キノリンのマウスを用いた経口投与による 13 週間毒性試験(混水試験)報告書

試験番号:0290

APPENDIX

APPENDIXES

APPENDIX A 1	CLINICAL OBSERVATION: SUMMARY, MOUSE : FEMALE (13-WEEK STUDY)
APPENDIX B 1	BODY WEIGHT CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX B 2	BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX C 1	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX C 2	WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX D 1	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX D 2	FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX E 1	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX E 2	CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX F 1	HEMATOLOGY: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX F 2	HEMATOLOGY: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX G 1	BIOCHEMISTRY: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX G 2	BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)

APPENDIXES (CONTINUED)

APPENDIX H 1	URINALYSIS : SUMMARY, MOUSE : MALE (13-WEEK STUDY)
APPENDIX H 2	URINALYSIS : SUMMARY, MOUSE : FEMALE (13-WEEK STUDY)
APPENDIX I 1	GROSS FINDINGS: SUMMARY, MOUSE: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX I 2	GROSS FINDINGS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX J1	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX J 2	ORGAN WEIGHT: ABSOLUTE: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX K 1	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: MALE (13-WEEK STUDY)
APPENDIX K 2	ORGAN WEIGHT: RELATIVE: SUMMARY, MOUSE: FEMALE (13-WEEK STUDY)
APPENDIX L 1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX L 2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, MOUSE: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX M 1	IDENTITY AND IMPURITY OF QUINOLINE IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 2	STABILITY OF QUINOLINE IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 3	CONCENTRATION OF QUINOLINE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 4	STABILITY OF QUINOLINE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

APPENDIXES (CONTINUED)

APPENDIX N 1 METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK DRINKING WATER STUDY OF QUINOLINE

APPENDIX O 1 UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF QUINOLINE

APPENDIX A 1

CLINICAL OBSERVATION: SUMMARY, MOUSE: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 1

Clinical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	
PILOERECTION	Control	٥	0	0	0	0	0	0	٥	0	0	0	0	0	
1 I EOLINEO I TON	237 ppm	0	Ŏ	0	0	0	0	0	Ö	0	0	0	0	0	
	355 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	mqq 883	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1200 ppm	0	0	0	1	1	1	1	3	0	0	0	0	0	

APPENDIX B 1

BODY WEIGHT CHANGES :SUMMARY, MOUSE : MALE (13 - WEEK STUDY)

ANIMAL : MOUSE Crj:BDF1
UNIT : g REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administratio	n week					
	0	1	2	3	4	5	6
Contral	23.1± 0.8	24.3± 0.9	25.2± 1.1	26.5± 1.4	27.0± 1.6	27.9± 1.8	29.1± 2.0
237 ppm	23.1± 0.7	24.5± 0.9	25.3± 1.0	26.7± 1.2	26.9± 1.3	28.2± 1.3	29.4± 1.6
355 ppm	23.1± 0.8	23.8± 0.8	24.6± 1.0	25.7± 0.9	26.0± 1.1	26.8± 1.3	27.3± 1.4
533 ppm	23.1± 0.8	23.6± 1.4	24.2± 1.7	25.1± 1.2*	25.5± 1.0*	26.4± 1.1*	27.1± 0.8
800 ppm	23.1± 0.8	23.0± 0.6*	23.9± 0.8	24.5± 0.8**	24.8± 0.6**	25.5± 0.7**	25.7± 0.8**
1200 ppm	23.1± 0.8	21.3± 1.0**	21.8± 1.3**	22.5± 1.2**	22.8± 0.9**	23.3± 0.8**	24.0± 0.7**
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
HAN260)							

PAGE: 1

BODY WEIGHT CHANGES

ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

roup Name	Admin	istration	week											
	7		8		9		10		11		12		13	
Control	30.0±	2.0	31.0±	2.1	31.5±	2.1	32.9±	2.3	33.3±	2.5	34.3±	2.5	35.1±	2.6
237 ppm	30.1±	1.9	31.1±	2.0	31.8±	2.4	33.1±	2.2	33.7±	2.7	34.3±	2.6	35.4±	3.0
355 ppm	28.0±	1.5	28.7±	1.6	29.2±	1.7	30.5±	1.8	30.6±	1.9	31.2±	2.1	32.0±	2.2
533 ppm	27.3±	0.9	28.0±	0.6	28.4±	0.9	29.2±	0.9	29.7±	1.0	30.2±	1.0	30.8±	1.4
MQQ 008	25.9±	1.1**	26.3±	1.0**	26.4±	1.0**	27.1±	1.3**	27.2±	1.2**	27.4±	1.3**	27.9±	1.2**
1200 ppm	23.9±	0.6**	24.1±	0.5**	24.3±	0.5**	24.4±	0.5**	24.7±	0.7**	24.6±	0.7**	24.9±	0.7**
Significant difference;	*: P ≦	0.05	**: P ≤ 0.	01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Test of I	Ounnett						

(SUMMARY)

(HAN260)

BAIS3

APPENDIX B 2

BODY WEIGHT CHANGES: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 3

BAIS 3

Group Name	Administrat	an week					
	0	1	2	3	4	5	6
Control	18.9± 0.6	19.0± 0.8	19.7± 0.9	20.7± 0.6	21.0± 1.1	21.5± 0.7	22.1± 1.1
237 ppm	18.9± 0.6	19.3± 0.5	20.1± 0.6	21.2± 1.0	20.9± 0.6	21.5± 0.8	22.4± 0.8
355 ppm	18.9± 0.6	19.2± 0.8	20.1± 0.9	21.5± 0.9	20.7± 0.8	21.2± 0.7	22.4± 0.8
533 ppm	18.9± 0.6	19.4± 0.5	20.0± 0.9	20.8± 0.6	20.8± 0.6	21.9± 0.7	22.2± 0.6
800 ppm	18.9± 0.7	19.1± 0.6	19.9± 0.8	20.4± 0.5	20.4± 0.8	21.0± 0.8	22.0± 0.8
1200 ppm	18.9± 0.6	17.2± 1.1**	17.8± 1.1**	19.0± 1.2**	19.2± 1.4**	20.0± 1.1**	20.5± 1.1**
Significant differenc	e; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : MOUSE Crj:BDF1

UNIT : g
REPORT TYPE : A1 13

SEX: FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

TOUR Name	Administratio	on week					
	7	8	9	10	11	12	13
Control	22.1± 0.8	22.7± 1.3	23.1± 1.1	24.2± 1.5	23.1± 1.0	23.9± 1.1	24.7± 1.6
237 ppm	23.1± 1.1	23.3± 1.1	23.5± 0.8	23.5± 0.7	23.8± 0.9	24.7± 1.0	24.7± 0.7
355 ppm	22.6± 0.9	23.0± 0.8	23.4± 1.1	23.9± 0.9	23.3± 1.1	23.6± 1.0	23.9± 0.9
533 ppm	22.6± 0.7	22.9± 1.2	23.1± 0.7	23.4± 0.8	23.3± 0.9	23.6± 0.8	24.1± 1.1
Mag 008	21.7± 0.8	22.3± 1.0	22.5± 0.8	23.1± 0.7	23.0± 1.3	23.1± 0.9	23.8± 1.1
1200 ppm	21.0± 0.9*	21.2± 1.0**	21.6± 0.7**	22.1± 0.9**	22.0± 0.7	22.3± 0.8**	22.7± 0.8**
	,						
Significant difference ;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

PAGE: 4

APPENDIX C 1

WATER CONSUMPTION CHANGES : SUMMARY, MOUSE : MALE (13 - WEEK STUDY)

ANIMAL : Cri:BDF | MOUSE
UNIT : g
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration week						
	1	2	3	4	5	6	7
Control	4. 4	4.5	4.6	5.0	4.5	5.0	5.1
237ppm	4.2	4.3	4.2	4.7	5.0	5.3	5.7
355ppm	3.6	3.6	3.3	3.3	3.2	3.1	3.3
533ppm	3.1	2.9	2.8	2.9	3.0	3.0	3.1
800ppm	2.3	2.1	1.9	2.0	2.1	2.3	2.2
1200ppm	2.0	1.5	4.7	1.6	1.7	1.7	2.5

