atrophic		0 (0)	- (-)	- (-)	- (-)
kidney	white zone	·	1 (100)	- (-)	- (-)	- (-)
				•		
(HPT080)						BAIS

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

: MOUSE Crj:BDF1 DEAD AND MORIBUND ANIMALS (0- 2W)

SEX : MALE

(HPT080)

PAGE: 2

Organ	Findings	Group Name NO. of Animals	8000 ppm 1 (%)	20000 ppm 7 (%)
thymus	atrophic		1 (100)	7 (100)
kidney	white zone		0 (0)	0 (0)

APPENDIX H 4

GROSS FINDINGS : SUMMARY, MOUSE : FEMALE

DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1

SEX : FEMALE

)rgan	Findings	Group Name NO. of Animals	Control 0 (%)	512 ppm 0 (%)	1280 ppm 0 (%)	3200 ppm 0 (%)
hymus	atrophic		- (-)	- (-)	- (-)	- (-)
HPT080)					• •	

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name NO. of Animals	8000 ppm 0 (%)	20000 ppm 10 (%)	
thymus	atrophic		- (-)	10 (100)	
(HPT080)					BAIS 3

APPENDIX H 5

GROSS FINDINGS: SUMMARY, MOUSE: MALE: SACRIFICED ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 9 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
hymus	atrophic		0 (0)	0 (0)	0 (0)	0 (0)
een	black zone		0 (0)	1 (10)	1 (10)	0 (0)
dney	hydronephrosis		1 (11)	1 (10)	2 (20)	1 (10)

(HPT080)

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name NO. of Animals	8000 ppm 9 (%)	20000 ppm 3 (%)	
thymus	atrophic		1 (11)	3 (100)	
spleen	black zone		1 (11)	1 (33)	
kidney	hydronephrosis		0 (0)	0 (0)	
(HPT080)					BAIS

APPENDIX H 6

GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0315 ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name . NO. of Animals	Control 10 (%)	512 ppm 10 (%)	1280 ppm 10 (%)	3200 ppm 10 (%)
pleen	black zone		0 (0)	1 (10)	0 (0)	0 (0)
dney	hydronephrosis		0 (0)	0 (0)	0 (0)	1 (10)

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Pindings	Group Name NO. of Animals	8000 ppm 10 (%)	20000 ppm 0 (%)	
spleen	black zone		0 (0)	- (-)	
kidney	hydronephrosis		0 (0)	- (-)	
(HPT080)					BAI

APPENDIX I 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: MALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (2W)

STUDY NO. : 0315 ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : MALE

UNIT: g

											,	
5	24.6±	1. 4	0.059±	0.007	0.010±	0.002	0.194±	0.044	0.135±	0.011	0.155±	0.008
5	24.8±	0.9	0.059±	0.005	0.011士	0.007	0.203±	0.039	0.144±	0.013	0.144±	0.008
5	23.3±	1. 4	0.049±	0.012	0.009±	0.002	0.174±	0. 020	0.133±	0.014	0.140±	0.017
5	22.3±	0.6*	0.048±	0.005	0.009±	0.001	0.176±	0, 011	0.124±	0.010	0.135±	0.010*
5	19.0±	2. 1**	0.029±	0.010*	0.008±	0.001	0.156±	0.027	0.102±	0.012**	0.123±	0. 007**
3	12.8±	0.2**	0.004±	0.001**	0.006±	0.001	0.127±	0.013*	0.066±	0.004**	0.107±	0.014**
	5 5 5	5 24.8± 5 23.3± 5 22.3± 5 19.0±	5 24.8± 0.9 5 23.3± 1.4 5 22.3± 0.6* 5 19.0± 2.1**	5 24.8± 0.9 0.059± 5 23.3± 1.4 0.049± 5 22.3± 0.6* 0.048± 5 19.0± 2.1** 0.029±	5 24.8± 0.9 0.059± 0.005 5 23.3± 1.4 0.049± 0.012 5 22.3± 0.6* 0.048± 0.005 5 19.0± 2.1** 0.029± 0.010*	5 24.8± 0.9 0.059± 0.005 0.011± 5 23.3± 1.4 0.049± 0.012 0.009± 5 22.3± 0.6* 0.048± 0.005 0.009± 5 19.0± 2.1** 0.029± 0.010* 0.008±	5 24.8± 0.9 0.059± 0.005 0.011± 0.007 5 23.3± 1.4 0.049± 0.012 0.009± 0.002 5 22.3± 0.6* 0.048± 0.005 0.009± 0.001 5 19.0± 2.1** 0.029± 0.010* 0.008± 0.001	5 24.8± 0.9 0.059± 0.005 0.011± 0.007 0.203± 5 23.3± 1.4 0.049± 0.012 0.009± 0.002 0.174± 5 22.3± 0.6* 0.048± 0.005 0.009± 0.001 0.176± 5 19.0± 2.1** 0.029± 0.010* 0.008± 0.001 0.156±	5 24.8± 0.9 0.059± 0.005 0.011± 0.007 0.203± 0.039 5 23.3± 1.4 0.049± 0.012 0.009± 0.002 0.174± 0.020 5 22.3± 0.6* 0.048± 0.005 0.009± 0.001 0.176± 0.011 5 19.0± 2.1** 0.029± 0.010* 0.008± 0.001 0.156± 0.027	5 24.8± 0.9 0.059± 0.005 0.011± 0.007 0.203± 0.039 0.144± 5 23.3± 1.4 0.049± 0.012 0.009± 0.002 0.174± 0.020 0.133± 5 22.3± 0.6* 0.048± 0.005 0.009± 0.001 0.176± 0.011 0.124± 5 19.0± 2.1** 0.029± 0.010* 0.008± 0.001 0.156± 0.027 0.102±	5	5

