2,4-Dinitrophenol

Chemical Name: 2,4-Dinitrophenol
Synonym: α-Dinitrophenol

Conc. Number of Revertants/plate
μg/plate

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Base-substitution</th>
<th>Number of Revertants/plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Dinitrophenol</td>
<td>S9</td>
<td>S9+</td>
</tr>
<tr>
<td>DMSO</td>
<td>(181)</td>
<td>(191)</td>
</tr>
<tr>
<td></td>
<td>179</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>178</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>183</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>222</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>176</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>78.1</td>
<td>(180)</td>
</tr>
<tr>
<td></td>
<td>178</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>(178)</td>
</tr>
<tr>
<td></td>
<td>71*</td>
<td>61*</td>
</tr>
<tr>
<td></td>
<td>61*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>(668)</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>(0*)</td>
</tr>
</tbody>
</table>

Specific Mutagenicity

Positive Control: AF-2 2-AA NaN3 2-AA AF-2 2-AA AF-2 2-AA 9-AA 2-AA
Experimental Data - 2

<table>
<thead>
<tr>
<th>Conc. μg/plate</th>
<th>Number of Revertants/plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA100</td>
</tr>
<tr>
<td></td>
<td>S9−</td>
</tr>
<tr>
<td>DMSO</td>
<td>(154)</td>
</tr>
<tr>
<td>39.1</td>
<td>165</td>
</tr>
<tr>
<td>173</td>
<td>160</td>
</tr>
<tr>
<td>78.1</td>
<td>(169)</td>
</tr>
<tr>
<td>152</td>
<td>155</td>
</tr>
<tr>
<td>164</td>
<td>142</td>
</tr>
<tr>
<td>156</td>
<td>(158)</td>
</tr>
<tr>
<td>151</td>
<td>120</td>
</tr>
<tr>
<td>152</td>
<td>149</td>
</tr>
<tr>
<td>625</td>
<td>(152)</td>
</tr>
<tr>
<td>46*</td>
<td>13*</td>
</tr>
<tr>
<td>1250</td>
<td>(53*)</td>
</tr>
<tr>
<td>2500</td>
<td>(0*)</td>
</tr>
</tbody>
</table>

Judgement

- - - - - - - -

Specific Mutagenicity

<table>
<thead>
<tr>
<th>Positive</th>
<th>AF-2</th>
<th>2-AA</th>
<th>NaNa</th>
<th>AF-2</th>
<th>2-AA</th>
<th>AF-2</th>
<th>2-AA</th>
<th>9-AA</th>
<th>2-AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>(779)</td>
<td>(1133)</td>
<td>(401)</td>
<td>(247)</td>
<td>(185)</td>
<td>(1005)</td>
<td>(491)</td>
<td>(274)</td>
<td>(443)</td>
</tr>
</tbody>
</table>
Experimental Data - 3

<table>
<thead>
<tr>
<th>Conc. μg/plate</th>
<th>Number of Revertants/plate</th>
<th>Base-substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WP2uvrA/pKM101</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9-</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>S9+</td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td>78.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judgement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Mutagenicity</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>NaN2</td>
<td>2-AA</td>
</tr>
<tr>
<td>Control</td>
<td>(410)</td>
<td>(248)</td>
</tr>
</tbody>
</table>

Experimental Data - 4

<table>
<thead>
<tr>
<th>Conc. μg/plate</th>
<th>Number of Revertants/plate</th>
<th>Base-substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WP2uvrA/pKM101</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9-</td>
<td>(297)</td>
<td>(363)</td>
</tr>
<tr>
<td>S9+</td>
<td>(386)</td>
<td>(509)</td>
</tr>
<tr>
<td>0.0763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judgement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Mutagenicity</td>
<td>BLM</td>
<td>2-AA</td>
</tr>
<tr>
<td>Positive</td>
<td>BLM</td>
<td>2-AA</td>
</tr>
<tr>
<td>Control</td>
<td>NaN2</td>
<td>2-AA</td>
</tr>
<tr>
<td></td>
<td>(630)</td>
<td>(563)</td>
</tr>
<tr>
<td></td>
<td>(1682)</td>
<td>(1220)</td>
</tr>
<tr>
<td></td>
<td>(1515)</td>
<td>(962)</td>
</tr>
</tbody>
</table>

Specific Mutagenicity
Experimental Data - 5

<table>
<thead>
<tr>
<th>Conc. μg/plate</th>
<th>Number of Revertants/plate</th>
<th>Base-substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA102</td>
<td>S9−</td>
</tr>
<tr>
<td>DMSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(226)</td>
<td>(226)</td>
<td>(226)</td>
</tr>
<tr>
<td>240</td>
<td>287</td>
<td>52</td>
</tr>
<tr>
<td>230</td>
<td>301</td>
<td>46</td>
</tr>
<tr>
<td>4.88</td>
<td>(235)</td>
<td>(235)</td>
</tr>
<tr>
<td>232</td>
<td>316</td>
<td>49</td>
</tr>
<tr>
<td>222</td>
<td>294</td>
<td>37</td>
</tr>
<tr>
<td>9.77</td>
<td>(227)</td>
<td>(227)</td>
</tr>
<tr>
<td>191</td>
<td>306</td>
<td>338</td>
</tr>
<tr>
<td>214</td>
<td>276</td>
<td>344</td>
</tr>
<tr>
<td>19.5</td>
<td>(203)</td>
<td>(203)</td>
</tr>
<tr>
<td>134</td>
<td>268</td>
<td>335</td>
</tr>
<tr>
<td>160</td>
<td>234</td>
<td>320</td>
</tr>
<tr>
<td>39.1</td>
<td>(147)</td>
<td>(147)</td>
</tr>
<tr>
<td>100</td>
<td>160</td>
<td>368</td>
</tr>
<tr>
<td>130</td>
<td>155</td>
<td>343</td>
</tr>
<tr>
<td>78.1</td>
<td>(115)</td>
<td>(115)</td>
</tr>
<tr>
<td>40</td>
<td>75</td>
<td>341</td>
</tr>
<tr>
<td>36</td>
<td>85</td>
<td>356</td>
</tr>
<tr>
<td>156</td>
<td>(38)</td>
<td>(38)</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>292</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>298</td>
</tr>
<tr>
<td>313</td>
<td>(12*)</td>
<td>(12*)</td>
</tr>
<tr>
<td>38</td>
<td>3*</td>
<td>280*</td>
</tr>
<tr>
<td>6*</td>
<td>3*</td>
<td>221*</td>
</tr>
<tr>
<td>625</td>
<td>(5*)</td>
<td>(5*)</td>
</tr>
<tr>
<td>69*</td>
<td>57*</td>
<td>56*</td>
</tr>
<tr>
<td>1250</td>
<td>(63*)</td>
<td>(63*)</td>
</tr>
<tr>
<td>6*</td>
<td>7*</td>
<td>5*</td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Judgement
- - - - - -

Specific Mutagenicity

<table>
<thead>
<tr>
<th>Positive</th>
<th>BLM</th>
<th>2-AA</th>
<th>PA</th>
<th>2-AA</th>
<th>AF-2</th>
<th>2-AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>(708)</td>
<td>(1198)</td>
<td>(948)</td>
<td>(898)</td>
<td>(723)</td>
<td>(542)</td>
</tr>
</tbody>
</table>