8	9	10	11	12	13	
5.0	5. 2	5.9	5. 2	5. 2	5.6	
5.8	5.8	5.3	5.6	7.4	4.8	
4.1	4.2	4.4	4.0	4.0	3.8	
3.2	3.2	3.1	2.9	3.0	2.8	
2.2	7.1	2.2	2.1	3.1	2.0	
5.3	2.1	1.9	1.8	1.8	1.8	
	5. 0 5. 8 4. 1 3. 2 2. 2	5. 0 5. 2 5. 8 5. 8 4. 1 4. 2 3. 2 3. 2 2. 2 7. 1	5. 0 5. 2 5. 9 5. 8 5. 8 5. 3 4. 1 4. 2 4. 4 3. 2 3. 2 3. 1 2. 2 7. 1 2. 2	5. 0 5. 2 5. 9 5. 2 5. 8 5. 8 5. 3 5. 6 4. 1 4. 2 4. 4 4. 0 3. 2 3. 2 3. 1 2. 9 2. 2 7. 1 2. 2 2. 1	5.0 5.2 5.9 5.2 5.2 5.8 5.8 5.3 5.6 7.4 4.1 4.2 4.4 4.0 4.0 3.2 3.2 3.1 2.9 3.0 2.2 7.1 2.2 2.1 3.1	5.0 5.2 5.9 5.2 5.2 5.6 5.8 5.8 5.3 5.6 7.4 4.8 4.1 4.2 4.4 4.0 4.0 3.8 3.2 3.2 3.1 2.9 3.0 2.8 2.2 7.1 2.2 2.1 3.1 2.0

APPENDIX C 2

WATER CONSUMPTION CHANGES: SUMMARY, MOUSE: FEMALE

: Crj:BDF, MOUSE : g : FEMALE ANIMAL UNIT SEX

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration wee	k					
	1	2	3	4	5	6	7
Control	5.0	10.8	5.2	5. 2	4.7	4.3	4. 2
237ppm	4.2	4.2	4.0	4.2	4.4	4.3	4.6
355ppm	3.6	3.6	3.3	3.3	3.2	3.1	3.3
533ppm	3.0	2.6	2.4	2.5	2.4	2.3	2.5
800ppm	8.5	5.1	3.7	2.7	1.9	1.9	1.9
1200ppm	1.6	1.4	1.2	1.3	1.2	1.3	1.3

oup Name	Administration wee	k					
	8	9	10	11	12	13	
Control	3.7	3.9	4.0	4.0	3.8	3.8	
237ppm	4.0	4.3	3.8	3.7	3.5	3.5	
355ppm	3.1	3.2	3.1	3.0	2.9	2.9	
533ppm	2.3	23.0	2.3	2.2	2.2	2.1	
800ppm	1.8	1.8	4.8	1.8	1.7	1.7	
1200ppm	1.3	1.3	1.3	1.3	1.2	1.2	

APPENDIX D 1

FOOD CONSUMPTION CHANGES: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name Administration week

PAGE: 1

BAIS 3

urbup name	Administration	week					
	1	2	3	4	5	6	7
Control	3.7± 0.1	3.7± 0.3	3.8± 0.3	3.7± 0.3	3.7± 0.3	3.8± 0.3	3.8± 0.3
237 ppm	3.8± 0.2	3.7± 0.2	3.8± 0.2	3.8± 0.2	3.9± 0.2	3.9± 0.3	3.8± 0.2
355 ppm	3.6± 0.2	3.6± 0.2	3.5± 0.2	3.6± 0.2	3.6± 0.2	3.6± 0.2	3.5± 0.2
533 ppm	3.6± 0.3	3.3± 0.4*	3.4± 0.2**	3.4± 0.2*	3.5± 0.2*	3.5± 0.1**	3.4生 0.2**
800 ppm	3.4± 0.2*	3.3± 0.2**	3.3± 0.1**	3.4± 0.1**	3.4± 0.2**	3.3± 0.3**	3.2± 0.3**
1200 ppm	3.0± 0.3**	3,2± 0.3**	3.2± 0.3**	3.4± 0.2**	3.3± 0.2**	3.4± 0.3**	3.3± 0.3**

Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett

ANIMAL : MOUSE Crj:BDF1
UNIT : g
REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Froup Name	Administration	week					
	8	9	10	11	12	13	
Control	3.9± 0.3	3.8± 0.2	4.0± 0.3	3.9± 0.3	3.9± 0.3	3.8± 0.2	
237 ppm	4.1± 0.3	4.0± 0.4	4.0± 0.3	4.0± 0.3	3.9± 0.3	3.9± 0.3	
355 ppm	3.8± 0.2	3.6± 0.3	3.7± 0.2	3.7± 0.2	3.7± 0.3	3.7± 0.2	
533 ppm	3.5± 0.1**	3.4± 0.1**	3.6± 0.2**	3.5± 0.2**	3.5± 0.2**	3.4± 0.2**	
mag 008	3.3± 0.2**	3.2± 0.2**	3.4± 0.1**	3.3± 0.2**	3.3± 0.2**	3.2± 0.2**	
1200 ppm	3.3± 0.3**	3.2± 0.2**	3.4± 0.3**	3.3± 0.3**	3.3± 0.3**	3.3± 0.3**	
Significant differ	rence; $*: P \leq 0.05$	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

APPENDIX D 2

FOOD CONSUMPTION CHANGES : SUMMARY, MOUSE : FEMALE (13 - WEEK STUDY)

STUDY NO.: 0290 ANIMAL: MOUSE Crj:BDF1 FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

-i:BDF1 ALL A

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

roup Name	Administration	week					
	1	2	3	4	5	6	7
Cantrol	3.0± 0.2	3.2± 0.2	3.4± 0.2	3.4± 0.2	3.6± 0.2	3.7± 0.2	3.6± 0.2
237 ppm	3.1± 0.2	3.3± 0.1	3.4± 0.2	3.4± 0.2	3.6± 0.2	3.8± 0.1	3.8± 0.2
355 ppm	3.1± 0.2	3.4± 0.2	3.4± 0.2	3.4± 0.2	3.5± 0.2	3.7± 0.2	3.6± 0.2
533 ppm	3.1± 0.2	3.1± 0.1	3.2± 0.2	3.3± 0,2	3.5± 0.1	3.5± 0.2	3.5± 0.2
800 ppm	2.9± 0.2	3.0± 0.2	3.1± 0.2*	3.1± 0.2**	3.3± 0.2*	3.4± 0.2**	3.3± 0.1**
1200 ppm	2.6± 0.2**	2.7± 0.2**	3.0± 0.3**	2.9± 0.3**	3.1± 0.2**	3.2± 0.3**	3.2± 0.2**
	·						
Significant differenc	ce; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			
INNSCO)	*						

(HAN260)

BAIS3

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1
UNIT : g

REPORT TYPE : A1 13 SEX : FEMALE

PAGE: 4

Group Name	Administration (week	······································			***************************************	
	8	9	10	11	12	13	
Control	3.7± 0.3	3.7± 0.3	3.9± 0.3	3.6± 0.2	3.8± 0.2	3.8± 0.3	
237 ppm	3.7± 0.3	3.7± 0.2	3.8± 0.2	3.8± 0.2*	3.8± 0.1	3.7± 0.2	
355 ppm	3.7± 0.2	3.8± 0.1	3.7± 0.2	3.6± 0.2	3.6± 0.1	3.6± 0.2	
533 ppm	3.5± 0.2	3.5± 0.1	3.6± 0.1	3.6± 0.2	3.6± 0.2	3.5± 0.2*	
mqq 008	3.3± 0.1**	3.5± 0.1	3.4± 0.1**	3.5± 0.2	3.5± 0.2**	3.5± 0.3*	
200 ppm	3.2± 0.2**	3.3± 0.2**	3.3± 0.2**	3.3± 0.2**	3.3± 0.2**	3.4± 0.1**	
Significant differen	nce; *:P≦0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

APPENDIX E 1

CHEMICAL INTAKE CHANGES : SUMMARY, MOUSE : MALE (13 - WEEK STUDY)

ANIMAL

: Crj:BDF, MOUSE : mg/kg/day : MALE UNIT SEX

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration (w	eeks)					
	1	2	3	4	5	6	7
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0
237ppm	40.5	39.3	35.9	37.0	37.1	34.4	35.9
355ppm	53.3	52.4	45.0	44.7	42.4	40.1	42.2
533ppm	67.1	57.9	51.3	52.3	47.9	45.5	48.8
800ppm	295.2	170.2	122.2	88.5	59.2	57.8	59.6
1200ppm	90.1	75.5	66.3	69.2	62.5	65.7	66.7

oup Name	Administration	(weeks)				
	8	9	10	11	12	13
Control	0.0	0.0	0.0	0.0	0.0	0.0
237ppm	30.7	32.3	27.2	26.2	24.3	23.2
355ppm	38.7	37.7	36.2	34.8	33.5	31.9
533ppm	44.6	44.0	42.2	39.7	39.3	35.8
800ppm	56.1	54.1	53.1	52.5	50.1	48.7
1200ppm	64.7	64.9	63.2	61.8	60.6	59.2