PAGE: 1

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (2W)

PAGE: 2

Group Name	NO. of Animals	KIDN	NEYS	SPLI	EEN	LIV	ER	BRA:		
Control	5	0.482±	0. 198	0.062±	0. 012	1. 244±	0. 174	0.428±	0. 016	
512 ppm	5	0.364±	0.022	0.054±	0.007	1.216±	0.087	0.425±	0. 023	
1280 ppm	5	0.498±	0. 171	0.073±	0.026	1. 164±	0. 124	0.411±	0. 022	
3200 ppm	5	0.386±	0.019	0.048±	0.009	1.126±	0.097	0.431±	0. 007	
8000 ppm	5	0.345±	0.010	0.034±	0.007*	0.854±	0. 175**	0.401±	0. 007	
20000 ppm	3	0.233±	0.025*	0.009±	0. 002**	0.450±	0.036**	0.373±	0. 015**	

(HCL040)

APPENDIX I 2

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (2W)

PAGE: 3

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS
Control	5	18.9± 0.9	0.072± 0.011	0.011± 0.003	0.021± 0.005	0.104± 0.006	0.140± 0.011
512 ppm	5	19.5± 0.3	0.074± 0.007	0.010± 0.002	0.022± 0.005	0.107± 0.010	0.148± 0.017
1280 ppm	5	19.5± 0.7	0.077± 0.007	0.011± 0.004	0.021± 0.005	0.113± 0.008	0.137± 0.015
3200 ppm	5	19.2± 1.0	0.068± 0.008	0.010± 0.002	0.021± 0.002	0.108± 0.009	0.130± 0.009
8000 ppm	5	15.9± 0.9**	0.037± 0.011**	0.008± 0.002	0.013± 0.003*	0.088± 0.009*	0.118± 0.008*
20000 ppm	0		-	-	<u></u>	-	-

(HCL040) BAIS 3

STUDY NO. : 0315 ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (2W)

PAGE: 4

Group Name	NO. of Animals	KID	NEYS	SPLI	EEN	LIV	ER	BRA	IN		
Control	5	0. 243±	0.010	0.053±	0.006	0.862±	0.078	0.434±	0.008		
512 ppm	5	0. 257±	0.005	0.054±	0.009	0.940±	0.026	0.419±	0.013		
1280 ppm	5	0.270±	0.020	0.057±	0.001	0.985±	0.047**	0.435±	0.015		
3200 ppm	5	0.417±	0. 268**	0.055±	0.006	0.980±	0.061*	0.429±	0.016		
8000 ppm	5	0.255±	0.021	0.031±	0.007	0.722±	0. 059**	0.407±	0.015*		
20000 ppm	0	_		-		-		-		•	
Significan	t difference;	*; P ≤ 0.	05 **	: P ≤ 0.01			Te	est of Dunnet	t		

(HCL040)

APPENDIX J 1

ORGAN WEIGHT, RELATIVE: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (2W)

