Aluminum chloride (anhydrous)

Chemical Name:
Aluminum chloride (anhydrous)

Synonym

Molecular weight: 133.34

Melting point: 190 - 194°C (2.5 atm)

Boiling point: 180°C (1 atm)

Chemical Structure

\[\text{Al} \quad \text{C} \quad \text{Al} \]

CAS No.: 7446-70-0

MITI No.: (1)-12

Source of Substance: Wako Pure Chem. Ind., Ltd.

Lot. No.: STM2422

Purity: Extra pure reagent

Vehicle: DMSO

Mutagenicity

- **in Bacterial Test:** Positive

IARC Evaluation:
- Not yet cited

Experimental Data

<table>
<thead>
<tr>
<th>Concentration μg/plate</th>
<th>Con. Base-substitution</th>
<th>Number of Revertants/plate</th>
<th>Frame-shift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA100</td>
<td>TA1535</td>
<td>WP2uvrA</td>
</tr>
<tr>
<td></td>
<td>S9- S9+</td>
<td>S9- S9+</td>
<td>S9- S9+</td>
</tr>
<tr>
<td>DMSO</td>
<td>(94) (108)</td>
<td>(19) (13)</td>
<td>(49) (44)</td>
</tr>
<tr>
<td>20</td>
<td>92 101</td>
<td>19 12</td>
<td>55 35</td>
</tr>
<tr>
<td></td>
<td>95 108</td>
<td>14 9</td>
<td>52 56</td>
</tr>
<tr>
<td></td>
<td>(94) (105)</td>
<td>(17) (11)</td>
<td>(54) (46)</td>
</tr>
<tr>
<td></td>
<td>90 100</td>
<td>25 18</td>
<td>38 48</td>
</tr>
<tr>
<td></td>
<td>98 107</td>
<td>28 8</td>
<td>43 45</td>
</tr>
<tr>
<td>50</td>
<td>(87) (122)</td>
<td>(16) (10)</td>
<td>(45) (48)</td>
</tr>
<tr>
<td></td>
<td>117 103</td>
<td>19 14</td>
<td>34 44</td>
</tr>
<tr>
<td></td>
<td>89 125</td>
<td>11 17</td>
<td>48 59</td>
</tr>
<tr>
<td>100</td>
<td>(103) (114)</td>
<td>(15) (16)</td>
<td>(41) (52)</td>
</tr>
<tr>
<td></td>
<td>116 129</td>
<td>17 8</td>
<td>45 47</td>
</tr>
<tr>
<td></td>
<td>107 125</td>
<td>13 9</td>
<td>59 53</td>
</tr>
<tr>
<td>200</td>
<td>(112) (127)</td>
<td>(15) (9)</td>
<td>(52) (50)</td>
</tr>
<tr>
<td></td>
<td>146 143</td>
<td>16 9</td>
<td>60 48</td>
</tr>
<tr>
<td></td>
<td>130 182</td>
<td>20 11</td>
<td>57 36</td>
</tr>
<tr>
<td>500</td>
<td>(138) (163)</td>
<td>(18) (10)</td>
<td>(49) (42)</td>
</tr>
<tr>
<td></td>
<td>187 234</td>
<td>13 17</td>
<td>60 57</td>
</tr>
<tr>
<td></td>
<td>210 223</td>
<td>12 16</td>
<td>45 58</td>
</tr>
<tr>
<td>1000</td>
<td>(199) (229)</td>
<td>(13) (17)</td>
<td>(53) (58)</td>
</tr>
<tr>
<td></td>
<td>0* 0*</td>
<td>0* 0*</td>
<td>0* 0*</td>
</tr>
<tr>
<td></td>
<td>0* 0*</td>
<td>0* 0*</td>
<td>23* 15*</td>
</tr>
<tr>
<td>2000</td>
<td>(0*) (0*)</td>
<td>(0*) (0*)</td>
<td>(22*) (22*)</td>
</tr>
<tr>
<td></td>
<td>(0*) (0*)</td>
<td>(0*) (0*)</td>
<td>(0*) (0*)</td>
</tr>
<tr>
<td>5000</td>
<td>(0*) (0*)</td>
<td>(0*) (0*)</td>
<td>(0*) (0*)</td>
</tr>
</tbody>
</table>

Judgement

- + + - - - - - -

Specific Mutagenicity

- **Positive**
 - AF2 2AA 0.5 NaNo3 2AA AF2 2AA AF2 2AA AF2 2AA 9AA 2AA 2NF 2AA
- **Control**
 - (403) (638) (189) (251) (423) (675) (252) (442) (737) (176) (460) (460)