APPENDIX E 2

CHEMICAL INTAKE CHANGES: SUMMARY, MOUSE: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

STUDY NO. : 0290
ANIMAL : Crj:BDF | MOUSE
UNIT : mg/kg/day
SEX : FEMALE

ALL ANIMALS

roup Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.0	0.0	0.0	0.0	0.0	0.0	0.0
237ppm	51.9	51.2	47. 4	53.6	55.6	56.5	58.6
355ppm	66.8	74.9	63.5	62.7	62. 9	65.0	64.4
533ppm	86.3	78.0	70.7	75.4	73.0	72.0	73.8
800ppm	94.5	83.3	75.6	79.6	80.5	82.1	79.5
1200ppm	141.5	102.1	299.5	98.2	100.3	102.0	141.2

8	9	10	11	12	13	
0.0	0.0	0.0	0.0	0.0	0.0	
59.1	58.2	53.7	55.6	71.1	46.2	
63.1	64.4	65.1	61.4	59.5	56.4	
74.1	73. 2	70.6	66.7	67.1	62.6	
78.9	251.4	75.2	73.0	105.9	67.2	
300.8	116.7	103.2	99.0	97.6	95.9	
	8 0. 0 59. 1 63. 1 74. 1 78. 9	8 9 0.0 0.0 59.1 58.2 63.1 64.4 74.1 73.2 78.9 251.4	8 9 10 0.0 0.0 0.0 59.1 58.2 53.7 63.1 64.4 65.1 74.1 73.2 70.6 78.9 251.4 75.2	8 9 10 11 0.0 0.0 0.0 0.0 59.1 58.2 53.7 55.6 63.1 64.4 65.1 61.4 74.1 73.2 70.6 66.7 78.9 251.4 75.2 73.0	8 9 10 11 12 0.0 0.0 0.0 0.0 0.0 59.1 58.2 53.7 55.6 71.1 63.1 64.4 65.1 61.4 59.5 74.1 73.2 70.6 66.7 67.1 78.9 251.4 75.2 73.0 105.9	8 9 10 11 12 13 0.0 0.0 0.0 0.0 0.0 0.0 59.1 58.2 53.7 55.6 71.1 46.2 63.1 64.4 65.1 61.4 59.5 56.4 74.1 73.2 70.6 66.7 67.1 62.6 78.9 251.4 75.2 73.0 105.9 67.2

APPENDIX F 1

HEMATOLOGY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 1 Group Name NO. of RED BLOOD CELL HEMOGLOBIN HEMATOCRIT MCV MCH MCHC PLATELET Animals 1 06/μl g/dl % f Q g/dl 1 O³/μl рg Control 8 10.77± 0.19 16.1± 0.3 49.0± 1.1 45.5± 0.5 15.0± 0.3 32.9 ± 0.7 1385± 75 237 ppm 9 10.51± 0.45 $15.9 \pm$ 0.2 $48.4 \pm$ 1.4 46.1± 1.0 $15.1 \pm$ 0.7 $32.8 \pm$ 1.0 $1391 \pm$ 128 355 ppm 8 10.56± 0.48 16.0± 0.5 48.3± 2.4 45.7士 0.4 $15.2 \pm$ 0.6 $33.2\pm$ 1.4 1453士 60 7 533 ppm 10.96± 0.29 16.1± 0.4 49.7± 1.3 45.4± 0.7 $14.7 \pm$ 0.3 $32.4 \pm$ 0.4 1516± 79* 800 ppm 8 10.76± 0.28 16.1± 0.4 $49.7 \pm$ 1.2 46.1± 0.5 15.0± 0.3 $32.5 \pm$ 0.3 1436土 87 1200 ppm 8 10.45± 0.44 15.9± 0.5 47.7± 2.0 45.7士 0.3 15.2± 0.5 33.3± 1.0 $1339 \pm$ 72 Significant difference; $*:P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett

(HCL070) BAIS3

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX : MALE

REPORT TYPE : A1

PAGE: 2

Group Name	NO. of Animals	WBC 1 O³∕µl		Dif N-BAND	ferentia	l WBC (% N-SEG	6)	EOSINO		BASO		MONO		LYMPHO		OTHERS	
		10,7		N DIND		N OEG		LOSTRO		DRSO		MONO		Linrho		UIDENS	
Control	8	1.48± 0	0.46	0±	0	12±	2	1±	1	0±	0	3±	1	85±	3	0±	0
237 ppm	9	1.43± 0	0.47	0±	0	12±	4	1±	1	0±	0	3±	2	85±	6	0±	0
355 ppm	8	1.45± 0	0.45	0±	0	13±	4	1±	1	0±	0	3±	2	84±	5	0±	0
533 ppm	7	1.15± 0	0.20	0±	0	14±	2	1±	1	0±	0	3±	1	83±	1	0±	0
800 ppm	8	1.36± 0	0.66	0±	0	10±	2	1±	1	0±	0	2±	1	88±	3	0±	0
1200 ppm	8	0.79± 0	0.42*	0±	0	12±	4	0±	0	0±	0	2±	1	86±	5	0±	0
Significar	nt difference ;	*: P ≤ 0	0.05	**: P ≦	0.01			Test	of Dunr	nett							
(HCL070)																	BAIS

APPENDIX F 2

HEMATOLOGY: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 3 NO. of Group Name RED BLOOD CELL HEMOGLOBIN HEMATOCRIT MCV MCH MCHC PLATELET Animals 106/µl g /dl % f l g/dl 1 03/Ul рg Control 8 10.70± 0.12 16.1± 0.4 48.9± 0.7 45.7± 0.7 15.0± 0.3 32.9 ± 0.6 1231 ± 67 237 ppm 10 10.52± 0.52 16.4± 0.4 $48.2 \pm$ 2.5 45.9± 0.4 $15.6 \pm$ 0.7 $34.0 \pm$ 1.6 $1166 \pm$ 146 355 ppm 8 10.53± 0.29 16.2± 0.5 48.9± 1.3 $46.5 \pm$ 0.4 $15.3 \pm$ 0.3 $33.0 \pm$ 0.7 $1201 \pm$ 179 533 ppm 10 10.45± 0.35 $16.2 \pm$ 0.5 $48.7 \pm$ 1.7 46.6± 0.7** $15.5 \pm$ 0.3** $33.3 \pm$ 0.5 1139± 243 7 800 ppm 10.47 ± 0.32 16.1± 0.5 48.9± 2.0 $46.7 \pm$ 0.7** $15.4 \pm$ 0.1 $32.9 \pm$ 0.7 $1160 \pm$ 47 1200 ppm 8 10.33± 0.28 16.0 ± 0.3 47.9± 1.5 46.4± 0.5 $15.5 \pm$ 0.3* 33.5 ± 0.6 1228± 52 Significant difference; $*: P \leq 0.05$ $** : P \leq 0.01$ Test of Dunnett

(IICL070) BAIS 3

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

Group Name	NO. of Animals	WBC 1 O³∕		Dif N-BAND	fferentia	L WBC (% N-SEG	5)	EOSINO		BASO		MONO		LYMPHO		OTHERS	
Cantral	8	1.52±	0.79	0±	0	13±	5	1±	1	0±	0	3±	1	83±	4	0±	0
237 ppm	10	1.47±	0.76	0±	0	11±	4	1±	1	0±	0	2±	1	86±	4	0±	0
355 ppm	8	1.17±	0.86	0±	0	14±	4	1±	1	0±	0	3±	1	83±	4	0±	0
533 ppm	10	1.32±	0.83	0±	0	12±	3	1±	1	0±	. 0	2±	1	85±	4	0±	0
800 ppm	7	1.31±	0.64	0±	0	14±	5	0±	1	0±	0	2±	1	84±	6	0±	0
1200 ppm	8	0.94±	0.76	1±	1	15±	5	0±	1	0±	0	2±	1	82±	5	0±	0
Significan	nt difference ;	*: P ≦	≦ 0.05	**: P ≦	0.01	-		Test	of Dunr	ett							
(HCL070)																	BAIS:

APPENDIX G 1

BIOCHEMISTRY: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1 PAGE: 1

Group Name	NO. of Animals	g/dl g/dl		g/dl ALBUMIN		A/G RAT	.10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg∕dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	9	5.3±	0.1	2.9±	0.1	1.3±	0.1	0,22±	0.04	232±	42	88±	5	48±	13
237 ppm	9	5.4±	0.3	3.0±	0.2	1.3±	0.1	0.21±	0.02	221±	46	88±	8	48±	10
355 ppm	9	5.4±	0.3	3.0±	0.1	1.3±	0.1	0.21±	0.02	215±	25	87±	5	41±	8
533 ppm	7	5.4±	0.2	3.0±	0.1	1.3±	0.1	0.20±	0.02	230±	33	85±	4	37主	6
mqq 008	8	5.1±	0.3	2.9±	0.2	1.4±	0.1	0.21±	0.01	218±	45	81±	8	31±	12**
1200 ppm	8	4.8±	0.3**	2.8±	0.2	1.4±	0.1**	0.22±	0.02	197±	34	77±	14*	20±	4**

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME : 1 SEX : MALE

REPORT TYPE : A1

PAGE: 2

roup Name	NO. of Animals	PHOSPHO mg/dl		GOT IU/Q),	GPT IU/l		LDH IU/s		ALP IU/0		G−GTP IU∕£		CPK IU/s).
Control	9	175±	9	44±	5	17±	2	221±	44	162±	10	2±	1	67±	23
237 ppm	9	181±	21	45±	6	19±	2	219±	27	165±	19	2±	ī	77±	35
355 ppm	9	178±	12	44±	4	17±	2	214±	29	176±	12	2±	I	62±	15
533 ppm	7	174±	9	43±	5	17±	3	206±	48	200±	23**	1±	1	56±	9
800 ppm	8	169±	18	47±	9	20±	7	244±	76	198士	16**	2±	1	113±	86
1200 ppm	8	149±	29*	50±	11	21±	4	227±	62	201±	20**	1土	1	105±	67

(HCL074)

BAIS3

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE: A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 3 Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg/dl mEq/QmEq/l mEq/l mg/dl mg/dl Control 9 4.7± 0.5 25.0± 2.5 154士 2 $123\pm$ 8.9± 0.3 6.9± 0.9 237 ppm 9 23.7± 2.8 154± 1 4.8± 0.6 123± 2 $9.0 \pm$ 0.2 7.6 ± 1.3 355 ppm 9 27.2± 3.9 154± 1 $4.7\pm$ 0.4 $123\pm$ 2 8.9± 0.2 $6.4 \pm$ 0.9 533 ppm 7 26.3± 4.7 154± $4.6 \pm$ 0.5 123± 3 9.0± 0.2 6.4± 1.0 8 800 ppm $23.5 \pm$ 3.8 $154 \pm$ 2 4.9± 0.7 $123 \pm$ 8,9± 0.2 $6.5\pm$ 1.2 1200 ppm 8 25.8± 2.2 155± 1 4.8± 0.6 $123 \pm$ 2 8.6± 0.3 7.2 ± 1.0 Significant defference; $*: P \leq 0.05$ $** : P \leq 0.01$ Test of Dunnett

(IICL074)

BAIS3

APPENDIX G 2

BIOCHEMISTRY: SUMMARY, MOUSE: FEMALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1 SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

Group Name	NO. of Animals	g/dl g/dl	PROTEIN	ALBUMI≀ g∕dl		A/G RA	LIO	T-BILI mg/d&		GLUCOSE mg∕dl		T-CHOLES mg∕dl	STEROL	TRIGLYCE mg∕dl	ERIDE
Control	9	5.3±	0.1	3.2±	0.1	1,5±	0.1	0.23±	0.08	173±	26	80±	8	23±	5
237 ppm	10	5.4±	0.1	3.3±	0.1	1.5±	0.0	0.20±	0.02	179±	22	78±	11	17±	5
355 ppm	10	5.4±	0.1	3.2±	0.1	1.6±	0.1	0.22±	0.04	183±	35	76±	8	17±	6
533 ppm	10	5.3±	0.1	3.2±	0.1	1.5±	0.1	0.21±	0.03	176±	15	78±	10	18±	7
800 ppm	7	5.0±	0.1**	3.0±	0.1*	1.5±	0.1	0.20±	0.02	189±	34	74±	9	17±	7
1200 ppm	9	4.9±	0.2**	3.0±	0.1**	1.6±	0.1	0.20±	0.02	183±	20	73±	9	13±	4**
Significan	t defference;	*: P ≦ ().05 *	*: P ≤ 0.0	01			Test of Du	nnett			····-			
HCL074)								***							 ,

ANIMAL : MOUSE Crj:BDF1
MEASURE. TIME : 1

SEX : FEMALE REPORT TYPE : A1 BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

REPORT T	YPE: A1													PAGE:
NO. of Animals	PHOSPHO mg/dl	LIPID	GOT I U / S).	GPT I U / Q		LDH IU/s).	ALP IU/s).	G-GTP I U∕ Ձ	,	CPK I U/	Q
9	157±	15	51±	7	20±	5	257±	98	246±	19	1±	1	156±	205
10	148±	24	50±	7	22±	4	229±	47	260±	33	1±	1	83±	36
10	143±	22	60±	9	25±	4	265±	49	276±	24	2±	1	163±	129
10	146±	22	58±	8	25±	3	256士	61	285±	20	1±	1	74±	26
7	132±	24	48±	5	24±	5	213±	31	267±	38	1±	1	71±	27
9	123±	26**	54±	13	28±	8**	232±	56	274±	35	1±	1	107±	47
	NO. of Animals 9 10 10 7	NO. of PHOSPHO mg / dℓ 9 157± 10 148± 10 146± 7 132±	NO. of PHOSPHOLIPID mg/dℓ 9 157± 15 10 148± 24 10 143± 22 10 146± 22 7 132± 24	NO. of PHOSPHOLIPID GOT I U / 1 9 157± 15 51± 10 148± 24 50± 10 143± 22 60± 10 146± 22 58± 7 132± 24 48±	NO. of Animals PHOSPHOLIPID GOT I U / 2 9 157± 15 51± 7 10 148± 24 50± 7 10 143± 22 60± 9 10 146± 22 58± 8 7 132± 24 48± 5	NO. of Animals PHOSPHOLIPID mg/dl GOT I U/l GPT I U/l 9 $157 \pm$ 15 $51 \pm$ 7 $20 \pm$ 10 $148 \pm$ 24 $50 \pm$ 7 $22 \pm$ 10 $143 \pm$ 22 $60 \pm$ 9 $25 \pm$ 10 $146 \pm$ 22 $58 \pm$ 8 $25 \pm$ 7 $132 \pm$ 24 $48 \pm$ 5 $24 \pm$	NO. of Animals $\frac{PHOSPHOLIPID}{mg/dR}$ $\frac{GOT}{IU/Q}$ $\frac{GPT}{IU/Q}$ $\frac{GPT}{IU$	NO. of Animals PHOSPHOLIPID mg/dR GOT I U/R GPT I U/R LDH I U/R 9 $157\pm$ 15 $51\pm$ 7 $20\pm$ 5 $257\pm$ 10 $148\pm$ 24 $50\pm$ 7 $22\pm$ 4 $229\pm$ 10 $143\pm$ 22 $60\pm$ 9 $25\pm$ 4 $265\pm$ 10 $146\pm$ 22 $58\pm$ 8 $25\pm$ 3 $256\pm$ 7 $132\pm$ 24 $48\pm$ 5 $24\pm$ 5 $213\pm$	NO. of Animals PHOSPHOLIPID mg/dl GOT I U/l GPT I U/l LDH I U/l 9 $157\pm$ 15 $51\pm$ 7 $20\pm$ 5 $257\pm$ 98 10 $148\pm$ 24 $50\pm$ 7 $22\pm$ 4 $229\pm$ 47 10 $143\pm$ 22 $60\pm$ 9 $25\pm$ 4 $265\pm$ 49 10 $146\pm$ 22 $58\pm$ 8 $25\pm$ 3 $256\pm$ 61 7 $132\pm$ 24 $48\pm$ 5 $24\pm$ 5 $213\pm$ 31	NO. of Animals PHOSPHOLIPID GOT IU/2 IU/2 LDH IU/2 ALP IU/2 9 157± 15 51± 7 20± 5 257± 98 246± 10 148± 24 50± 7 22± 4 229± 47 260± 10 143± 22 60± 9 25± 4 265± 49 276± 10 146± 22 58± 8 25± 3 256± 61 285± 7 132± 24 48± 5 24± 5 213± 31 267±	NO. of Animals PHOSPHOLIPID mg/dl GOT I U/l GPT I U/l LDH I U/l ALP I U/l 9 $157\pm$ 15 $51\pm$ 7 $20\pm$ 5 $257\pm$ 98 $246\pm$ 19 10 $148\pm$ 24 $50\pm$ 7 $22\pm$ 4 $229\pm$ 47 $260\pm$ 33 10 $143\pm$ 22 $60\pm$ 9 $25\pm$ 4 $265\pm$ 49 $276\pm$ 24 10 $146\pm$ 22 $58\pm$ 8 $25\pm$ 3 $256\pm$ 61 $285\pm$ 20 7 $132\pm$ 24 $48\pm$ 5 $24\pm$ 5 $213\pm$ 31 $267\pm$ 38	NO. of Animals PHOSPHOLIPID GOT I U/2 GPT I U/2 LDH I U/2 LDH I U/2 LU/2 C-GTP I U/2 9 157± 15 51± 7 20± 5 257± 98 246± 19 1± 10 148± 24 50± 7 22± 4 229± 47 260± 33 1± 10 143± 22 60± 9 25± 4 265± 49 276± 24 2± 10 146± 22 58± 8 25± 3 256± 61 285± 20 1± 7 132± 24 48± 5 24± 5 213± 31 267± 38 1±	NO. of Animals PHOSPHOLIPID GOT I U/2 GPT I U/2 LDH I U/2 I U/2 G-GTP I U/2 9 157± 15 51± 7 20± 5 257± 98 246± 19 1± 1 10 148± 24 50± 7 22± 4 229± 47 260± 33 1± 1 10 143± 22 60± 9 25± 4 265± 49 276± 24 2± 1 10 146± 22 58± 8 25± 3 256± 61 285± 20 1± 1 7 132± 24 48± 5 24± 5 213± 31 267± 38 1± 1	NO. of Animals mg/dR