PAGE: 1

roup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	5	24.6± 1.4	0.238± 0.017	0.041± 0.010	0.790± 0.166	0.550± 0.031	0.631± 0.066	
512 ppm	5	24.8± 0.9	0.237± 0.015	0.046± 0.027	0.819± 0.145	0.579± 0.049	0.583± 0.033	
1280 ppm	5	23.3± 1.4	0.208± 0.037	0.041± 0.009	0.751± 0.105	0.573± 0.082	0.604± 0.081	
3200 ppm	5	22.3± 0.6*	0.217± 0.019	0.040± 0.007	0.791 ± 0.059	0.557± 0.049	0.605± 0.047	
8000 ppm	5	19.0± 2.1**	0.151± 0.042**	0.043± 0.008	0.837± 0.207	0.537± 0.025	0.657± 0.082	
20000 ppm	3	12.8± 0.2**	0.034± 0.004**	0.050± 0.004	0.988± 0.112	0.517± 0.029	0.832± 0.118**	

(HCL042)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : MALE

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (2W)

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	5	2.002± 0.980	0.253± 0.066	5.043± 0.522	1.746± 0.138	
512 ppm	5	1.467± 0.066	0.216± 0.023	4.904± 0.191	1.716± 0.085	
1280 ppm	5	2.168± 0.861	0.318± 0.132	4.986± 0.385	1.763± 0.065	
3200 ppm	5	1.732± 0.103	0.214± 0.039	5.043± 0.306	1.932± 0.054**	
8000 ppm	5	1.842± 0.251	0.178± 0.025*	4.454± 0.496	2. 138± 0. 267**	
20000 ppm	3	1.811± 0.168	0.073± 0.011**	3.507± 0.224**	2.909± 0.103**	

(HCL042)

BAIS:

APPENDIX J 2

ORGAN WEIGHT, RELATIVE : SUMMARY, MOUSE : FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (2W)

Body Weight THYMUS ADRENALS OVARIES HEART LUNGS NO. of Group Name (g) Animals 0.057 ± 0.013 0.110± 0.020 0.550 ± 0.020 0.739 ± 0.072 Control 5 18.9± 0.9 0.379 ± 0.041 0.551± 0.052 0.749 ± 0.088 512 ppm 5 19.5± 0.3 0.378± 0.037 0.049 ± 0.010 0.111 ± 0.028 0.105 ± 0.025 0.580 ± 0.036 0.058 ± 0.016 1280 ppm 19.5 ± 0.7 0.394 ± 0.045 0.566 ± 0.051 0.679 ± 0.062 0.052 ± 0.011 0.111 ± 0.012 5 19.2± 1.0 0.354 ± 0.040 3200 ppm 0.049 ± 0.009 0.080 ± 0.014 0.553 ± 0.056 0.744 ± 0.076 8000 ppm 15.9± 0.9** 0.229 ± 0.064** 20000 ppm Test of Dunnett Significant difference : $*: P \leq 0.05$ ** : $P \leq 0.01$

BAIS 3

PAGE: 3

(HCL042)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1
SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (2W)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	5	1.283± 0.063	0.280± 0.034	4.553± 0.374	2. 296± 0. 083	
512 ppm	5	1.323± 0.009	0.280± 0.045	4.834± 0.162	2.154± 0.082	
1280 ppm	5	1.386± 0.070*	0.292± 0.013	5.054± 0.246*	2.230± 0.097	
3200 ррш	5	2.222± 1.552**	0.285± 0.020	5.111± 0.098**	2.242± 0.064	
8000 ppm	5	1.604± 0.088**	0.194± 0.040**	4.538± 0.191	2.568± 0.142**	
20000 ppm	0	-	-	-	-	

(HCL042)

APPENDIX K 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: MALE: ALL ANIMALS

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 2W)

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

SEX : MALE

Organ	Group Name No. of Anim Grade	Control 3 3 4 (%) (%) (%) (%)	512 ppm 2 1 2 3 4 (%) (%) (%) (%)	1280 ppm 2 1 2 3 4 (%) (%) (%)	3200 ppm 2 1 2 3 4 (%) (%) (%) (%)
{Hematopoieti	c system}				
oone marrow	congestion	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
thymus	atrophy	<pre></pre>	< 2> 0 0 0 0 (0) (0) (0) (0)	< 2> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
spleen	atrophy	<pre></pre>	< 2> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>
	deposit of melanin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0)
(Circulatory	system)				
heart	necrosis	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
(Digestive s	vstem)				
liver	necrosis:single cell	<pre></pre>	<pre></pre>	<pre></pre>	(2> 0 0 0 0 (0) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	4 : Severe			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 2%)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1 SEX : MALE