(IICL074)

BAIS 3

STUDY NO.: 0290
ANIMAL: MOUSE Crj:BDF1
MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	UREA N mg/dl	ITROGEN	SODIUM mEq/l		POTASSI mEq/		CHLORIDI mEq/Q		CALCIUM mg∕dl		INORGA mg∕dl	NIC PHOSPHORUS	
Control	9	21.8±	1.6	152±	1	4.8±	0.4	123±	1	8.8±	0.2	5.9±	1.0	
237 ppm	10	23.1±	2.7	153±	2	4.8±	0.3	123±	2	8.9±	0.2	5.9±	0.7	
355 ppm	10	23.5±	2.7	154±	2	5.0±	0.6	125±	2	8.9±	0.2	6.1±	1.1	
533 ppm	10	22.9±	2.1	153±	1	4.8±	0.4	123±	2	8.9±	0.1	6.0±	0.6	
mqq 008	7	22.7±	5.5	153±	1	4.4±	0.3	123±	2	8.8±	0.2	5.6±	0.5	
200 ppm	9	26.9±	5,5	153±	2	4.5±	0.4	122±	3	8.6±	0.3	6.6±	0.9	
Significant	defference;	* : P ≦ 0	.05 *	* : P ≤ 0.01				Test of Dunn	ett			······································		

BAIS3

APPENDIX H 1

URINALYSIS: SUMMARY, MOUSE: MALE

URINALYSIS

ANIMAL : MOUSE Crj:BDF1

MEASURE, TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Froup Name	NO. of	Hq								P	rote	in					G	.uco	se_				Ke-	:one	bad :	У			0cr	ult	bla	ood		
·	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	-	- ±	+	2+	3+	4+	CHI					3+	4+ CHI	-	±	+ 2	+ 3-	+ 4+	CHI	-	±	+ :	2+ 3	+ CHI	I
Control	10	0	0	0	0	2	6	2			0 0	10	0	0	0		10	0	0	0	0	0	4	3	3	0 (0 0		10	0	0	0)	
237 ppm	10	0	0	0	0	1	8	1			0 1	. 9	0	0	0		10) 0	0	0	0	0	3	3	4	0 (0 0		10	0	0	0)	
355 ppm	10	0	0	0	0	4	6	0			0 0	8 (2	0	0		10) 0	0	0	0	0	0	7	2	1	0 0		10	0	0	0	0	
533 ppm	10	0	0	1	3	2	4	0			0 0	3	7	0	0	**	10	0	0	0	0	0	0	4	4	2	0 0		10	0	0	0	0	
800 ppm	10	0	0	3	6	0	1	0	**		0 () 1	9	0	0	**	10) 0	0	0	0	0	0	2	5	3	0 0		10	0	0	0	0	
1200 ppm	9	0	3	4	1	1	0	0	**		0 () 4	5	0	0	**	,	3 0	0	0	0	0	0	4	4	1	0 0		9	0	0	0	0	

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of CHI SQUARE

(HCL101) BAIS 3

URINALYSIS

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0		
237 ppm	10	10 0 0 0 0		
355 ppm	10	10 0 0 0 0		
533 ppm	10	10 0 0 0 0		
mqq 008	10	10 0 0 0 0		
1200 ppm	9	9 0 0 0 0		
Significan	nt difference	; *:P≤ 0.05 **: P≤ 0.01	Test of CHI SQUARE	
(HCL101)	•			BAIS3

APPENDIX H 2

URINALYSIS: SUMMARY, MOUSE: FEMALE

URINALYSIS

ANIMAL : MOUSE Crj:BDF1

MEASURE, TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of	Hq										otei							uco				_		tone							cul				
	Animals	5.	0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	_	±	+	2+	3+	4+	CHI	_	±	+	2+	3+ 4	l+ CHI		±	+	2+	3+ 4	+	CHI	-	±	+	24	- 3+	C
Control	10	0		0	3	0	4	3	0		0	0	10	0	0	0		10	0	0	0	0	0	4	6	0	0	0	0		10	0) () (0	
237 ppm	10	0		0	2	0	1	7	0		0	1	9	0	0	0		10	0	0	0	0	0	3	7	0	0	0	0		10) () () (0	
355 ppm	10	0		0	0	3	4	3	0		0	0	3	7	0	0	**	10	0	0	0	0	0	0	8	2	0	0	0	*	10) () () (0	
533 ppm	10	0		1	5	4	0	0	0	*	0	0	5	5	0	0	**	10	0	0	0	0	0	0	5	5	0	0	0	*	10	0) () (0	
800 ppm	10	0		0	4	2	3	1	0		0	1	0	9	0	0	**	10	0	0	0	0	0	0	2	7	1	0	0	**	10) () () (0	
1200 ppm	10	0		1	2	5	1	1	0		0	0	1	9	0	0	**	10	0	0	0	0	0	0	4	4	2	0	0	*	10) () () (0	
Significan	t difference	; *	:	P ≤	0.05		**	: P ≦	0.01								Test	of C	н	SOIL	RF															

(HCL101)

BAIS 3

URINALYSIS

ANIMAL : MOUSE Crj:BDF1

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

Group Name	NO. of Animals	Vrobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0		
237 ppm	10	10 0 0 0 0		
355 ppm	10			
		10 0 0 0 0		
533 ppm	10	10 0 0 0 0		
Mqq 008	10	10 0 0 0 0		
1200 ppm	10	10 0 0 0 0		
Significan	nt difference	; *: P ≤ 0.05 **: P ≤ 0.01	Test of CHI SQUARE	
(HCL101)				RAIS3

BAIS3

APPENDIX I 1

GROSS FINDINGS: SUMMARY, MOUSE: MALE ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : MALE

Pi	GE:	:	1

0rgan	Findings	Group Name NO. of Animals	Control 10 (%)	237 ppm 10 (%)	355 ppm 10 (%)	533 ppm 10 (%)
spleen	black zone		0 (0)	2 (20)	0 (0)	1 (10)
kidney	hydronephrasis		0 (0)	0 (0)	0 (0)	1 (10)
(HPT080)						BAIS 3

STUDY NO. : 0290 ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

EX : MALI

Organ	Findings	Group Name 800 ppm NO. of Animals 10 (%)	1200 ppm 10 (%)	
spleen	black zone	1 (10)	3 (30)	
kidney	hydranephrasis	0 (0)	0 (0)	
(IIPT080)				BAIS 3