(HPT150)

20000 ppm Group Name 8000 ppm No. of Animals on Study (%) Findings_ {Hematopoietic system} < 2> < 3> bone marrow 3 0 0 0 0 0 0 0 congestion (100) (0) (0) (0) (0)(0)(0)(0) < 3> < 2> thymus 0 0 0 0 0 0 3 0 atrophy (0)(0)(100)(0) (0)(0)(0)(0) < 2> < 3> spleen 2 0 0 0 0 0 0 atrophy (0)(0)(0)(0) (67) (0) (0) (0) 0 0 0 0 1 0 0 0 deposit of melanin (0)(0)(0)(0) (33) (0) (0) (0) (Circulatory system) ′ < 2> < 3> heart 0 0 0 0 0 0 0 0 necrosis (0)(0)(0)(0) (0)(0)(0)(0) (Digestive system) < 2> < 3> liver 1 0 0 0 0 0 0 0 necrosis:single cell (33) (0) (0) (0) (0)(0)(0)(0) 2 : Moderate 3 : Marked 4 : Severe 1 : Slight Grade a : Number of animals examined at the site (a) b: Number of animals with lesion b (c) c:b/a * 100

SEX : MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 2W)

Organ	Findings	Group Name No. of Animals on Grade	Control Study 3 1 2 3 (%) (%) (%)	4 (%)	_1	512 ppm 2 2 3 (%) (%)	(%)	1 (%)	1280 p 2 2 (%)		<u>4</u> (%)	1 (%)	3200 2 (%)	ppm 2 3 (%)	<u>4</u> (%)
(Urinary sy	stem)														
kidney	hydronephrosis		0 1 0 (0) (33) (0)	0 (0)		< 2> 0 0 0) (0)	0 (0)	0 (0)	(0)	0	0 (0)	0 (0)	0		0 (0)
Grade < a > b	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b/a*100		: Severe	,							-				
(HPT150)															

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 2W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1
SEX : MALE

(HPT150)

PAGE: 4

BAIS3

Organ	Findings	Group Name No. of Animals on Study Grade	8000 ppm 2 1 2 3 4 (%) (%) (%) (%)	20000 ppm 3 1 2 3 4 (%) (%) (%) (%)	
{Urinary sy	ystem)				
kidney	hydronephrosis		<pre></pre>	<pre></pre>	
Grade < a > b (c)	1: Slight 2: Moderate a: Number of animals examined at b: Number of animals with lesion c: b/a * 100		/ere		

APPENDIX K 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: FEMALE: ALL ANIMALS

(2-WEEK STUDY)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 5

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : FEMALE

ALL ANIMALS (0- 2%)

Organ	No	oup Name	512 ppm 2 1 2 3 4 (%) (%) (%) (%)	1280 ppm 2 1 2 3 4 (%) (%) (%) (%)	3200 ppm 2 1 2 3 4 (%) (%) (%) (%)
(Hematopoietic	system)				
oone marrow	congestion	<pre></pre>	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	(2> 0 0 0 0 (0) (0) (0) (0)
thymus	atrophy	< 2> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
spleen	atrophy	< 2> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	deposit of melanin	0 0 0 0 0 0 (0) (0)	1 0 0 0 (50) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0)
Digestive sy	stem}				
stomach	ulcer:forestomach	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
Urinary syst	em) .				
kidney	hydronephrosis	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
Grade < a > b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100	Marked 4 : Severe te			

: 0316

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 2%)

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

SEX : FEMALE

Organ	Group N No. of A Grade Findings	me 8000 ppm Animals on Study 2	20000 ppm 2 1 2 3 4 (%) (%) (%) (%)	
{Hematopoieti	ic system)			
bone marrow	congestion	<pre></pre>	<pre></pre>	
thymus	atrophy	(0) (0) (0) (0)	<pre></pre>	
spleen	atrophy	<pre></pre>	2 0 0 0 (100) (0) (0) (0)	
	deposit of melanin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
Digestive s	ystem)			
stomach	ulcer:forestomach	<pre></pre>	<pre></pre>	
Urinary sys	stem)			
kidney	hydronephrosis	<pre></pre>	<pre></pre>	
Grade < a > b (c)	1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	od 4: Severe		
(HPT150)		,		BA

APPENDIX K 3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: MALE: DEAD AND MORIBUND ANIMALS