APPENDIX I 2

GROSS FINDINGS: SUMMARY, MOUSE: FEMALE ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	237 ppm 10 (%)	355 ppm 10 (%)	533 ppm 10 (%)
spleen	black zone		1 (10)	1 (10)	2 (20)	1 (10)
(HPT080)						BAIS

ANIMAL : MOUSE Crj:BDF1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

: FEMALE

Organ	Findings	Group Name NO. of Animals	800 ppm 10 (%)	1200 ppm 10 (%)	
spleen	black zone		1 (10)	0 (0)	
(IIPT080)					BAIS3

APPENDIX J 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: MALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1
SEX : MALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	31.6± 2.6	0.041± 0.008	0.009± 0.001	0.227± 0.025	0.141± 0.013	0.163± 0.016	
237 ppm	10	31.7± 2.7	0.044± 0.007	0.007± 0.001	0,236± 0.024	0.144± 0.009	0.166± 0.022	
355 ppm	10	28.7± 2.1	0.035± 0.003	0.009± 0.003	0.216± 0.021	0.133± 0.011	0.160± 0.013	
533 ppm	10	27.7± 1.2	0.035± 0.008	0.008± 0.002	0.223± 0.026	0.130± 0.005	0.167± 0.013	
800 ppm	10	25.2± 1.1**	0.031± 0.006**	0.009± 0.001	0.234± 0.013	0.125± 0.004*	0.159± 0.017	
1200 ppm	10	23.0± 0.7**	0.028± 0.004**	0.007± 0.001	0.224± 0.019	0.113± 0.005**	0.153± 0.008	

(IICL040)

BAIS 3

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 2

Group Name	NO. of Animals	KID	NEYS	SPL	EEN	LIV	ER	BRA	IN	
Control	10	0.427±	0.018	0.049±	0.008	1.182±	0.080	0.448±	0.007	
237 ppm	10	0.431±	0.024	0.051±	0.007	1.286±	0.111*	0.452±	0.013	
355 ppm	10	0.419±	0.026	0.047±	0.010	1.209±	0.107	0.442±	0.011	
533 ppm	10	0.507±	0.305	0.047±	0.009	1.196±	0.065	0.442±	0.012	
mag 008	10	0.407±	0.019	0.042±	0.005	1.138±	0.060	0.446±	0.009	
1200 ppm	10	0.386±	0.015**	0.038±	0.005*	1.009±	0.048**	0.441±	0.017	
Significan	t difference;	* : P ≤ 0.0	05 ** :	: P ≤ 0.01			Test	of Dunnet	t	

(HCL040)

BAIS3

APPENDIX J 2

ORGAN WEIGHT, ABSOLUTE: SUMMARY, MOUSE: FEMALE

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE: A1 SEX: FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 3

Group Name	NO. of Animals	Bady Weight	THYNU	S	ADREI	NALS	OVAR	IES	HEAR	Γ	LUNG	S
Control	10	21.1± 1.3	0.042±	0.004	0.011±	0.001	0.029±	0.007	0.118±	0.005	0.160±	0.011
237 ppm	10	21.2± 0.6	0.040±	0.004	0.009±	0.003	0.026±	0.004	0.118±	0.004	0.163±	0.013
355 ppm	10	20.6± 1.0	0.040±	0.005	0.009±	0.002	0.026±	0.006	0.118±	0.008	0.162±	0.010
533 ppm	10	20.8± 0.7	0.037±	0.006	0.009±	0.002	0.025±	0.004	0.115±	0.005	0.161±	0.009
800 ppm	10	21.3± 1.0	0.038±	0.007	0.009±	0.002	0.022±	0.002*	0.114±	0.009	0.155±	0.010
1200 ppm	10	20.4± 0.8	0.033±	0.005**	0.008±	0.001	0.022±	0.004*	0.106±	0.010**	0.145±	0.011*
Significan	t difference ;	* : P ≤ 0.05	** : P ≤ 0.01			Tes	at of Dunnett					

(HCL040) BAIS 3

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1
SEX : FEMALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

IN	BRA	≅R ——————	LIVE	EEN	SPLI	NEYS	KIDI	NO. of Animals	Group Name
0.016	0.456±	0.053	0.929±	0.008	0.056±	0.017	0.286±	10	Control
0.010	0.465±	0.048	0.962±	0.007	0.058±	0.010	0.300±	10	237 ppm
0.014	0.455±	0.050	0.950±	0.006	0.055±	0.018**	0.309±	10	355 ppm
0.012	0.453±	0.062	0.952±	0.008	0.055±	0.016**	0.319±	10	533 ppm
0.010	0.452±	0.069*	1.014±	0.012	0.059±	0.015**	0.336±	10	800 ppm
0.014	0.446±	0.079	0.935±	0.004	0.051±	0.009**	0.331±	10	1200 ppm

(IICL040)

BAIS 3

APPENDIX K 1

ORGAN WEIGHT, RELATIVE : SUMMARY, MOUSE : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

STUDY NO. : 0290

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1 SEX : MALE

UNIT: %

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	31.6± 2.6	0.130± 0.021	0.028± 0.004	0.721± 0.070	0.447± 0.028	0.518± 0.063
237 ppm	10	31.7± 2.7	0.137± 0.016	0.023± 0.005	0.747± 0.070	0.456± 0.034	0.524± 0.043
355 ppm	10	28.7± 2.1	0.122± 0.015	0.031± 0.009	0.755± 0.053	0.464± 0.031	0.562± 0.053
533 ppm	10	27.7± 1.2	0.127± 0.028	0.029± 0.007	0.808± 0.092*	0.471± 0.027	0.605± 0.038**
800 ppm	10	25.2± 1.1**	0.125± 0.019	0.035± 0.003*	0.932± 0.045**	0.498± 0.025**	0.634± 0.067**
1200 ppm	10	23.0± 0.7**	0.124± 0.019	0.031± 0.006	0.975± 0.068**	0.492± 0.026**	0.666± 0.028**
Significan	nt difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Tes	t of Dunnett		

PAGE: 1

(IICL042) BAIS3

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 2

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.359± 0.085	0.155± 0.024	3.750± 0.122	1.427± 0.114	
237 ppm	10	1.365± 0.083	0.162± 0.021	4.062± 0.176**	1.433± 0.117	
355 ppm	10	1.467± 0.074	0.164± 0.033	4.220± 0.166**	1.548± 0.112*	
533 ppm	10	1.852± 1.180	0.169± 0.034	4.324± 0.156**	1.600± 0.063**	
800 ppm	10	1.622± 0.085**	0.166± 0.020	4.523± 0.126**	1.778± 0.104**	
1200 ppm	10	1.683± 0.076**	0.166± 0.019	4.392± 0.214**	1.919± 0.083**	

APPENDIX K 2

ORGAN WEIGHT, RELATIVE: SUMMARY, MOUSE: FEMALE

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

STUDY NO. : 0290 ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

PAGE: 3

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.1± 1.3	0.199± 0.022	0.050± 0.007	0.136± 0.032	0.560± 0.039	0.761± 0.064	
237 ppm	10	21.2± 0.6	0.188± 0.016	0.044± 0.012	0.122± 0.020	0.555± 0.026	0.768± 0.059	
355 ppm	10	20.6± 1.0	0.192± 0.021	0.046± 0.008	0.124± 0.025	0.574± 0.036	0.784± 0.032	
533 ppm	10	20.8± 0.7	0.179± 0.026	0.044± 0.009	0.118± 0.017	0.555± 0.025	0.775± 0.033	
800 ppm	10	21.3± 1.0	0.178± 0.033	0.044± 0.009	0.103± 0.011**	0.536± 0.034	0.729± 0.054	
1200 ppm	10	20.4± 0.8	0.163± 0.026**	0.039± 0.005	0.110± 0.020*	0.523± 0.044	0.714± 0.048	
Significan	nt difference ;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	et of Dunnett			R

BAIS 3 (HCL042)

ANIMAL : MOUSE Crj:BDF1

REPORT TYPE: A1
SEX: FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.358± 0.091	0.263± 0.031	4.400± 0.169	2.167± 0.152	
237 ppm	10	1.418± 0.084	0.273± 0.028	4.534± 0.151	2.197± 0.101	
355 ppm	10	1.498± 0.085**	0.264± 0.022	4.608± 0.155	2.212± 0.090	
533 ppm	10	1.532± 0.061**	0.266± 0.040	4.571± 0.198	2.178± 0.094	
Mqq 008	10	1.578士 0.079**	0.277± 0.046	4.750± 0.213**	2.123± 0.117	
1200 ppm	10	1.627± 0.051**	0.249± 0.019	4.588± 0.311	2.192± 0.069	
	at difference;		P ≤ 0.01		af Dunnett	