(2-WEEK STUDY)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1 SEX : MALE

No	o. of Animals on Study 1	512 ppm 0 1 2 3 4 (%) (%) (%) (%)	1280 ppm 0 1 2 3 4 (%) (%) (%) (%)	3200 ppm 0 0 1 2 3 4 (%) (%) (%) (%)
system)				
congestion	0 0 0 0 (0) (0) (0) (0)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)
atrophy	<pre></pre>	(-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-)
atrophy	<pre></pre>	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	(-) (-) (-) (-)
deposit of melanin	0 0 0 0 0 (0) (0)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
system)				
necrosis	0 1 0 0 (0) (100) (0) (0)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)
em)				
hydronephrosis	<pre></pre>	(-) (-) (-)	(-) (-) (-) (-)	< 0> (-) (-) (-) (-)
	System) congestion atrophy atrophy deposit of melanin system) necrosis 1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion	No. of Animals on Study 1 2 3 4	No. of Antimuls on Study	No. of Animals on Study 1 2 3 4 1

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 2W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

SEX : MALE

Organ	N	roup Name 8000 ppm o. of Animals on Study 0 rade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 1 1 2 3 4 (%) (%) (%) (%)	
	111011180	VV VV VV		
(Hematopoieti	c system)			
bone marrow	congestion	< 0> (-) (-) (-) (-)	(1) 1 0 0 0 (100) (0) (0) (0)	
thymus	atrophy	< 0> (-) (-) (-) (-)	<pre></pre>	
spleen	atrophy	< 0> (-) (-) (-) (-)	(1) 1 0 0 0 (100) (0) (0) (0)	
	deposit of melanin	(-) (-) (-) (-)	1 0 0 0 (100) (0) (0) (0)	
{Circulatory	system}			
heart	necrosis	(-) (-) (-) (-)	0 0 0 0 (0) (0) (0) (0)	
Urinary sys	tem)			
kidney	hydronephrosis	(-) (-) (-) (-)	< 1> 0 0 0 0 (0) (0) (0) (0)	
Grade (a) b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100	: Marked 4 : Severe te		
(HPT150)				BA

APPENDIX K 4

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: FEMALE: DEAD AND MORIBUND ANIMALS

(2-WEEK STUDY)

. 0315

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

SEX : FEMALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 3

DEAD AND MORIBUND ANIMALS (0- 2W)

512 ppm 1280 ppm 3200 ppm Group Name Control 0 0 No. of Animals on Study 0 0 Grade (%) (%) (%) (%) (%) (%) Findings_ {Hematopoietic system} < 0> < 0> bone marrow congestion (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) < 0> < 0> < 0> < 0> thymus atrophy (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) < 0> - - - -< 0> < 0> spleen atrophy (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) 3 : Marked 4 : Severe Grade 1 : Slight 2 : Moderate a : Number of animals examined at the site < a > b : Number of animals with lesion b (c) c:b/a * 100 BAIS3 (HPT150)

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1 SEX : FEMALE

Group Name 8000 ppm 20000 ppm 2 No. of Animals on Study 2 3 4 Grade (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_ (%) {Hematopoietic system} < 2> bone marrow 1 1 0 0 congestion (-) (-) (-) (-) (50) (50) (0) (0) thymus < 0> < 1> 0 0 1 0 atrophy (-) (-) (-) (-) (0) (0) (100) (0) 2 0 0 0 < 0> spleen atrophy (-) (-) (-) (-) (100) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100 BAIS3 (HPT150)

APPENDIX K 5

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: MALE: SACRIFICED ANIMALS

(2-WEEK STUDY)

STUDY NO. : 0315 ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1
SEX : MALE

		512 ppm 2 1 2 3 4 (%) (%) (%) (%)	1280 ppm 2 1 2 3 4 (%) (%) (%) (%)	3200 ppm 2 1 2 3 4 (%) (%) (%) (%)
c system}				
congestion	<pre></pre>	<pre></pre>	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
atrophy	<pre></pre>	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
atrophy	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
ystem)				
necrosis:single cell	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>
1: Slight 2: Moderate 3: Mar a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	ked 4: Severe			
	No. of Grade Findings c system) congestion atrophy atrophy atrophy rstem) necrosis:single cell 1: Slight 2: Moderate 3: Mar a: Number of animals examined at the site b: Number of animals with lesion	No. of Animals on Study 2	No. of Animals on Study 2	No. of Animals on Study

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 2

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

SEX : MALE

SACRIFICED ANIMALS (2W)