(HCL042) BAIS 3

APPENDIX L 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: MALE: ALL ANIMALS

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

Organ		up Name of Animals on Study de(%)	2	10 3	<u>4</u> (%)	1 (%)	237 pp 10 2 (%)		<u>4</u> (%)	1 (%)	355 (%)	ppm 10 3 (%)	<u>4</u> (%)	1 (%)	533 p	opm .0 .3 (%)	<u>4</u> (%)
[Respiratory	system]																
nasal cavit	respiratory metaplasia:plfactory epitheli		0	0 (0)	0 (0)	(0)	<10 0 (0) (0	0 (0)	0 (0)	0 (0)		0 (0)	0 (0)	0		0 (0)
	respiratory metaplasia:gland	0 (0)		0 (0)	0 (0)	1 (10)	0 (0) (0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)
[Hematopoieti	c system]																
spleen	deposit of melanin	0 (0)	0	0 (0)	0 (0)	2 (20)	<10 0 (0) (0	0 (0)	0 (0)	0	9> 0 (0)	0 (0)	1 (10)	0		0 (0)
[Digestive sy	rstem]																
liver	granulation	0 (0)	0	(10) 0 (0)	0 (0)	1 (10)	<10 0 (0) (0	0 (0)	0 (0)	0	0 (0)	0 (0)	0 (0)	0		0 (0)
[Urinary syst	cem]																
kidney	basophilic change	0 (0)	0	(10>	0 (0)	0 (0)		0	0 (0)	0 (0)	0	(0)	0 (0)	0 (0)	1		0 (0)
Grade (a > b (c) Significant o	a: Number of animals examined at the siteb: Number of animals with lesionc: b / a * 100	arked 4: Sever															

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : MOUSE Crj:BDF1
REPORT TYPE : A1
SEX : MALE

Group Name 800 ppm 1200 ppm No. of Animals on Study 10 10 Grade 3 (%) Findings (%) (%) [Respiratory system] <10> nasal cavit <10> respiratory metaplasia:olfactory epithelium 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) respiratory metaplasia:gland (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] <10> spleen deposit of melanin 1 0 0 0 3 0 0 0 (10) (0) (0) (0) (30) (0) (0) (0) [Digestive system] Liver <10> <10> 0 0 0 0 0 0 0 granulation (0)(0)(0)(0) (0)(0)(0)(0) [Urinary system] kidney <10> basophilic change 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion c : b / a * 100(c) Significant difference : $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

(HPT150)

STUDY NO. : 0290 ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

ganFinding	G	roup Name o. of Animals on Study rade	Control 10 2 3 4 (%) (%) (%)	237 ppm 10 1 2 3 4 (%) (%) (%) (%)	355 ppm 10 1 2 3 4 (%) (%) (%) (%)	533 ppm 10 1 2 3 4 (%) (%) (%) (%)
Jrinary system]						
dney vacuoli	zation of proximal tubule	8 (80)	<10> 0 0 0 (0) (0) (0)	(10) (0) (0) (0)	2 0 0 0 * (20) (0) (0) (0)	0 0 0 0 *** (0) (0) (0) (0)
hydrone	phrosis	(0) (0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (10) (0)
Indocrine system]						
renal cyst		0 (0) (<10> 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)
b b: Numbe c) c:b/a	r of animals examined at the sit r of animals with lesion					

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name 800 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	1200 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sy	stem]			
kidney	vacuolization of proximal tubule	0 0 0 0 ** (0) (0) (0) (0)	(10) 0 0 0 0 ** (0) (0) (0) (0)	
	hydronephrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	
(Endocrine :	system]			
adrena l	cyst	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 1 0 0 (0) (10) (0) (0)	
Grade <a>a> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; $*: P \leq 0.05$ **: P			
(HPT150)				BAIS3

APPENDIX L 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

MOUSE: FEMALE: ALL ANIMALS

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

STUDY NO. : 0290 ANIMAL : MOUSE Crj:BDF1

REPORT TYPE : A1

SEX : FEMALE

0rgan	No	oup Name	237 ppm 10 1 2 3 4 (%) (%) (%) (%)	355 ppm 10 1 2 3 4 (%) (%) (%) (%)	533 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Respiratory	system]				
nasal cavit	respiratory metaplasia:gland	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	atrophy:olfactory epithelium	0 0 0 0 0 0 (0)	0 4 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
[Hematopoiet	ic system]				
spleen	deposit of melanin	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10)(0)(0)(0)	2 0 0 0 (20) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Digestive s	ystem]				
Liver	granulation	2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10)(0)(0)(0)
[Endocrine s	ystem]				
thyroid	ectopic thymic tissue	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	\(\lambda 10 \rangle \) \(1 0 0 0 \\ (10) (0) (0) (0) (0) \end{array}	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Grade <a> > b <a> c) <a> Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the site $b:$ Number of animals with lesion $c:b/a*100$ difference; $*:P \le 0.05$ **: $P \le 0.05$				

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

: FEMALE PAGE: 6

Organ	Findings	Group Name 800 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	1200 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Respiratory	system]			
nasal cavit	respiratory metaplasia:gland	1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	atrophy:olfactory epithelium	0 3 0 0 (0) (0) (0)	1 1 0 0 (10) (10) (0) (0)	
[Hematopoieti	ic system]			
spleen	deposit of melanin	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	
[Digestive sy	vstem]			
liver	granulation	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
(Endocrine s	vstem]			
thyroid	ectopic thymic tissue	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade <a>A <a>B <a>C <a>C<!--</td--><td>1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: I</td><td></td><td></td><td></td>	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: I			

(HPT150)

STUDY NO. : 0290

ANIMAL : MOUSE Crj:BDF1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

Group Name 237 ppm 355 ppm 533 ppm Control No. of Animals on Study 10 10 10 10

Grade Findings (%) (%) (%) (%) (%) (%) (%)

[Endocrine system]

adrenal

cyst

<10> <10> <10> <10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) (0)(0)(0)(0)

Grade

1 : Slight 2 : Moderate 4 : Severe

3 : Marked

< a > a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square

(HPT150)

BAIS3

PAGE: 7

STUDY NO. : 0290

ANIMAL : MOUSE Crj:BDF1 REPORT TYPE : A1

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

SEX : FEMALE

PAGE: 8 Group Name 800 ppm 1200 ppm No. of Animals on Study 10 10 Grade (%) (%) (%) Findings_ [Endocrine system] adrenal <10> 0 0 0 0 cyst 1 0 0 0 (0) (0) (0) (0) (10) (0) (0) (0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square (HPT150)

BAIS3

APPENDIX M 1

IDENTITY AND IMPURITY OF QUINOLINE IN THE 13 - WEEK DRINKING WATER STUDY

IDENTITY AND IMPURITY OF QUINOLINE IN THE 13-WEEK DRINKING WATER STUDY

Test Substance

: Quinoline (Tokyo Kasei Kogyo Co., Ltd.)

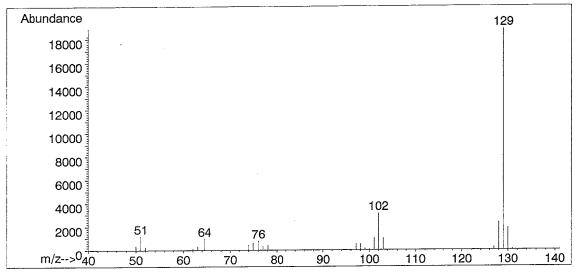
Lot No.