Organ	Group No. of Grade	Animals on Study 2 1 2 3 4 (%) (%) (%) (%)	20000 ppm 2 1 2 3 4 (%) (%) (%) (%)	
Hematopoieti	c system)			
oone marrow	congestion	<pre></pre>	<pre></pre>	
thymus	atrophy	<pre></pre>	<pre></pre>	
spleen	atrophy	<pre></pre>	2> 1 0 0 0 (50) (0) (0) (0)	
(Digestive s	ystem]			
liver	necrosis:single cell	<pre></pre>	<pre></pre>	
Grade < a > b (c)	1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	ed 4: Severe		

APPENDIX K 6

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: FEMALE: SACRIFICED ANIMALS

(2-WEEK STUDY)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (2W)

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

(HPT150)

: FEMALE

PAGE: 3 SEX 1280 ppm 3200 ppm 512 ppm Group Name Control No. of Animals on Study Grade (%) (%) (%) Findings_ {Hematopoietic system} < 2> < 2> < 2> spleen 0 0 0 0 0 0 0 0 0 0 0 0 deposit of melanin (0)(0)(0)(0) (50) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (Digestive system) < 2> < 2> < 2> < 2> stomach 0 0 0 0 0 0 0 0 0 0 ulcer:forestomach 0 0 0 (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (Urinary system) < 2> < 2> < 2> < 2> kidney 0 0 0 0 0 0 hydronephrosis 0 0 0 0 (0)(0)(50)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 1 : Slight 2 : Moderate 3 : Marked 4 : Severe Grade a : Number of animals examined at the site (a) b b : Number of animals with lesion c:b/a * 100 (c) BAIS3

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (2\(\pi\))

Organ	No	roup Name 8000 ppm 2 2 3 4 (%) (%) (%) (%)	20000 ppm 0 1 2 3 4 (%) (%) (%)	
(Hematopoie	tic system}			
spleen	deposit of melanin	<pre></pre>	< 0> (-) (-) (-) (-)	
{Digestive	system;		·	
stomach	ulcer:forestomach	<pre></pre>	< 0> (-) (-) (-) (-)	
(Urinary sy	rstem)			
kidney	hydronephrosis ,	< 2> 0 0 0 0 0 0 0 0 0 0 0	< 0> (-) (-) (-) (-)	
Grade < a > b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100	Marked 4 : Severe		
(HPT150)				BAIS

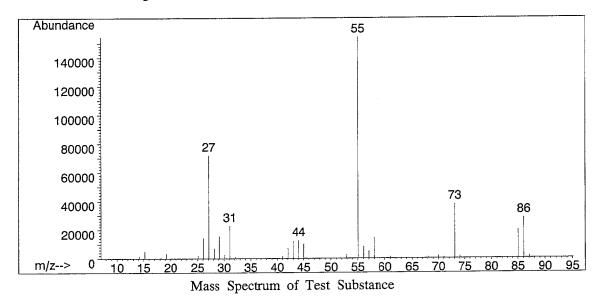
APPENDIX L 1

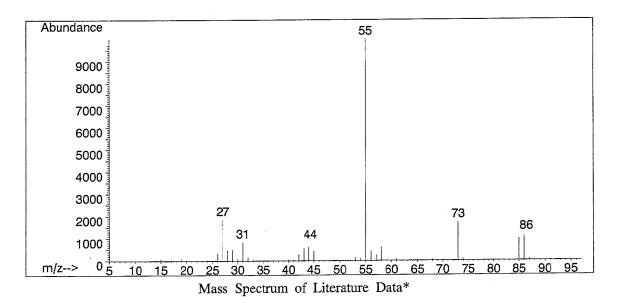
IDENTITY AND IMPURITY OF 2 - HYDROXYETHYL ACRYLATE IN THE 2-WEEK DRINKING WATER STUDY

IDENTITY AND IMPURITY OF 2-HYDROXYETHYL ACRYLATE IN THE 2-WEEK DRINKING WATER STUDY

Test Substance : 2-Hydroxyethyl Acrylate (Wako Pure Chemical Industries, Ltd.)

Lot No. : SKR5565


1. Spectral Data


Mass Spectrometry

Instrument : Hewlett Packard 5989B Mass Spectrometer

Ionization : EI (Electron Ionization)

Ionization Voltage : 70eV

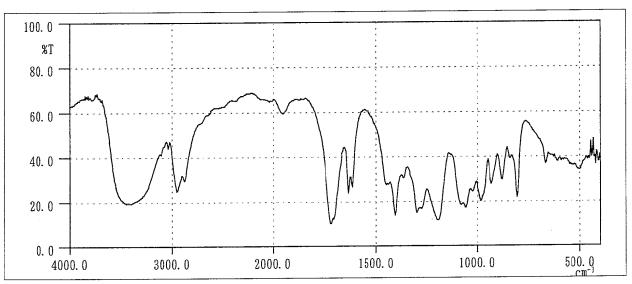
Results: The mass spectrum was consistent with literature spectrum.

(*Fred W. McLafferty (1994) Wiley Registry of Mass Spectral Data, 6th edition.

John Wiley and Sons, Inc. (U.S.), Entry Number 12762)

Infrared Spectrometry

Instrument :


: Shimadzu FTIR-8200PC Infrared Spectrometer

Cell

: KBr Liquid Cell

Resolution

: 2 cm⁻¹

Infrared Spectrum of Test Substance

T 1 1 7 1	* *
Determined Values	<u>Literature Values</u>
Wave Number (cm ⁻¹)	Wave Number (cm ⁻¹)
650~ 680	650~ 680
770~ 850	770~ 850
850~ 910	850~ 910
910~ 950	910~ 950
950~1010	950~1010
1010~1140	1010~1140
1140~1250	1140~1250
1250~1350	1250~1350
1350~1550	1350~1550
1580~1660	1580~1660
1660~1850	1660~1850
1920~2000	1920~2000
2750~3020	2750~3020
3060~3700	3060~3700

Results: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Impurity

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ × 30 m)

Column Temperature

: 180 °C

Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

 $: 1 \mu L$

Sample Name	Peak No.	Area (%)	Peak Name
Test Substance	1	0.843	Acrylic Acid
	2	96.338	2-Hydroxyethyl Acrylate
	3	2.766	Material which cannot be identified
	4	0.054	p-Methoxyphenol

Results: Gas chromatography indicated one major peak (peak No.2) and three impurities. It was identified only by comparing gas chromatograph with that of acrylic acid (peak No.1), material which cannot be identified (peak No.3) and p-methoxyphenol (peak No.4) in the 2-hydroxyethyl acrylate, the amount in the test substance were 0.843%, 2.766% and 0.054%.

3. Conclusions: The test substance was identified as 2-hydroxyethyl acrylate by the mass spectrum and the infrared spectrum. Gas chromatography indicated one major peak (peak No.2) and three impurities. It was identified only by comparing gas chromatograph with that of acrylic acid, material which cannot be identified and p-methoxyphenol, the amount in the test substance were 0.843%, 2.766% and 0.054%.

APPENDIX L 2

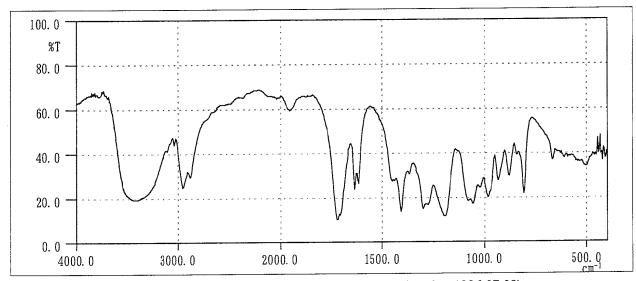
STABILITY OF 2 - HYDROXYETHYL ACRYLATE IN
THE 2-WEEK DRINKING WATER STUDY

STABILITY OF 2-HYDROXYETHYL ACRYLATE IN THE 2-WEEK DRINKING WATER STUDY

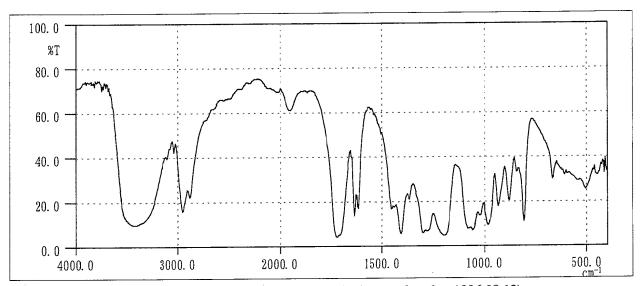
Test Substance : 2-Hydroxyethyl Acrylate (Wako Pure Chemical Industries, Ltd.)

Lot No. : SKR5565

1. Sample : This lot was used from 1996.7.23 to 1996.8.6. Test substance was stored


at room temperature.