: FHD03

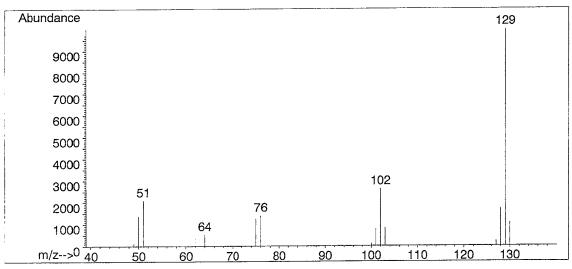
1. Spectral Data

Mass Spectrometry

Instrument


: Hewlett Packard 5989B Mass Spectrometer

Ionization


: EI (Electron Ionization)

Ionization Voltage

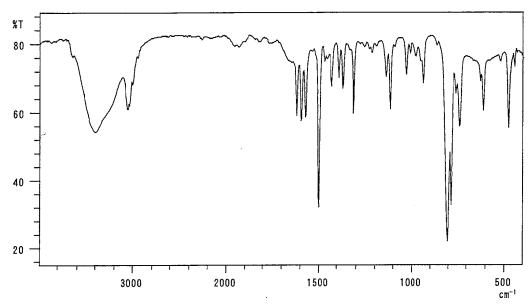
: 70eV

Mass Spectrum of Test Substance

Mass Spectrum of Literature Data*

Results: The mass spectrum was consistent with literature spectrum.

(*Fred W. McLafferty (1994) Wiley Registry of Mass Spectral Data, 6th edition.


John Wiley and Sons, Inc. (U.S.), Entry Number 6221)

Infrared Spectrometry

Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 4 cm⁻¹

Infrared Spectrum of Test Substance

Literature Values*
Wave Number (cm ⁻¹)
440~ 460
460~ 500
600~ 640
$720\sim 760$
760~ 800
800~ 840
920~ 960
$1020 \sim 1040$
1100~1130
1130~1160
1300~1320
1340~1380
1380~1400
1400~1440
$1480 \sim 1520$
1560~1580
1580~1600
1600~1640
3120~3720

Results: The infrared spectrum was consistent with literature spectrum.

(*William W. Simons (1978) The Sadtler Handbook of Infrared Spectra.

Sadtler Research Laboratories, Inc. (U.K.), pp.218)

2. Impurity

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: INNOWAX (0.2 mm $\phi \times 50$ m)

Column Temperature

: 190° C

Flow Rate

: 1 mL/min

Detector

)

: FID (Flame Ionization Detector)

Injection Volume

: 1 µL

2 Mathad Namhthalana
2-Methyl Naphthalene
Quinoline
Isoquinoline

Results: Gas chromatography indicated one major peak (peak No.2) and two impurities. It was identified only by comparing its gas chromatograph with that of 2-methyl naphthalene (peak No.1) and isoquinoline (peak No.3) in the quinoline, the amount in the test substance were 0.166%, and 0.149%.

3. Conclusions: The test substance was identified as quinoline by the mass spectrum and the infrared spectrum. Gas chromatography indicated one major peak (peak No.2) and two impurities. It was identified only by comparing its gas chromatograph with that of 2-methyl naphthalene and isoquinoline, the amount in the test substance were 0.166% and 0.149%.

APPENDIX M 2

STABILITY OF QUINOLINE IN THE 13 - WEEK DRINKING WATER STUDY

STABILITY OF QUINOLINE IN THE 13-WEEK DRINKING WATER STUDY

Test Substance : Quinoline (Tokyo Kasei Kogyo Co., Ltd.)

Lot No. : FHD03

1. Sample Storage : This lot was used from 1995.6.21 to 1995.9.22. Test substance was stored

in a dark place at room temperature.

2. Gas Chromatography

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : INNOWAX (0.2 mm $\phi \times 50$ m)

Column Temperature : 190° C

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 μL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
1995.05.30	1	5.397	0.166
	2	6.354	99.685
	3	6.779	0.149
1995.09.29	1	5.398	0.166
	2	6.353	99.686
	3	6.777	0.148

Results: Gas chromatography indicated one major peak (peak No.2) and two impurities (peaks No.1 and No.3 < 0.4% of total area) analyzed on 1995.5.30 and one major peak (peak No.2) and two impurities (peaks No.1 and No.3 < 0.4% of total area) analyzed on 1995.9.29. No new trace impurity peak in the test substance analyzed on 1995.9.29 was detected.

3. Conclusions: The test substance was stable for about 4 months in a dark place at room temperature.

APPENDIX M 3

CONCENTMOUSEION OF QUINOLINE IN FORMULATED WATER IN THE 13 - WEEK DRINKING WATER STUDY

CONCENTRATION OF QUINOLINE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

Target Concentration					
Date Analyzed	237ª	355	533	800	1200
1995.06.20	233.3(98.4) ^b	351.8(99.1)	530.5(99.5)	797.5(99.7)	1194.4(99.5)

a ppm b %

Analytical Method

: The samples were analyzed by high performance liquid chromatography.

Instrument

: Hewlett Packard 1090 High Performance Liquid Chromatograph

Column

: TSK GEL ODS 80TM (4.6 mm $\phi \times 150$ mm)

Column Temperature

: 50℃

Flow Rate

: 1 mL/min

Mobile Phase

: Methanol : Distilled water = 3 : 2

Detector

: UV (280 nm)

Injection Volume

: 10 μL

APPENDIX M 4 STABILITY OF QUINOLINE IN FORMULATED WATER IN THE 13 - WEEK DRINKING WATER STUDY

STABILITY OF QUINOLINE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

	<u>_</u>	Target Concentratio		
Date Prepare	Date Analyzed	237 ^a	1200	
1995.06.20	1995.06.20	233.3(100) ^b	1194.4(100)	
	1995.06.28°	232.6(99.7)	1189.7(99.6)	

a ppm

Analytical Method : The samples were analyzed by high performance liquid chromatography.

Instrument : Hewlett Packard 1090 High Performance Liquid Chromatograph

Column : TSK GEL ODS 80TM (4.6 mm $\phi \times 150$ mm)

Column Temperature : 50°C

Flow Rate : 1 mL/min

Mobile Phase : Methanol : Distilled water = 3 : 2

Detector : UV (280 nm)

Injection Volume : 10 µL

^b %(Percentage was based on the concentration on date of preparation.)

c animal room samples

APPENDIX N 1

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13 - WEEK DRINKING WATER STUDY OF QUINOLINE

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK DRINKING WATER STUDY OF QUINOLINE

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)
Hematocrit (Hct)	Calculated as RBC × MCV/10 1)
Mean corpuscular volume (MCV)	Light scattering method 1)
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC × 10 1)
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct × 100 1)
Platelet	Light scattering method 1)
White blood cell (WBC)	Light scattering method 1)
Differential WBC	Pattern recognition method 2)
	(May-Grunwald-Giemsa staining)
Biochemistry	
Total protein (TP)	Biuret method 3)
Albumin (Alb)	BCG method 3)
A/G ratio	Calculated as Alb/(TP-Alb) 3)
T-bilirubin	Alkaline azobilirubin method 3)
Glucose	Enzymatic method (GLK·G-6-PDH)
T-cholesterol	Enzymatic method (CE·COD·POD) 3)
Triglyceride	Enzymatic method (LPL•GK•GPO•POD) 3)
Phospholipid	Enzymatic method (PLD·COD·POD) 3)
Glutamic oxaloacetic transaminase (GOT)	UV·Rate method 3)
Glutamic pyruvic transaminase (GPT)	UV·Rate method 3)
Lactate dehydrogenase (LDH)	UV·Rate method 3)
Alkaline phosphatase (ALP)	p-Nitrophenylphosphate method 3)
γ -Glutamyl transpeptidase (γ -GTP)	L-γ-Glutamyl-p-nitroanilide method 3)
Creatine phosphokinase (CPK)	UV·Rate method 3)
Urea nitrogen	Enzymatic method (Urease · GLDH)
Sodium	Ion selective electrode method 3)
Potassium	Ion selective electrode method 3)
Chloride	Ion selective electrode method 3)
Calcium	OCPC method 3)
Inorganic phosphorus	Enzymatic method (PNP·XOD·POD) 3)
Urinalysis	
PH,Protein,Glucose,Ketone body,Occult Blood,	Urinalysis reagent paper method 4)
Urobilinogen	

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation, USA)
- 2) Automatic blood cell differential analyzer (Hitachi 8200: Hitachi, Ltd., Japan)
- 3) Automatic analyzer (Hitachi 7070: Hitachi, Ltd., Japan)
- 4) Ames reagent strips for urinalysis (Uro-Labstix: Bayer-Sankyo Co.,Ltd.,Japan)

APPENDIX O 1

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13 - WEEK DRINKING WATER STUDY OF QUINOLINE

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF QUINOLINE

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	×10 ⁶ /μL	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	$\times 10^3/\mu L$	0
White blood cell (WBC)	$\times 10^3/\mu L$	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Triglyceride	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
Alkaline phosphatase (ALP)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1