2. Infrared Spectrometry


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

Infrared Spectrum of Test Substance (date analyzed: 1996.07.09)

Infrared Spectrum of Test Substance (date analyzed: 1996.08.13)

Results: The results of infrared spectrum did not change before and after the study.

3. Gas Chromatography

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ × 30 m)

Column Temperature : 180 ° C

Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

: 1 µL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
1996.07.05	1	2.750	0.843
	2	3.477	96.338
	3	7.748	2.766
	4	20.975	0.054
1996.08.13	1	2.726	0.841
	2	3.449	96.315
	3	7.687	2.793
	4	20.824	0.051

Results: Gas chromatography indicated one major peak (peak No.2) and three impurities (peaks No.1, No.3 and No.4 < 4% of total area) analyzed on 1996.7.5 and one major peak (peak No.2) and three impurities (peaks No.1, No.3 and No.4 < 4% of total area) analyzed on 1996.8.13. No new trace impurity peak in the test substance analyzed on 1996.8.13 was detected.

4. Conclusions: The test substance was stable for about 1 month at room temperature.

APPENDIX L 3

CONCENTMOUSEION OF 2 - HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY

CONCENTRATION OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY

Target Concentration							
Date Analyzed	512ª	1280	3200	8000	20000		
1996.07.22	506 (98.8) ^b	1250 (97.7)	3260 (102)	8150 (102)	20200 (101)		

^a ppm ^b %

Analytical Method

: The samples were analyzed by gas chromatography.

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ \times 30 m)

Column Temperature

: 180 °C

Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

: 1 µL

APPENDIX L 4

STABILITY OF 2 - HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY

STABILITY OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 2-WEEK DRINKING WATER STUDY

Date Prepared	Date Analyzed	Target Concentration		
		512ª	20000	
1996.07.05	1996.07.05	519 (100) ^b	20000 (100)	
	1996.07.12°	477 (91.9)	18700 (93.5)	

Analytical Method : The samples were analyzed by gas chromatography.

: Hewlett Packard 5890A Gas Chromatograph Instrument

: FFAP (0.53 mm $\phi \times 30$ m) Column

Column Temperature: 180 °C : 3 mL/min Flow Rate

: FID (Flame Ionization Detector) Detector

Injection Volume : 1 μL

a ppm
 b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

APPENDIX M 1

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2 - HYDROXYETHYL ACRYLATE

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)
Hematocrit (Hct)	Calculated as RBC×MCV/10 1)
Mean corpuscular volume (MCV)	Light scattering method 1)
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC×10 1)
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct×100 1)
Platelet	Light scattering method 1)
White blood cell (WBC)	Light scattering method 1)
Differential WBC	Pattern recognition method 2)
	(May-Grunwald-Giemsa staining)
Biochemistry	
Total protein (TP)	Biuret method 3)
Albumin (Alb)	BCG method 3)
A/G ratio	Calculated as Alb/(TP-Alb) 3)
T-bilirubin	Alkaline azobilirubin method 3)
Glucose	Enzymatic method (GLK·G-6-PDH) 3)
T-cholesterol	Enzymatic method (CE·COD·POD) 3)
Phospholipid	Enzymatic method (PLD·COD·POD) 3)
Glutamic oxaloacetic transaminase (GOT)	IFCC method 3)
Glutamic pyruvic transaminase (GPT)	IFCC method 3)
Lactate dehydrogenase (LDH)	Wroblewski-LaDue method 3)
γ -Glutamyl transpeptidase (γ -GTP)	L- γ -Glutamyl-p-nitroanilide method $^{3)}$
Creatine phosphokinase (CPK)	GSCC method 3)
Urea nitrogen	Enzymatic method (Urease · GLDH) 3)
Sodium	Ion selective electrode method 3)
Potassium	Ion selective electrode method 3)
Chloride	Ion selective electrode method 3)
Calcium	OCPC method 3)
Inorganic phosphorus	Enzymatic method (PNP·XOD·POD) 3)

- 1) Automatic blood cell analyzer (Technicon $H \cdot 1$: Technicon Instruments Corporation)
- 2) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi,Ltd.)
- 3) Automatic analyzer (Hitachi 7070 : Hitachi, Ltd.)

APPENDIX M 2

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2 - HYDROXYETHYL ACRYLATE

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	$\times 10^6/\mu$ L	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	$\times 10^3/\mu L$	0
White blood cell (WBC)	$\times 10^3/\mu \mathrm{L}$	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transaminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1